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Abstract: The VATES project addresses the problem of verifying embedded soft-
ware by employing a novel combination of methods that are well-established on the
level of declarative models, in particular process-algebraic specifications, as well as
of methods that work especially well on the level of executable code. Beginning
with executable code, we (automatically) extract a model in the form of a process-
algebraic system description formulated in Communicating Sequential Processes
(CSP). For this low-level CSP description, we can prove that it refines a high-level
CSP specification which was previously developed. To relate the (Low-Level Virtual
Machine) LLVM code with the low-level CSP model we designed an operational
semantics of LLVM. In ongoing work we investigate the extraction algorithm with
respect to preservation of semantics. Thereby, we are finally able to prove that given
LLVM code formally conforms to its high-level CSP-based specification. In this
paper we give an overview of results of VATES so far and show that this approach
has the potential to seamlessly integrate modeling, implementation, transformation
and verification stages of embedded system development.

Keywords: (Timed) CSP, LLVM, Model Extraction, Theorem Proving

1 Introduction

Embedded systems are often employed in safety-critical areas. Their correctness is therefore
extremely important in order not to endanger human lives or risk high financial losses. How-
ever, the correctness of these systems is difficult to ensure. A particular challenge is that they
are highly concurrent and that non-functional properties such as the satisfaction of real-time
constraints play an important role. Although there exist well-established techniques to verify
abstract specifications of such systems, the verification of their actual implementations, e.g. in
C++, is still an open problem.

The VATES1 project investigates exactly these questions. It starts from the hypothesis that
software in embedded systems can be characterized by certain structures (distinguished e.g. by
the processes and their pattern of communication) that characterize its mode of operation and
that need to be retained when transformed into executable code. We investigate these structures
by taking the BOSS [MBK06] operating system as an example. BOSS is a relatively small oper-

1 VATES=Verification and Transformation of Embedded Systems, funded by the German Research Foundation
(DFG). Web: https://group.swt.tu-berlin.de/vates/
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Figure 1: The Satellite BIRD

ating system that has been developed at the Fraunhofer Institut FIRST, Berlin. It is operational
since several years within the satellite BIRD2 (see Figure 1) of the DLR3 designed for early
fire detection. It needs to cope with high performance requirements while only featuring small
resources. Such small satellites are very interesting as they have the advantage to be relatively
cheap and nevertheless to be very powerful at the same time. Since BOSS has been designed
with the goal of verifying it in mind, it is an ideal case study for the VATES project.

We propose a novel approach that makes well-established formal verification techniques for
declarative process-algebraic specifications applicable to low-level software programs. To this
end, we designed an algorithm that extracts a low-level CSP model from the LLVM compiler
intermediate representation [KH09]. On this basis it can be shown that a given low-level model
refines a high-level model which is also given in a CSP-based formalism. The high-level speci-
fication may be investigated using our formalization of Timed CSP in the Isabelle/HOL theorem
prover. It comprises a formalization of its operational semantics, several variants of bisimula-
tions and an investigation of coalgebraic invariants which can be used to state certain liveness
properties. Currently, we are using this formalization in the context of so-called parameterized
systems to verify infinite-state systems. The semantic gap between the intermediate code and
the low-level CSP model is closed by an investigation of the extraction algorithm. Therefore, we
defined a formal operational semantics of the Low Level Virtual Machine (LLVM) intermediate
language [LA04]. The semantics is especially well-suited for the verification of embedded sys-
tems because it includes a memory model and a notion of non-determinism. Furthermore, we
establish a bisimulation relation between LLVM and CSP models. With that, we can prove that a
given LLVM program is a correct implementation of a given CSP model. We plan to verify that
our extraction algorithm preserves the semantics of LLVM using this bisimulation.

The remainder of this paper is structured as follows. In Section 2 we briefly introduce Timed
CSP, LLVM and the Isabelle/HOL theorem prover. These constitute the main formalisms and
tools that we use in our work. In Section 3 we present the main results of the VATES project
so far: a formalization of Timed CSP in Isabelle/HOL, the extraction algorithm giving a low-
level CSP model from a given LLVM program and an operational semantics of LLVM in the
Isabelle/HOL theorem prover. Related work is discussed in Section 4. Finally, Section 5 con-
cludes this paper.

2 Bispectral Infra-Red Detection
3 Deutsches Zentrum für Luft- und Raumfahrt (German Aerospace Center)
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P := STOP | SKIP | a→ P | a : A→ Pa | P;P | P�P

| PuP | P ‖
A

P | P\A | P4P | P
d
B P | P4dP | X

Figure 2: Syntax of Timed CSP

2 Used Formalisms and Tools

2.1 TimedCSP

The development chain that we consider in the VATES project, starts with a specification for-
mulated in the real-time process calculus Timed CSP. It is an extension of Hoare’s CSP (Com-
municating Sequential Processes) [Hoa85] with timed process terms as well as timed semantics.
Besides the specification and verification of reactive and concurrent systems, this also allows for
the verification of timeliness. In the following, we present some of the aspects of (Timed) CSP
that are most important for understanding this paper. We refer to [Sch99] for a comprehensive
introduction to it.

The syntax of Timed CSP is given in Figure 2. It shares most of the operators with (untimed)
CSP: STOP is a process which cannot do anything, SKIP cannot do anything except terminating
indicated by the communication of the special event

√
, a→ P can first communicate a and then

behave like process P. More convenient process operators are e.g. �, ‖ and \ denoting Choice,
Parallel Composition and Hiding (of communication channels).

Timed CSP extends the CSP calculus with the timed primitives P
d
B Q (Timeout) and P4dQ

(Timed Interrupt). Intuitively, the meaning of a Timeout is that the process P can be triggered by
some (external) event within d time units. If this happens, the Timeout is resolved in favor of P.
If the time expires without P being triggered, process Q handles this situation, i.e., the Timeout
is resolved in favor of Q. The Timed Interrupt construction has a similar meaning. Here, P can
(successfully) terminate within d time units, otherwise Q is started.

There exist two main types of semantics which are typically defined in the context of CSP: The
denotational (Timed) Failures semantics and the operational semantics which interprets (Timed)
CSP as labeled transition system.

For CSP there exist well-established fully-automatic verification tools such as FDR [GRA05]
and ProB [LF08]. FDR is well-suited for refinement checking of specifications based on the
denotational semantics of CSP. ProB is well-suited to check temporal properties on CSP pro-
cesses. For Timed CSP there does not exist comprehensive tool support yet. Therefore, we have
formalized Timed CSP in the Isabelle/HOL theorem prover as briefly explained in Section 3.1.

2.2 LLVM

The LLVM compiler infrastructure provides a modular framework that can be easily extended
by user-defined compilation passes. It also offers a diverse set of predefined analyses and several
optimizations that can be used out of the box. It is designed to meet the needs of the development
of custom source code transformation and analysis tools. The heart of the compiler infrastructure
project is its intermediate representation (IR). It is a typed assembler-like language [LA08],
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Figure 3: The VATES Proof Framework

which is used internally as the basis for compiler optimizations. The LLVM framework provides
gcc-based frontends for a variety of programming languages, including C++. The existence
of the gcc-based frontend enables us to adapt our approach, which currently focuses on C++,
to a couple of other programming languages with little effort because it is source-language-
independent and relies on the LLVM IR only.

2.3 Isabelle/HOL

Isabelle is a generic interactive proof assistant. It enables the formalization of mathematical
models and provides tools for proving theorems that are mechanically checked. Isabelle can
be instantiated with different so-called object logics. One particular instantiation of it is Is-
abelle/HOL [NPW02], which is based on Higher Order Logic. The main advantage of HOL is
its very high expressive power. Theorem provers based on HOL require a high level of expertise
but allow reasoning about models whose state space is too large (or even infinite) to be automat-
ically checked by, say, a model checker. Unlike model checking, proving theorems in a theorem
prover like Isabelle/HOL is highly interactive. Specifications have to be designed carefully to
enable properties about them to be proved.

3 The VATES Approach

The context of our approach is the VATES project [GHJ07]. Its aim is to develop concepts for
verifying the correctness of embedded software. Our goal is to support the verification of crucial
properties on all abstraction levels of such a software system, from the abstract specification
down to executable code.

The structure of our approach is given in Figure 3. We start with a high-level CSP-based spec-
ification (1) where crucial properties are verified. To this end, we have developed a formalization
of Timed CSP in the Isabelle/HOL theorem prover and the proof technique of network invariants
to verify infinite-state models. This is explained in Section 3.1 in more detail.

Proc. GraMoT 2010 4 / 15
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Since we deal with embedded applications we want to allow manual code optimizations. We
therefore assume that a Software developer implements this high-level specification in a high-
level programming language such as C++ (2). To support this task we follow a prototyping
approach presented in [KB10]. The high-level language can be further translated into the LLVM
intermediate representation (3), e.g. by using the gcc compiler. We chose to relate the abstract
CSP model and the intermediate LLVM representation by automatically extracting a low-level
CSP model from it (4). This is done with our tool called llvm2csp which is explained in Section
3.2. To show the refinement relation between the high-level and the low-level CSP models, our
formalization of Timed CSP or standard tools like FDR2 can be applied.

A crucial part in our approach is to show that the extraction algorithm of llvm2csp preserves
the semantics of LLVM. To this end, we developed an operational semantics of LLVM. Due to
the simplicity of intermediate languages, this is far more easy than defining a comprehensive
formal semantics of e.g. C++. Furthermore, we defined a variant of bisimulation which enables
to semantically compare LLVM programs and CSP models. This is presented in Section 3.3.

Altogether we are thereby able to formally relate the high-level CSP-based specification and
its corresponding implementation in LLVM. Note that following the overall approach we do not
have to formalize the semantics of a high-level programming language like C++ which is known
to be a complex task in its own. This becomes even more complicated by the introduction of
concurrency. Since we want to verify the whole development chain, the formalization of some
intermediate representation is inevitable in each case. So by considering only the intermediate
language layer circumvents the complex task of formally defining the semantics of C++.

3.1 Verification with Timed CSP and Network Invariants

In a previous paper [GG09], we proposed a formalization of the operational semantics of the
process calculus Timed CSP in the Isabelle/HOL theorem prover [NPW02]. This formalization
is briefly explained in the following section. Thereafter, we give an overview of current work
which is based on the verification of infinite-state systems by using network invariants.

3.1.1 Formalization of Timed CSP

We combined the advantages of specifying real-time systems concisely and of mechanizing cor-
rectness proofs for properties of their specifications. We transfered the coalgebraic notions of
bisimulation and of invariants to Timed CSP. This allows us on the one hand to relate behaviorally
equivalent Timed CSP processes and on the other hand to state invariant behavior of processes.
To this end, we formalized the syntax of Timed CSP as inductive datatype and the operational
semantics as inductively defined set of triples. It is convenient to define (greatest) bisimulations
and (greatest) invariants with respect to state predicates coinductively. We showed that all the
considered kinds of bisimulation (strong, weak and weak timed) fulfill the congruence property
with respect to the structure of Timed CSP processes. Furthermore, we showed that coalgebraic
invariants are well-suited to express certain liveness conditions and that these special invariants
are closed under bisimulations. This property is useful for verification as shown in [GG09] in
the context of a (rather simple) satellite system specification.
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Figure 4: Structure of our Scheduler Model

3.1.2 Parameterized Systems and Network Invariants

In ongoing work we extend this theory by so-called network invariants which are suitable to
verify parameterized systems. Our motivation is BOSS’s real-time scheduler which we have
modeled in Timed CSP. The main structure of the model is given in Figure 4. The overall system
includes the scheduler itself and an arbitrarily large number of threads.

The scheduler runs in parallel with arbitrarily many processes representing the threads to be
managed. Each thread is characterized by a name and a priority. In order to verify the scheduler
system, the specific details of the threads should have no relevance. The scheduler system should,
e.g., be deadlock-free in every case, i.e., for every possible list of threads. Thus, an appropriate
“induction” on the length of the list should be enough to state the system’s correctness. On a
certain level of abstraction, all the CSP processes representing threads are homogeneous from
the scheduler’s perspective. Of only importance is that each thread can communicate with the
scheduler (e.g., yield control), and conversely the scheduler with each thread (e.g., give control
to a thread). That is why the scheduler system can be seen as a parameterized system. As
a consequence, verification of parameterized systems appears to be a promising technique to
verify real-time operating systems.

Parameterized systems, as considered here, have the form:

Nn = P0�P�·· ·�P︸ ︷︷ ︸
n

where the variable n (representing a natural number) is the parameter of the system. P0 is a
control process and P�·· ·�P a network of homogeneous processes. The operator � is some
kind of parallel composition, which may be equipped with hiding and renaming of communi-
cation channels. Network Invariants can be used to verify parameterized systems by dividing
the infinite-state verification problem into several (ideally finite-state) verification problems such
that automatic verification tools can be used. In this section we focus on the presentation of the
results of [WL90] concerning the inductive verification of parameterized systems as this is suf-
ficient here. We have formalized these in the Isabelle/HOL theorem prover. We have, however,
also formalized the slightly more general results of [KM95] in Isabelle.

The idea of the “appropriate induction” is formalized in network invariants: To verify whether
the system Nn (regardless of the concrete parameter) implements a specification S, the main idea
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Parameterized System Network Invariant
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Figure 5: Framework for Verifying Parameterized Systems

is to use an appropriate invariant, which overapproximates each instance such that the abstracted
system is still contained in the specification S. In [WL90], it is shown how network invariants
can be set up in process algebras like CCS and CSP. There, a general technique for verifying
parameterized systems based on network invariants is presented: if one wishes to show that Nn

fulfills a certain specification S with respect to a certain implementation relation, i.e., Nn ≤ S, it
must basically be shown (for some process Inv) that P0 ≤ Inv, that Inv�P≤ Inv and that Inv≤ S.
The crucial point is to find an appropriate invariant Inv. By induction on n, one can deduce that
Nn ≤ Inv. By proving that the invariant is contained in the specification, i.e., Inv ≤ S, one can
deduce that Nn ≤ S by transitivity of the implementation relation ≤.

There are two main tasks that have to be performed when working with network invariants for
verification. The first is finding a process which may serve as appropriate “network invariant”.
The second task is showing that the found process is indeed a network invariant. In [CGJ97], for
example, a technique for finding network invariants based on network grammars is presented.
In [GL08], the technique of network invariants is used in the context of timed systems. The
approach adopted there consists of two steps. First, a safe abstraction is performed on a given
timed system. Thereby, safe means that LTL formulas are preserved under the abstraction. The
abstract system is then used as a network invariant, which allows for the verification of the whole
parameterized system.

The overall verification flow that we use is given in Figure 5. It is subject to current and
future work to integrate invariant generation algorithms and automatic verification tools such
as FDR2 [GRA05] and UPPAAL [BY04] into our existing Timed CSP formalization in Is-
abelle/HOL. In [Oua01] and [DHQ+08] it is presented how Timed CSP can be mapped to
tock-CSP4 or timed automata, respectively. These mappings make the usage of the automatic
verification tools FDR2 and UPPAAL available for the verification of Timed CSP processes. In
two current master theses we are implementing and evaluating these mappings.

3.2 Relating Low-Level Models and LLVM

In this section we give an overview of the parts of a low-level CSP model which can automatically
be derived from a LLVM program using our llvm2csp tool [KH09]. The tool extracts CSP models
from concurrent programs. Besides the behavior of the executed threads, the algorithm also uses
information about the actual execution platform as explained in the following subsection.

4 a dialect of (untimed) CSP

7 / 15 Volume 30 (2010)
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Figure 6: The three Parts of the Low-Level CSP Model

3.2.1 Synthesizing a Low-Level CSP Model

The low-level CSPM
5 model as depicted in Figure 6 not only contains processes, types and

channels that are automatically generated from the LLVM IR of a program. It also contains
two predefined parts which model the platform- and domain-specific parts of the system under
investigation. The platform-specific part comprises the environment model and hardware details,
while the domain-specific part encompasses aspects that are common to a domain of applications,
e.g. system startup and scheduling. These are provided as foundation libraries that the program
builds on. In the long term, platform- and domain-specific models are to be chosen from a library.
The two parts are mostly manually modeled but are parameterized so that they can be reused
by all applications of the domain they have been designed for. Examples of such parameters
are typing information for the channels and the set of thread identifiers. The third part is the
application-specific one, which describes the behavior of the threads of a multithreaded program
with respect to a set of given variable names, function calls and annotations6. We already used the
llvm2csp tool successfully to create the low-level model of the scheduler of the BOSS operating
system pico-kernel, which we presented in [KBGG09]. Nevertheless we are constantly extending
it by further features.

3.2.2 Design of the Low-Level CSP Model

As discussed in the previous section, the low-level CSP model is divided into three distinct
parts. The domain- and platform-specific parts are manually modeled but are parameterized. The
parameters and the application-specific part are synthesized from the LLVM IR of the program
under consideration. Since we aim to use FDR2 for establishing the formal refinement relation
between the specification and the low-level model, the Low-Level CSP Model must be designed
in a way such that it can be handled by FDR2 as efficiently as possible. To that end, we followed
the rules that are given in the FDR2 manual [GRA05], for example, that renaming is to be used
in preference to the parameterizing of a process definition.

Fig. 7 shows an example of modeling memory that stores four bit fields. It is constructed of

5 CSPM is a machine readable form of CSP extended by concepts from functional programming and is used as input
language of the FDR2 refinement checker.
6 Annotations can be realized using so-called ghost methods and ghost variables. A ghost variable is a variable that
is used for verification purposes only and a ghost method is a method that modifies only ghost variables. Ghost code
is commonly compiled into the IR for verification purposes but is not part of the final binary.

Proc. GraMoT 2010 8 / 15
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channel read1, write1, read2, write2, read3, write3, read4, write4 : {0,1}
V1 = let V1’(v) = read1!v -> V1’(v) [] write1?x -> V1’(x)
within read1?x -> V1 [] write1?x -> V1’(x)

V2 = V1[[read1 <- read2, write1 <- write2]]
V3 = V1[[read1 <- read3, write1 <- write3]]
V4 = V1[[read1 <- read4, write1 <- write4]]
WithHeap(P) = (P) [|{|read1, write1, ..|}|] (V1 ||| V2 ||| V3 ||| V4)

Figure 7: CSPM Model of the Heap, taken from [Kle09].

parallel processes (V 1, . . . ,V 4) that model a single variable each. Since the four processes are
structurally equal, just one is modeled manually (V 1). The others are derived from V 1 by renam-
ing. The parallel composition of the four processes leads to a process that models the memory. It
is synchronized with the application specific part P later on using the function (WithHeap). The
resulting process can be handled much more efficiently by FDR2 than a process that maintains
a constant size list of the four variables, for example. We use this concept to model the heap
and the stacks of the threads. The process allows to read an arbitrary value from uninitialized
memory cells.

Our approach makes strong use of abstraction to reduce the size of the resulting low-level
model in terms of reachable states. This includes abstracting the ranges of data types and ab-
stracting away regions of code that do not transitively influence any of the variables from the
set of variables to be included in the low-level model. If, for example, concurrent accesses to a
shared counter variable have to be proved race-condition-free, it is sufficient to build the model
from the accesses to this shared counter and the locks protecting it.

The expressiveness of CSPM imposes a limiting factor when formalizing the semantics of
the LLVM IR because, e.g., floating point arithmetics are not supported. We therefore restrict
ourselves to modeling facilities that are available in CSPM. Our approach currently supports
functions, function calls, conditional and unconditional branching as well as integer arithmetic.
It builds on a memory model that supports integers, arrays and uninitialized values. Depending
on the properties to be proved, we also use the concept of error codes to detect sources of un-
wanted behavior or to signal situations that were introduced by abstractions during synthesis of
the model. An error code is a fresh event a /∈ Σ and is always used as in the pattern a→ STOP.
In [KH09], we use this concept to detect integer overflow that was introduced by abstraction and
that did not indicate a real error in the low-level model. A method on the LLVM IR level is
translated into a CSPM function by llvm2csp. The function returns sequential processes, each
modeling a single IR operation. These application-specific processes end up in a domain-specific
process that models the continuation of the application, possibly including a thread switch. Fur-
ther details of the application-, domain- and platform-specific models are given in [KH09].

3.3 Verification on the Intermediate Level

In our approach we relate process-algebraic system models to their implementations given in the
LLVM intermediate representation. To formally account for the correctness of this relation, we
formally defined the operational semantics of the LLVM intermediate language in Isabelle/HOL.
We then relate the corresponding labeled transition system (LTS) to the LTS defined by the

9 / 15 Volume 30 (2010)
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operational semantics of the process algebraic model by establishing a weak bisimulation relation
between the two transition systems. Using this concept we plan to verify the llvm2csp extraction
algorithm in future work.

3.3.1 Operational Semantics of LLVM

We model a semantic state or configuration Conf as a tuple consisting of functions S for the
stack, H for the heap and M for the overall memory, as well as an instruction pointer l:

Conf≡ 〈S,H,M, l〉.

The crucial part of the semantics is the memory model. Our model is inspired by the model
presented in [BL05]. The functions S and H map non-pointer identifiers to their appropriate
types and values, while pointer variables are mapped to the types and addresses they refer to.
A memory state within a configuration is modeled by the tuple M = (Addr,B,F,C). We define
Addr to be the natural numbers N. It is however possible to replace this with types that represent
memory addresses more closely. B yields the block size of a given address, while F marks a
memory block as free or allocated. Finally, C returns the content stored at a certain address.

In the context of embedded (operating) systems, models are often non-deterministic. The
frequent interaction of these systems with the surrounding environment, for example through
a sensor that delivers some kind of information, makes the execution highly non-deterministic.
Since LLVM natively offers no means to handle non-determinism, we decided to realize bounded
non-determinism by annotating the source code.

Sources for non-determinism need to be annotated in the code, for example reading from a
memory location where a value delivered from a sensor is stored. The annotation contains the
possible range of values that the sensor may return. For the formal semantics, this implies that
a transition from a configuration Conf may have more than one successor configuration. For
every identifier that is marked as non-deterministic, the annotations define a function range :
Identi f ier →P(Value). The successor configurations differ from the original configuration
only in the value of the register %dest ident, to which the value read from a marked memory
location %source ident is stored. The value is thereby non-deterministically chosen from the set
defined by the range function.

3.3.2 Bisimulation Relation

A labeled transition system LT S over the alphabet A is defined as a tuple (S,T ), where S is a set
of states and T ⊆ S×A×S is the transition relation. A special label τ ∈ A is used as a label for
internal transitions.

We associate the set of states S with the possible configurations Conf from the previous section.
As labels, we use dedicated names that relate LLVM code behavior to events in the process
algebraic specification. We encode information needed for verification purposes on the process
algebraic level using this technique. This includes function and system calls, as well as signals
to other threads or user input. The names of the labels are annotated to the original source code.

We explain the idea by using the labels of the LTS to encode that and how a certain variable
in a code snippet changes. Since we are interested in changes of variables from a set V , the only

Proc. GraMoT 2010 10 / 15
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1 store i32 0, i32* %i, align 4
2 %0 = load i32* %b, align 4 ; <i32> [#uses=1]
3 %1 = icmp eq i32 %0, 1 ; <i1> [#uses=1]
4 br i1 %1, label %bb, label %bb1
5

bb: ; preds = %entry
6 %2 = load i32* %c, align 4 ; <i32> [#uses=1]
7 %3 = sub i32 %2, 2 ; <i32> [#uses=1]
8 store i32 %3, i32* %c, align 4
9 %4 = load i32* %c, align 4 ; <i32> [#uses=1]
10 store i32 %4, i32* %x, align 4
11 br label %bb2

bb1: ; preds = %entry
12 store i32 5, i32* %x, align 4
13 br label %bb2

bb2: ...

Figure 8: LLVM Code

instruction that produces externally visible behavior in this case is the store instruction. For the
store instruction, we label the edges of the LTS with the value %dest ident.S(%source ident),
if %dest ident is one of the variables to be tracked and S(%source ident) is its new value. For
all other instructions we use the τ label indicating silent internal transitions.

The right side of Figure 9 shows the part of the labeled transition system that corresponds to
the code snippet from Figure 8. Here, the set V of variables to be tracked is defined as {%i,%x}.
First, in line 2 the content of a variable %b, that was marked non-deterministic and that can range
over the values 0 and 1 is loaded to the register %0 and compared with the constant 1 in line 3.
If the value of %b is equal to 0, the register %1 which holds the boolean value that is evaluated
for the following branching condition is set to true. In this case, the execution continues at the
block labeled with bb, otherwise the execution continues at label bb1. At label bb in line 6, the
content of the variable %c is loaded to register %2, the constant 2 is subtracted in line 7 and the
result is stored to variable %c in line 8. Afterwards, the content of the variable %c is loaded to
register %4 and stored to variable %x in lines 9 and 10. Execution then continues at label bb2.
At label bb1 in line 12, the constant 5 is stored to variable %x and then execution proceeds at
label bb2.

A set R of tuples is called a weak bisimulation relation if for every tuple (P,Q) ∈ R holds
that for every transition from Q to some Q′ labeled with some α there exists a path from P to
some P′ with the same label such that the tuple (P′,Q′) is again in R. Here, a path consists
of arbitrarily many transitions labeled with τ before and after a transition labeled with α . The
converse property must also hold, i.e. every transition from P must have a counterpart from Q.
Two states are called weakly bisimilar if there exists some weak bisimulation relation R where
the corresponding tuple is in.

The transition system shown in Figure 9 is the disjoint union of the transition systems of CSP
and LLVM. Using the previously defined construction rules for the LTS representing the LLVM
code, we can show that the LLVM code in Figure 8 is bisimilar to the following process term:

P = %i.0→ (%x.5 → SKIP u%x.7 → SKIP).

11 / 15 Volume 30 (2010)



Model Transformations to Mitigate the Semantic Gap in Embedded Systems Verification

P = i.0→
   (x.5→SKIP    
 ∏ x.7→SKIP) 

(x.5→SKIP
∏ x.7→SKIP) 

i.0

x.5 x.7

SKIP

S[c=9] 

S[c=9,i=0]

i.0

x.5

x.7

S[c=7,i=0]

S[c=7,i=0
   x=7]

...

...

...
...

tau

tau

tau

tau

SKIP

x.5→SKIP x.7→SKIP

tau tau

tau

tau

tau

...

...

S[c=9,i=0,
   x=5]

tau

tau

tau

...

...

...

Figure 9: The Bisimulation Relation between the two LTS of CSP (left) and of LLVM (right)

The process specifies that a variable %i is set to 0 and afterwards it is non-deterministically
chosen if the variable %x is set to 5 or 7. Figure 9 shows the two labeled transition systems and
sketches the bisimulation relation. Note that for every LLVM instruction that does not change
any of the variables from the predefined set V , the outgoing edges are labeled with τ . The nodes
that are identified by the bisimulation relation are connected by the dashed arrows.

In ongoing work we formalize this notion of bisimulation using Isabelle/HOL to achieve the
mechanized verification of the llvm2csp extraction algorithm presented in the previous section.

4 Related Work

The verification of low-level software systems and embedded operating systems has attracted
several research projects.

Spec# [BLS04] and VCC [CDH+09] are verification methodologies that translate high-level
languages like C# and C to the intermediate language BoogiePL. Necessary verification informa-
tion is annotated to the source code. To discharge verification conditions, the automatic theorem
prover Z3 is used. In contrast to our approach, BoogiePL is not a compiler-intermediate repre-
sentation but a language tailored for verification purposes. Furthermore, we focus on refinement
and transformation of a high-level specification to executable code rather than direct source-code
verification.

The AVACS [BDF+07] project deals with the verification of complex (real-time) systems.
Verification is carried out at the specification level. Transformations to and the verification of
executable code are not considered within that project.

Another project concerned with the verification of a real-time operating system kernel is the
VFiasco project [HT05]. Verification is carried out at source code level by defining the denota-
tional semantics for a subset of C++. One of its results is the verification of Duff’s Device, but
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the techniques were not applied to existing operating system components.
The L4.verified project [EKD+07] uses a refinement approach that proves different layers of ab-
straction to be consistent. The lowest level of abstraction is given by C code, which is shown
to be a refinement of a more abstract design. Neither of these approaches covers concurrency.
Furthermore, the transformation to intermediate and executable code is not considered.

Closely related to our work is the verification of a real-time operating system controlling a
space satellite using Timed-CSP-Z [SSC03]. Timed-CSP-Z models are translated into a Petri-
net-based formalism and the resulting Petri-nets are analyzed. The approach focuses on deadlock
detection. Neither refinement proofs nor transformations to code are within the focus of this
work.

5 Conclusion and Future Work

In this paper we have summarized the main results of the VATES project so far. We briefly
explained the formalization of Timed CSP in the Isabelle/HOL theorem prover and the potential
of verification techniques for parameterized systems, namely network invariants, in the context of
real-time operating systems. We presented the idea of the extraction algorithm which computes
a CSP model for a given LLVM program. Finally, we presented an operational semantics of
LLVM and showed how it is possible to formally relate LLVM programs and CSP models with
the semantics based on bisimulations.

We are currently working on the integration of timing behavior into the lower levels of our
framework. Since timing analyses are already possible on the most abstract layer, we need to
extend the llvm2csp tool to generate Timed CSP models. To realize this, it is necessary to
augment the LLVM syntax and semantics with information about timing behavior. This includes
accounting for processor-specific features like pipelining and cache management.

Since the theory underlying our approach is rather complex we plan to mechanize it entirely
using the Isabelle/HOL theorem prover. Thereby we can claim that our transformations are
indeed correct.

The results obtained so far are very promising. In future work, we will apply our verification
approach to more complex systems, starting with the integration of further system components
into our model of the BOSS operating system.

We are convinced that our approach has the potential to enable a methodology that seamlessly
integrates the modeling, implementation, transformation and verification stages of embedded
real-time system development.
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