
Electronic Communications of the EASST
Volume 30 (2010)

International Colloquium on Graph and Model
Transformation On the occasion of the 65th birthday of

Hartmut Ehrig
(GraMoT 2010)

A Termination Criterion for Graph Transformations with Negative
Application Conditions

Paolo Bottoni, Francesco Parisi Presicce

13 pages

Guest Editors: Claudia Ermel, Hartmut Ehrig, Fernando Orejas, Gabriele Taentzer
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

A Termination Criterion for Graph Transformations with Negative
Application Conditions

Paolo Bottoni, Francesco Parisi Presicce

Dipartimento di Informatica, ”Sapienza” Università di Roma, Italy

Abstract: Termination of graph transformations is in general undecidable, but it is
possible to prove it for specific systems by checking for sufficient conditions. In
the presence of rules with negative application conditions, the difficulties increase.
In this paper we propose a different approach to the identification of a (sufficient)
criterion for termination, based on the construction of a labelled transition system
whose states represent overlaps between the negative application condition and the
right hand side that can give rise to cycles.

Keywords: graph transformations, termination, labelled transition system

1 Introduction

Model transformations are an essential component of the model-driven approach to software de-
velopment. Graphs are a natural and intuitive way to describe models (e.g., class diagrams in
UML) and graph transformations provide a rule-based approach to their modifications. Some-
times a particular transformation needs to be applied to the target graph/model as long as match-
ings of its left hand side can be found. In such cases, it is necessary to be able to determine that
such a repeated application will eventually reach a state where the transformation is no longer
applicable. More generally, the term termination refers to the problem of determining whether
a set of rules can generate a graph/model to which none of the rules is still applicable. Ad hoc
methods have been applied to show termination of specific rewriting systems (e.g. [KHE03]).

Termination properties can be (and have been) studied for specific rewriting systems, follow-
ing the classical approach – given by Dershowitz and Manna in [DM79] – of proving termination
by constructing a monotone measure function on some multiset associated to the object to be
rewritten, and showing that the value of this function decreases with each application of the rule.
Further termination criteria use polynomial orderings, recursive path orderings, etc. [Der87].

In a previous paper [BHPT05], we have identified an abstract notion of termination criterion
for high-level replacement (HLR) systems, i.e. algebraic rewriting systems operating on objects
and morphisms in adhesive HLR categories [EPPH06], in which rewriting is guided by control
expressions. The approach is based on a generic measure function F : G→ ℕ, called a termi-
nation criterion if it satisfies the property F (A+C B) = F (A)+F (B)−F (C) for morphisms
C→ A and C→ B in a specific subclass M . A termination criterion for a rule p : L← K→ R is
such a function with F (L) > F (R).
However, we have subsequently shown in [BHP06] how the extension of this notion to rules
with negative application conditions (NACs) encounters several difficulties. In particular, we
have presented examples of pairs of rules for which no application criterion can differentiate
between a terminating and a non-terminating rule.

Volume 30 (2010)

Termination Criterion

In this paper, we propose a different approach to the identification of a (sufficient) termination
criterion for the repeated application of a single rule with a NAC, based on the construction
of a Labelled Transition System, where the states correspond to classes of matches of a rule
with respect to all the possible intermediate graphs between the left-hand side of a rule and the
negative application condition.

In the following, we give formal definitions for the adopted model of graphs in Section 2, and
present motivations for the approach through a number of cases in Section 3. Section 4 presents
the main result of the paper, showing the construction of the transition system, and Section 5
discusses related work. Finally, Section 6 draws conclusions and points to future work.

2 Formal Background

We use the DPO (Double PushOut) approach to graph transformation [EEPT06]
A graph G = (V,E,s, t) consists of a finite set of nodes V = V (G), a finite set of edges E =

E(G), a source and a target total functions, s, t : E → V . In a type graph T G = (VT ,ET ,sT , tT),
VT and ET are sets of node and edge types, while the functions sT : ET → VT and tT : ET → VT

define source and target node types for each edge type. A typed graph on T G = (VT ,ET ,sT , tT) is
a graph G = (V,E,s, t) equipped with a graph morphism type : G→ T G, composed of two func-
tions typeV : V →VT and typeE : E → ET , preserving the source sT and the target tT functions,
i.e. typeV (s(e)) = sT (typeE(e)) and typeV (t(e)) = tT (typeE(e)).

A DPO rule consists of three graphs, called left- and right-hand side (L and R), and interface
graph K. Two injective morphisms1 l : K → L and r : K → R model the embedding of K (con-
taining the elements preserved by the rule) into L and R. Figure 1 shows a DPO direct derivation
diagram. Square (1) is a pushout modeling the deletion from G of the elements of L not in K,
while pushout (2) models the addition to G of the elements present in R but not in K. If L = K
the rule is called non-deleting, while if K = R the rule is called deleting.

Figure 1 illustrates the notion of negative application condition (NAC), of the form n : L→ N
that a match m : L→ G must satisfy. A rule is applicable with match m : L→ G if there is no
morphism q : N→ G such that q∘n = m.

N

q ,,

∕=

L
noo

m
��

(1)

K

(2)

loo r //

k
��

R

m∗

��
G Dfoo g // H

Figure 1: DPO Direct Derivation Diagram for rules with NAC.

3 A naive approach

In this section we analyze a few examples of simple rules which exhibit different behaviors
despite appearing very similar. The same examples will be used later on to illustrate the different

1 In this paper, except for the typing morphisms type : G→ T G, all morphisms are total and injective.

Proc. GraMoT 2010

ECEASST

cases of our main result.
We consider here only non-deleting rules: the case of the repeated application of a deleting

rule, i.e., a rule where L has at least one more item (node or edge) than K and K = R, is easier to
handle. If the original graph is finite, and every application removes at least one item, eventually
a graph is produced where the rule is no longer applicable.

In non-deleting rules, we omit the K component of rules and write a rule with a single NAC
as p : N← L→ R, (not to be confused with a generic rule with L as interface).

When dealing with rules equipped with NACs, the first (only partially incorrect) thought that
comes to mind is that the rule cannot be applied again if it produces, in the RHS, the NAC, i.e.,
if N ⊂ R. In fact, Figure 2 shows a rule for which the existence of an injection of N into R is
sufficient to prevent the repeated application of the rule (on the same pair of nodes).

Figure 2: A terminating rule, with N ⊂ R.

However, the existence of an injection of N into R is not sufficient to guarantee the non-
applicability of the same rule and to discriminate between a terminating and a non-terminating
rule, as the example in Figure 3 shows.

p

L RN

1 11 1

Figure 3: A rule which does not terminate, with N ⊂ R.

It is important to observe how for the examples in Figure 2 and Figure 3 no single function F
from graphs to natural numbers, which is a termination criterion for rules without NACs, could
be used to discriminate between the two cases. The difference between the two cases is in fact
that in the rule of Figure 3, the number of matches increases, whereas in Figure 2 it decreases.

Maybe we should reverse the direction of the inclusion, and consider rules where R ⊂ N.
Again, this condition is neither sufficient nor necessary for termination, as the following two
examples show.

Volume 30 (2010)

Termination Criterion

Figure 4: A terminating rule, with R⊂ N.

A rule which must terminate is presented in Figure 4, where no more than two loops can be
added to each node in the graph.
This is not the case for the rule in Figure 5, where again R ⊂ N, but the rule may terminate or
not, depending on whether we choose a different match after applying the rule or the same match
(the NAC N does not prohibit several loops on the same node).

Figure 5: A rule which may terminate, with R⊂ N.

While the examples presented here are simple enough that an ad-hoc analysis is sufficient to
determine whether we have termination or not, for the general case we need criteria that will
distinguish the cases seen above. In the next section we show how to extract this information
from labelled transition systems associated with these rules.

4 A Termination Criterion

We study here the termination of single non-deleting rules with a single NAC; we will mention
in the last section how to extend the results to the case of one rule with multiple NACs, of a set
of rules with NACs, and of rule sequences.

Consider the simple example in Figure 6. The rule is a non-deleting rule, so it is not clear how
to apply the standard approach based on the ’consumption’ of some finite quantity. Nevertheless,

Proc. GraMoT 2010

ECEASST

the rule can only be applied a finite number of times to a finite graph (the rule can be applied no
more than twice to each pair of nodes of G). What decreases after each application is, in a sense,
the ”distance” between the left hand side L of the rule and the negative application condition N.

Figure 6: A simple terminating rule.

Consider now the slightly different rule in Figure 7 and notice that it is no longer true that
its application must always terminate. After the first application, if the roles of the 2 nodes are
reversed in the matching, the remaning part of the negative application condition is generated.
But it is also possible to continue adding edges from node 1 to node 2, without ever generating
the (rest of the) NAC to prevent further applications. Notice that these additional edges do not
affect the applicability of the rule.

Figure 7: A simple non terminating rule.

In both cases, the rule generates a graph ’between’ the left hand side and the NAC. We now
abstract from the specific examples to describe this ’approaching’ the NAC as a path on a labelled
transition system.

Let p : N n← L r→ R be a rule. Let H p = {H p
1 , . . . ,H

p
k } be the set of all graphs (up to isomor-

phism w.r.t. the image of L)and M p = {hi
j : H p

i → H p
j } be the set of associated morphisms (if

they exist) s.t. the following are jointly verified:

∙ for each i = 1, . . . ,k, there exist morphisms L
hL

i→ H p
i

hi
N→ N.

∙ for each i, j = 1, . . . ,k, if hi
j exists, then hL

j = hL
i ∘hi

j and hN
i = hi

j ∘hN
j .

The indexing of the set H p is irrelevant, but we can assume that it is compatible with the

Volume 30 (2010)

Termination Criterion

partial order induced by morphisms, so that L = H p
1 and N = H p

k . This also indicates that
this set is not empty. The set M p is not empty either, as it contains at least h1

k = n and all
the identity morphisms. Moreover, both sets are finite since our morphisms are all total and
injective, including n : L→ N. (We will indicate in Section 6 how to relax this condition and
allow non-injective n : L→ N while keeping the set finite).

Let VL be the set of nodes in L, and ML = {m1, . . . ,mr} the set of matches mi : VL→VL of VL

into itself, including the identity idVL = m1. We construct a Labelled Transition System L p =
(S,Λ,−→) as follows:

1. S contains a state si for each graph H p
i ∈H p. Each si induces a classification function

ci for matches of p such that ci(ml) = true iff ml can be extended to a match on H p
i , but

not to a match on any other H p
j ∈Hp ∖({H p

1 ,H
p
i }∪{H

p
t ∣∃ht

i : H p
t → H p

i }), i.e. H p
i is the

biggest graph to which ml can be extended.

2. Λ contains a label pi, i = 1, . . . ,r for each morphism in ML.

3. the transition relation −→⊂ S×Λ×S is such that (si, pl,s j) ∈−→ (denoted by si
pl

−→ s j)
if applying p with match ml on graph H p

i produces a graph for which c j(ml) = true.

Going back to the examples earlier in this section, the labelled transition system of the rules in
Figure 6 and Figure 7 constructed as above are illustrated in Figure 8 and Figure 9, respectively
(ignore, for now, the labels on the arcs of the transition systems).

NoPair OnePair TwoPairs
p

p

|NoPair|=@|NoPair|-1 |OnePair|=@|OnePair|-1

1

1

p2

L RN

p

1

2 22

11

Figure 8: A terminating rule.

We say that p:

∙ should terminate simply if there exists a chain from s1 to sk in L p with all transitions
labelled with p1.

∙ may terminate simply if for all chains from s1 to sk in L p, at least one label is different
from p1.

Proc. GraMoT 2010

ECEASST

NoEdge OneEdge TwoEdges

p

p

|NoEdge|=@|NoEdge|-1 |OneEdge|=@|OneEdge|-1

1

1

p2

L RN

p

1

2 22

11

Figure 9: A rule which may terminate.

∙ does not terminate simply if there is no chain from s1 to sk in L p.

In the definition above, by chain we mean a path which does not contain the same state twice.

Referring to the examples above, in the first case, there is a path from s1 to sk and the rule
should terminate. In the second case, the rule may terminate, as the path from the initial to the
final state presents different labels (corresponding to the changing of the roles between the two
nodes). However, the presence of a loop on the middle node indicates that the application may
not terminate (corresponding to the nodes maintaining their original roles in the match). In these
figures, and in the following ones, we have only indicated the states reachable from H p

1 after
applying the first match, assumed as m1.

Unfortunately, the presence of a unique path as in Figure 8 allows only a ”should” and not a
”must”, as the example in Figure 10 illustrates. This is the case of a rule which should terminate
simply, as there is a path which consumes the possibility of rule application on the original match,
but does not terminate, as the number of matches for the rule increases at each application of p.

In order to consider the variation on the number of possible matches induced by the application
of p on the minimal context for a given state, let @ ∣ ⋅ ∣: S→ ℕ be a function which associates
with each state si the number of matches for p on the graph H p

i prior to application of p and with
∣ ⋅ ∣: S→ ℕ the function defining the number of matches on H p

i after the application of p.
We use these functions to identify the effect of each transition from a path in L p on the

number of matches in the resulting graph and obtain in Theorem 1 the first result on termination
of p starting on a graph isomorphic to L, i.e. on the minimal context in which p is applicable.

Theorem 1 [Termination on minimal context.]
Given a graph G isomorphic to L, we have the following:

1. A sufficient condition for the termination of asLongAsPossible p end starting on G is that
p is of type should terminate simply AND on all transitions si

p1→ s j the number of matches
classified by ci decreases, the number of matches classified by c j can increase at most of

Volume 30 (2010)

Termination Criterion

L RN

p

1

2 22

11

|NoPair|=@|NoPair|+1 |OnePair|=@|OnePair|-1

|NoPair|=@|NoPair|+2

NoPair OnePair TwoPairs

p
p

1

1

p2

Figure 10: A rule which should terminate simply, but does not terminate.

1, and the number of matches classified by cl , l ∕= i, j does not increase.

2. A sufficient condition for the non-termination of asLongAsPossible p end starting on G is
that p is of type does not terminate simply OR that for each path from s1 to sk there is at
least one state si s.t. ∣ si ∣ ≥@ ∣ si ∣, for a transition starting from state si, or a state s j s.t.
∣ s j ∣ > @ ∣ s j ∣ for a transition reachable from s j.

Proof. [Sketch] The proof derives from a straightforward counting argument, where the decreas-
ing number of matches prevents the application of a rule on parts of the graph generated by the
right hand side, while the ’simply terminating’ condition prevents the repeated application using
the same match. More formally, we have:

1. As G is isomorphic to L, we can assume w.l.o.g. that the first application of the rule is for
match m1. Moreover, for all states si ∕= s1, we have ∣ si ∣= 0. Hence, the first application
will be associated with a transition s1

p1→ s j, while the difference in the number of matches
will follow the laws ∣ s1 ∣< @ ∣ s1 ∣, ∣ s j ∣≤@ ∣ s j ∣ +1, ∣ si ∣= 0, for si ∕= s1,s j. At each
subsequent application on the same match, this match will follow the whole path from si

to sk, without ever creating new matches for other states. Hence, any chosen match will
eventually be forbidden by the NAC, while no new matches are created in any intermediate
step. As a consequence, p can be applied at most r× k times.

2. If p is of type does not terminate simply, any path starting from s1 will eventually reach
a state sl for which there is a loop, i.e. a transition sl

p1→ sl . Moreover, if there is a state
si as described in the hypothesis, each application of the rule will create new matches. As
such a state must be reached on any path from s1 to sk, new matches will be formed at each
application of the rule on a match on this state.

We now generalise this analysis so that it can be applied to any arbitrary graph G, as shown
in Theorem 2. In particular, we need to consider the possibility of completing partial matches.
Hence, we extend the construction of L p to include states corresponding to the intermediate
states between the empty graph and the state corresponding to L. We label these states as sa

i

Proc. GraMoT 2010

ECEASST

to distinguish them from those in the original set. We can then integrate the definition of the
transitions on the original L p, with the study of the variations in the number of matches for
these new states. We now say that p:

∙ must terminate if it should terminate simply and for all transitions si
pl→ s j and all states

sh ∕= si,s j,sk, we have ∣ si ∣ < @ ∣ si ∣, ∣ s j ∣ ≤@ ∣ s j ∣+1 and ∣ sh ∣ ≤@ ∣ sh ∣.

∙ may terminate if it may terminate simply and for all states on the path the same condition
on matches as above applies.

∙ does not terminate if (it does not terminate simply AND for all states from which sk is
reachable, there is a state for which the number of matches increases for some transition
leading to sk increases) OR (it should or may terminate simply, but there is at least one
state si on a path from s1 to sk for which ∣ si ∣ ≥ @ ∣ si ∣, for a transition reachable from
state si).

Theorem 2 [Main Result: Termination on arbitrary graphs.]
Let @ ∣ ⋅ ∣: S→ ℕ and ∣ ⋅ ∣: S→ ℕ be counting functions as defined above, let p be a rule and G
be a finite graph. Then the following holds:

1. If rule p is of type must terminate, then the application of asLongAsPossible p end on
the starting graph G terminates after a finite number of steps.

2. If p is of type does not terminate then the application of asLongAsPossible p end on the
starting graph G does not terminate.

Proof. [Sketch]

1. Let p be a rule of type must terminate and suppose that the iteration of p starting on G
does not terminate. This can happen only if there is a chain of transformations G⇒G1⇒r

⋅ ⋅ ⋅ ⇒r Gn such that ∣ {m : L(r)→ Gn} ≥ {m : L(r)→ G} But now this cannot happen, as
each match m : L(r)→ G can be used only at most k times because of the condition that
the rule should terminate simply. Moreover, the second condition states that the number
of matches in the state for which the match was chosen can only decrease, so that only the
matches originally contained in G can be used. Moreover, no new match can be created,
as the only way the number of matches in a state s j ∕= sk can increase is by transferring a
match from a state si following a transition si→ s j. Finally, if matches are created in sk,
they are immediately forbidden.

2. If the rule is of type does not terminate simply, then the final state sk can be reached
only from states not reachable from s1. Hence, starting from a match in a state reachable
from s1, we will reach a state where the application of the rule can be iterated indefinitely
on the same match. In the case that G hosts matches classified in states from which sk
can be reached, the remaining sub-conditions in the definition of does not terminate, the
application of p on such matches will eventually lead to the creation of new matches.

Volume 30 (2010)

Termination Criterion

This result explains the behavior of the examples seen earlier in this section. In particular, it
shows why the rules in Figures 8 and 10 behave differently.

We are now able to formalize the observations made in Section 3 on those simple rules. Fig-
ures 11–13 show the labelled transition systems for the rules in Figures 2–4 (repeated here for
convenience), respectively.

NoEdge OneEdge
p

|NoEdge|=@|NoEdge|-1

p

1

L RN

1

2 22

11 1

Figure 11: A terminating rule, with N ⊂ R.

NoLoop OneLoop

p

|NoLoop|=@|NoLoop|+1

p

L RN

1 11 1

Figure 12: A rule which should terminate simply, but does not terminate, with N ⊂ R.

NoLoop OneLoopp

|NoLoop|=@|NoLoop|-1

ThreeLoopp

|OneLoop|=@|OneLoop|-1

TwoLoop

|TwoLoop|=@|TwoLoop|-1

p

p

L RN

1 11 1

Figure 13: A terminating rule, with R⊂ N.

Proc. GraMoT 2010

ECEASST

There are several cases between the two extremes of the Main Result, for rules which are of
type may terminate. For these rules, depending on the classification of the matches hosted by a
graph G, and the choice of the matches to use the application of the rule, one can statically define
if a certain sequence of matches will make the rule terminate or not.

This is the case of the rule in Figure 5 whose labelled transition system is shown, with labels
indicating the number of matches, in Figure 14.

NoLoop OneLoop

p

p

p

|NoLoop|=@|NoLoop|-1

TwoLoops
p

|OneLoop|=@|OneLoop|-1

1

1

2

L RN

1

2 22

11 1

Figure 14: A rule which may terminate, with R⊂ N.

5 Related Work

Termination of (string) rewriting systems has been studied for over 30 years (see [DM79] for
example). Much more recent is the interest in termination of graph transformation systems.

One of the earliest applications is to program optimization and can be found in [Ass00], (sub-
mitted for publication a few years earlier) where termination criteria are defined for 2 specific
types of rules. One kind is a deleting rule, which must remove at least one item from a specific
subgraph: since graphs are finite, the removal must eventually stop. The other kind is a non-
deleting rule that must add at least one edge incident to a node with a specific label: since no pair
of nodes can have more than one edge with the same label, the addition must eventually stop and
so is the applicability.

The general problem of termination for graph rewriting has been tackled by Detlef Plump
in [Plu98], where he proves that it is an undecidable problem. Although the framework deals
only with ’plain’ transformation rules (i.e., without application conditions), we expect the result
to hold in general, for example by using trivial conditions always satisfied.

Ad hoc sufficient conditions have been analyzed for special cases. In layered graph transfor-
mation systems [EEd+06] the different types of rules are grouped, establishing an application
order. In each of the 2 kinds of layers (deleting and non-deleting) there are no infinite derivation
sequences with injective matchings. Each rule in a deletion layer must delete at least one item,
but not a newly created one. Each rule in a non-deletion layer cannot delete items, cannot be
applied twice with the same match and cannot use a newly created item for the match. A finite
number of layers and a finite initial graphs guarantee termination.

Volume 30 (2010)

Termination Criterion

More recent research [VVE+06] uses a similar idea to the one presented here. A Graph Trans-
formation System is abstracted by ignoring certain structure in a graph and used to define a Petri
Net to represent the number of elements of a certain type. Transitions correspond to rule ap-
plication with ’consumption’ of elements (and reduction of tokens). Termination of the GTS
corresponds then to the Petri Net exhausting its tokens.

6 Concluding Remarks

We have discussed an approach to analyze termination properties of specific kinds of graph trans-
formations. We have focused on the termination of a single rule p given by an expression of the
form asLongAsPossible p end, for a non-deleting rule p. Termination of plain transformation
rules (i.e., rules without application conditions) usually depends upon a function which mea-
sures the consumption of a finite commodity and whose value decreases at each application of
the rule. When application conditions are present, we can also measure the (hopefully decreas-
ing) distance between the context and the negative application condition. This is what the steps
in the labelled transition system represent.

The only morphisms used in this paper are total and injective. We can relax this condition,
especially for the NAC n : L→ N by allowing a non-injective one, and then by requiring that

for each i = 1, . . . ,k, the morphisms L
hL

i→ H p
i

hi
N→ N are such that hL

i is injective and hi
N satisfies

the Gluing Condition with respect to hL
i . This allows us to avoid taking into account all the

intermediate graphs which differ only by an arbitrary number of copies of spurious elements,
generated at each application and then collapsed in N.

The examples presented in this paper are necessarily small. What we have not investigated
(yet) is the feasibility of the approach to real problems, and in particular the complexity of
the labelled transition system relatively to the size of the negative application conditions and a
systematic way to construct it.

The next step is to extend the approach to multiple negative application conditions. Some
preliminary results are encouraging and we expect to be able to adapt the approach to several
rules, each with a single NAC. The case of a rule with several NACs can then be reduced to that of
a set of rules, all sharing the same morphism but with different NACs. We are also investigating
the termination problem for rule sequences using the interaction of the components.

Although the discussion and the examples are stated in terms of graphs, no specific properties
of graphs are used, but only (mono)morphisms and their extensions. The approach can easily
be extended to model transformations in high-level replacement (HLR) systems, i.e. algebraic
rewriting systems operating on objects and morphisms in adhesive HLR categories [EPPH06].

Bibliography

[Ass00] U. Assmann. Graph rewrite systems for program optimization. ACM Trans. Program.
Lang. Syst. 22(4):583–637, 2000.
doi:http://doi.acm.org/10.1145/363911.363914

Proc. GraMoT 2010

http://dx.doi.org/http://doi.acm.org/10.1145/363911.363914

ECEASST

[BHP06] P. Bottoni, K. Hoffmann, F. Parisi-Presicce. Termination of Algebraic Rewriting with
Inhibitors. In Karsai and Taentzer (eds.), Proc. GraMoT 2006. ECEASST 4. 2006.

[BHPT05] P. Bottoni, K. Hoffmann, F. Parisi-Presicce, G. Taentzer. High-Level Replacement
Units and their Termination Properties. Journal of Visual Languages and Computing
16:485–507, 2005.

[Der87] N. Dershowitz. Termination of rewriting. Journal of Symbolic Computation 3(1&
2):69–115, 1987. Corrigendum: 4,3 (Dec. 1987), 409-410.

[DM79] N. Dershowitz, Z. Manna. Proving termination with multiset orderings. Commun.
ACM 22(8):465–476, 1979.
doi:http://doi.acm.org/10.1145/359138.359142

[EEd+06] H. Ehrig, K. Ehrig, J. deLara, G. Taentzer, D. Varro, S. Varro-Gyapay. Termination
Criteria for Model transformation. In Proc. FASE 2005. LNCS 3442, pp. 49–63.
Springer, 2006.

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer. Fundamentals of Algebraic Graph Trans-
formation. Springer, 2006.

[EPPH06] H. Ehrig, J. Padberg, U. Prange, A. Habel. Adhesive High-Level Replacement Sys-
tems: A New Categorical Framework for Graph Transformation. Fundamenta Infor-
maticae 74(1):1–29, 2006.

[KHE03] J. M. Küster, R. Heckel, G. Engels. Defining and validating transformations of UML
models. In Proc. HCC 2003. Pp. 145–152. IEEE Computer Society, 2003.

[Plu98] D. Plump. Termination of graph rewriting is undecidable. Fundamenta Informaticae
33(2):201–209, 1998.

[VVE+06] D. Varro, S. Varro-Gyapay, H. Ehrig, U. Prange, G. Taentzer. Termination analysis of
Model transformations by Petri Nets. In Proc. ICGT 2006. LNCS 4178, pp. 260–274.
Springer, 2006.

Volume 30 (2010)

http://dx.doi.org/http://doi.acm.org/10.1145/359138.359142

	Introduction
	Formal Background
	A naive approach
	A Termination Criterion
	Related Work
	Concluding Remarks

