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Abstract: The Object Constraint Language (OCL) provides a set of powerful fa-
cilities for navigating and querying models in the MOF metamodelling architecture.
Currently, OCL queries can be expressed only in the context of MOF metamodels
and UML models. This adds an additional burden to the development and use of
Domain Specific Languages, which can also benefit from an instance-level querying
mechanism. In an effort to address this issue, we report on ongoing work on defin-
ing a rigorous approach for aligning the OCL querying and navigation facilities with
arbitrary Domain Specific Languages to support instance-level queries. We present
a case-study that demonstrates the usefulness and practicality of this approach.

Keywords: OCL, Domain Specific Languages, Model Driven Development

1 Introduction

The MOF metamodelling architecture is a four-level integrated architecture for defining, per-
sisting and managing modelling languages and models. At its meta-meta-model level (M3),
lies the Meta Object Facility (MOF) [Obja], a self-defined language for building modelling lan-
guages (metamodels). At the metamodel-level (M2) exist languages defined using MOF. The
most prominent example of an M2 metamodel is the Unified Modeling Language (UML) [Objd].
Models expressed in M2-languages are considered to belong to the model-level (M1) while in-
stances of M1 models are placed at the instance-level (or system-level according to [Bez05])
(M0).

The Object Constraint Language (OCL) [Objc] is a language primarily targeted to captur-
ing constraints in models of the MOF metamodelling architecture. However, due to its expres-
sive and efficient model navigation and querying facilities, OCL has also been used extensively
as a query language both for expressing stand-alone queries [Ake01], and in the context of
model management languages for tasks such as model transformation (e.g. QVT [Objb], ATL
[Jou05], YATL [ Pat04]), code generation (e.g. MOFScript [MOF]) and model merging (e.g.
EML [Kol06a]). The navigation and querying facilities of OCL operate at two levels: at the
metamodel-level (M2), it can be used to define queries in the context of the abstract syntax of
a modelling language. Metamodel-level queries can then be evaluated on M1 models. At the
model-level (M1), it can be used to define queries in terms of model-specific constructs that can
then be evaluated on M0 instances.

OCL is currently aligned with MOF and UML. Due to the MOF-OCL alignment, OCL queries
can be expressed at the metamodel level and evaluated at the model-level for all MOF-based
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languages. By contrast, instance-level queries are supported only for UML models, since OCL
is not aligned with any other MOF-based languages. The reason for this is the absence, to our
knowledge, of appropriate techniques in the literature and the tool-market, for aligning OCL with
arbitrary DSLs to support instance-level queries. As a result, in practice, alignment needs to be
implemented manually for each DSL within the context of a specific OCL execution engine. This
is certainly not a trivial task, as it requires significant expertise with the internals of the engine.
Moreover, even if the alignment is successfully implemented for a specific engine, the alignment
specification will be highly coupled with the architecture and platform of the engine and thus
hard to port or reuse in a different context. In our view, the absence of a generic high-level
technique for using OCL to express instance-level queries in DSL models limits the expressive
power of DSLs and consequently their usefulness as viable alternatives to UML in a practical
software development environment.

To address this issue, in this paper we introduce a generic technique for aligning the OCL
navigational and querying facilities with arbitrary modelling languages to support instance-level
queries. The remainder of the paper is organized as follows. In Section2 we discuss the problem
of aligning OCL with arbitrary DSLs in detail and identify the key-challenges. In Section3 we
introduce our technique and discuss its rationale as well as the architecture of the infrastructure
that allows us to realize it in practice. In Section4 we provide a case study that demonstrates
a working example of aligning a DSL with OCL. Finally, in Section5 we conclude and discuss
interesting issues for further research.

2 Background and Motivation

The principal difficulty in aligning OCL with arbitrary DSLs lies in the two different instantiation
mechanisms used in the context of the MOF architecture, as also discussed in [Kur04]. To
illustrate this problem we discuss the two different instantiation mechanisms involved in UML
1.5. As illustrated in Figure1, an object (e.g. :Customer) in a UML model is an instance of
theOb ject metaclass defined in the UML metamodel. Similarly, a class (e.g.Customer) is an
instance of theClassmetaclass. Moreover, although both instances are contained in the same
(M1) model, the :Customerobject is conceptually an instance ofCustomerclass. By convention,
instances produced with thatimplicit instantiation mechanism belong to the M0 level but from a
strict technical perspective, both Objects and Classes are M1 instances (instances of meta-classes
defined in the M2 level). While theM2→ M1 instantiation mechanism is well-defined in the
MOF specification [Obja], there is no consensus on the semantics of theM1→M0 mechanism
[Bez98].

The presence of a loosely-definedM1→ M0 instantiation mechanism renders alignment of
OCL with custom DSLs to support instance-level queries particularly challenging. The reason
is that an OCL engine needs to be aware of the instantiation mechanism to support built-in
OCL features such asallInstances, oclIsTypeO f() andoclIsKindO f(). A work-around for this
problem is to use OCL expressions at the M2 level (where the instantiation mechanism is well-
defined) to query M0 instances like any other M1 model elements. In this way, if we wanted to
query all adult customers in our UML model of Figure1, we would have to write the OCL query
displayed in Listing1 (or a similar one). The complexity of the OCL expression needed for such
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Figure 1: Demonstration of explicit and implicit instantiation relationships in the MOF architec-
ture

a simple query illustrates that while this approach makes querying models at the instance-level
feasible, it does not scale for complex queries. By contrast, an OCL engine that is aware of the
UML M1→ M0 instantiation mechanism allows us to specify the same query in a much more
compact and meaningful manner, as displayed in Listing2.

Listing 1: Querying an M1-level UML model with M2-level OCL
1 Object.allInstances->
2 select(o :Object | o.classifier.name->includes(’Customer’))->
3 select(o :Object | o.slot->exists(aL :AttributeLink |
4 aL.attribute.name = ’age’ and aL.value.toInteger() > 18))

Listing 2: Querying an M1-level UML model with M1-level OCL
1 Customer.allInstances->select(c:Customer|c.age > 18)

Apart from theM1→M0 instantiation mechanism, a UML-OCL execution engine needs to be
aware of the semantics of thepoint (.) navigational operator to calculate the result of expressions
such as thec.age in Listing 2. The semantics of the point operator consist of three parts; the
navigation path that must be followed (in terms of M2), the multiplicity of the returned value
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(single value or collection) and the type of the returned value (Integer, String, Boolean, user-
defined type). Consider the M2-level query in Listing 1.1. The navigation path is defined in lines
1-4 (Object→ slot→ value). The multiplicity is defined by accessing a single-valued feature
(aL.value). This indicates that the result should be a single value rather than a collection. The
return type is defined via explicit cast of the value of the slot to an Integer. This is done via the
OCL built-in toInteger() operation in line 4.

In summary, in order for an OCL engine to support instance-level queries for a new DSL,
it must be aware of at least: the semantics of theM1→ M0 instantiation mechanism and the
semantics of the point navigation mechanism for the instance-level. Currently these semantics
can be specified using the programming language in which the OCL engine is implemented
(e.g. Java) and this is how UML-aware OCL engines, such as [OCL, Oct, Uni, Dre], have
been implemented so far. However, as discussed in [Kol06b], third generation languages (3GL)
are not particularly efficient for model navigation. Moreover, by adopting this approach, the
specification of the semantics becomes bound to the proprietary architecture and platform of the
OCL engine. Finally, from a technical perspective, modifying an OCL engine to support a new
DSL is a task that requires significant expertise and resources. To our knowledge, there is no
published work on aligning an OCL engine with languages other than UML and MOF.

To address this issue in the following section we propose a generic and platform independent
mechanism for specifying the required semantics: OCL itself.

3 Proposed Approach

In this section we demonstrate how we can specify the semantics of theM1→M0 instantiation
mechanism and the instance-level point operators using an OCL-based language as the specifica-
tion mechanism. For practical reasons, in this work instead of using pure OCL we are using the
Epsilon Object Language (EOL) [Kol06b], an OCL-based model management language. The
reason we use EOL and not pure OCL is that from our experiments we have found that the pure
OCL expressions needed to specify the semantics of the instantiation mechanism and the point
operator tend to be rather complex and consequently difficult to test and debug. OCL does not
support statement sequencing, therefore expressing complex queries requires deep nesting of
expressions (includingif-elseexpressions and variable declarations usinglet expressions) in a
single statement. Instead, in EOL, complex expressions can be decomposed into sequences of
simpler expressions that are both easier to read, understand and debug. However, we stress that,
in principle, exactly the same functionality can be implemented in pure OCL.

3.1 Relationship between EOL and OCL

EOL supports almost all the navigational and querying facilities of OCL. However, it supports
additional features and also deviates from OCL in some aspects. Therefore, in this section we
provide a brief discussion of the additional or deviant features we are using in the EOL listings
that follow, for readers that are already familiar with OCL. For a detailed discussion on EOL and
its differences with OCL, readers can refer to [Kol06b].
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Statement sequencing: In OCL, there is no notion of statement sequencing and, as already
discussed, this can lead to particularly complex expressions that are difficult to understand and
debug. By contrast, in EOL statements can be separated using the semi-column (;) delimiter
(similarly to Java,C++ and C#). In our view, this feature greatly enhances readability and renders
it easier to understand and debug specifications.

Variable definition: EOL introduces avar statement for defining variables in the scope of
statement sequences. Introducing this new statement was necessary since the OCL 2.0let ex-
pression can only be used to define temporary variables in the scope of nested expressions.

Helpers: OCL supports definition of custom operations (helpersaccording to the OCL spec-
ification) on meta-classes. Since OCL does not support statement sequencing, the body of an
OCL helper is a single OCL expression. By contrast, in EOL, the body of a helper operation is a
sequence of statements, and values are returned using thereturnstatement.

Style: In EOL, theocl prefix has been removed from the names of features such asOclAny,
oclIsTypeO for oclIsKindO f (in EOL they are calledAny, isTypeO f, isKindO f). Moreover,
built-in operations such asselect() andsize() that are accessible using the→ operator in OCL,
are also accessible using the point operator in EOL.

3.2 Contents and Structure of an Alignment Specification

To align OCL (or EOL) with a DSL, we need to construct analignment specification. Such a
specification consists of the following operations (orhelpersin OCL terms) that operate at the
meta-model level and define the required semantics:

operation String hasType() : Boolean ThehasTypeoperation determines whether the model
defines a type with this name. The operation applies to a String that specifies the name of the
type and returns true if the model defines this type.

operation String allOfType() : Sequence The allO f Typeoperation returns all the model
elements that are direct instances of a type. This is needed both to be able to calculate the result
of the isTypeO foperation at the instance-level. The operation applies to a String that specifies
the name of the type.

operation String allOfKind() : Sequence The allO f Kind operation returns all the model
elements that are either direct or indirect (through some kind of inheritance in the M1 level)
instances of a type. This operation applies on a String that defines the name of the type.
The allO f Kind operation is needed to be able to calculate the result of theisKindO f and
theallInstancesoperations at the instance-level. The existence of both theallO f Kind and the
allO f Typeoperations allows us to support inheritance in the model-level (if the DSL supports
such a feature).
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operation Type getProperty(property : String) : Any For eachTypeof instance at the
instance-level, agetPropertyoperation must be defined that specifies the semantics of the point
navigational operator in the model-level. As discussed in Section2, a getPropertyoperation
must define: the navigation path for retrieving the value of theproperty, the multiplicity and the
type of the returned value.

3.3 Implementation Architecture

In the original design of EOL, a basic principle was that it should be able to manage models
of diverse metamodels and technologies. This principle is implemented in the underlying Ep-
silon Model Connectivity (EMC) layer. The basic concept of EMC is theEolModel interface
to which all EOL-compatible models must conform. Implementations ofEolModel include
the MdrModel, Em f Modeland XmlDocumentthat allow EOL to manage MDR [Sun] and
EMF-based [Ecl] models as well as XML documents. In the aforementioned implementations of
EolModel, the required methods (e.g.allO f Type, allO f Kind) are specified using Java.

To align with custom DSLs we have definedEolM0Model as a specialization ofEolModel
that delegates calls to its methods to the underlying alignment specification (instead of imple-
menting them in Java). For example, if the instance-level query contains theX.allInstancesex-
pression, the EOL engine will invoke theallO f Kind(X) Java-method of theEolM0Model that
will in its turn delegate the call to theX.allO f Kind() EOL operation defined in the alignment
specification. This is illustrated in Figure2.

Figure 2: Architecture of the alignment mechanism

Using this approach, to align with a new DSL, engineers do not need to be aware of the
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internals of the execution engine or the modelling framework (EMF, MDR etc) and do not need
to write code in the implementation language of the engine (e.g. Java). Instead, they need only
provide a high-level alignment specification, in EOL, that implements the required operations.

3.4 Tool Support

To enable users experiment with arbitrary DSLs following the proposed approach, we have im-
plemented tool-support in context of the Eclipse-based Epsilon Development Tools [Kol06c]. In
Figure3 we demonstrate the user interface for configuring the details of an M0 model. Through
this screen users can define the model file, the metamodel file (oruri in case of memory-resident
metamodels) as well as the EOL file that contains the specification that provides the semantics
for the alignment.

Figure 3: Configuration Screen for M0 models

4 Case Study

Having outlined our approach in Section3, in this section we present a case-study, the aligning
of EOL with a DSL for modelling Relational Databases. The metamodel of the Relational DSL
(constructed using EMF) is presented graphically in Figure4. There, aDatabaseconsists of
many tables and eachTableconsists of a number ofColumns. All Database, TableandColumn
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Figure 4: The abstract syntax of a DSL for Relational Databases

have anameandColumnalso has atype. Related columns are linked each other using foreign-
keys. EachForeignKeydefines aparentand achild column and also if the relationship is one-
to-one or one-to-many (oneToMany). In the shaded part of the metamodel theM0 constructs1

appear. ATableDatacontains a set ofRowsthat represent exemplar data of the relatedtable.
Finally, aRowcontains many cells and eachCell corresponds to acolumnof the table and also
has avalue.

Figure5 gives a visual instance of the Relational DSL. There, the top two boxed shapes rep-
resent instances ofTableand the two lower shapes represent instances ofTableData.

4.1 Defining theM1→M0 instantiation semantics

In our DSL, aRowis conceptually an instance of aTable. Therefore, theCustomer.allInstances
expression should return all the rows in the model that belong to theTableDatathat has an
associatedTablewith the nameCustomer. This is formally defined by theallO f Kind operation
of Listing 3. In Listing 3, theallO f Typeoperation is also defined. The fact that they both return
the same result indicates that there is no notion of inheritance in our DSL.

1 By M0 constructsof the metamodel, we refer to metamodel constructs, instances of which belong to the M0 level.
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Figure 5: An instance of the Relational DSL

Listing 3: Specification of the hasType allOfType and allOfKind operations
1 operation String hasType() : Boolean {
2 return Table.allInstances.exists(t|t.name = self );
3 }
4
5 operation String allOfType() : Sequence(Row) {
6 return Row.allInstances().
7 select(r|r.tableData.table.name = self );
8 }
9

10 operation String allOfKind() : Sequence(Row) {
11 return self .allOfType();
12 }

4.2 Defining the point operator semantics

Having defined theM1 → M0 instantiation semantics, we must now define the semantics of
the point operator for the instance level. To provide better understanding, we first describe the
semantics informally through a set of small examples: Letc be the first row of the Customer
table-data displayed in Figure5. In this case, the expressionc.age should return anInteger
(25). Similarly,c.detailsshould return aString (George). Moreover,c.invoiceshould return a
collection of all the rows of the Invoice table-data where the value ofcustomerIdis equal to the
value ofc.id. This is dictated by the foreign key that relates the repsective columns in the model.
The complete formal semantics of the point operator are captured in thegetProperty(name:
String) operation of Listing4. The getPropertyoperation delegates the task of defining the
navigation path and the multiplicity of the returned result to thegetRowsOrCell() operation.
Finally, thegetValue() operation (lines 12-23), casts the string values of the cells to the respective
OCL data-types (Boolean, String, Integer and Real) according to the thetypeof the respective
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Column(BIT, VARCHAR, INT and REAL).

Listing 4: Specification of the getProperty operation
1 operation Row getProperty(name : String) {
2 var ret : Any;
3 ret := self .getCellOrRows(name);
4 if (ret.isTypeOf(Cell)){
5 return ret.getValue();
6 }
7 else {
8 return ret;
9 }

10 }
11
12 operation Cell getValue() : Any {
13 if ( self .column.type = ’INT’){
14 return self .value.asInteger();
15 }
16 if ( self .column.type = ’BIT’){
17 return self .value.asBoolean();
18 }
19 if ( self .column.type = ’REAL’){
20 return self .value.asReal();
21 }
22 return self .value.asString();
23 }
24
25 operation Row getCellOrRows(name : String) : Any {
26
27 var cell : Cell;
28
29 -- First try to find a cell with that name
30 cell := self .cell.select(c|c.column.name = name).first();
31
32 if (cell.isDefined()){
33 -- If a cell with that name exists, return it
34 return cell;
35 }
36 else {
37 -- Try to find a foreign child-key with that name
38 var childKeyCell : Cell;
39
40 childKeyCell := self .cell.select
41 (c|ForeignKey.allInstances().
42 exists(fk|fk.child.participant =
43 c.column and fk.parent.name = name)).first();
44
45 if (childKeyCell.isDefined()) {
46 var ck : ForeignKey;
47 ck := ForeignKey.allInstances().
48 select(fk|fk.child.participant = childKeyCell.column).first();
49 return Row.allInstances().
50 select(r|r.cell.exists(c|c.column = ck.parent.participant
51 and c.value = childKeyCell.value)).first();
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52 }
53 else {
54 -- Try to find a foreign parent-key with that name
55 var parentKeyCell : Cell;
56 parentKeyCell := self .cell.select
57 (c|ForeignKey.allInstances()
58 .exists(fk|fk.parent.participant = c.column
59 and fk.child.name = name)).first();
60
61 if (parentKeyCell.isDefined()) {
62 var pk : ForeignKey;
63 pk := ForeignKey.allInstances().
64 select(fk|fk.parent.participant = parentKeyCell.column).first();
65 var rows : Sequence;
66 rows := Row.allInstances().
67 select(r|r.cell.exists(c|c.column = pk.child.participant and
68 c.value=parentKeyCell.value));
69 if (pk.oneToMany){
70 return rows;
71 }
72 else {
73 return rows.first();
74 }
75 }
76
77 }
78
79 }
80 throw ’Undefined property: ’ + name;
81 }

Summarizing the above, to align EOL with a Domain Specific Language for supporting instance-
level queries, users have to specify the semantics of the DSL-specificM0→ M1 instantiation
mechanism by implementing thehasType(), allO f Type() andallO f Kind() operations and the
semantics of the point navigational operator by implementing thegetProperty() operation.

4.3 Running instance-level queries on the model

Having defined the alignment specification, we can now express and evaluate OCL instance-level
queries on our model. The OCL expression of Listing5 returns aCollectionof thedetailsof all
the customers in our model that have an age under 18 (here just{‘Nick’ }). In a more complex
query, Listing6 prints a message for every customer that has unpayed invoices, the sum of which
exceed their credit.

Listing 5: Instance-level query for retrieving under-aged customers
1 Customer.allInstances.select(c|c.age < 18).collect(c|c.details);

Listing 6: Instance-level query for retrieving customers in debt
1 for (c in Customer.allInstances){
2 var balance : Real;
3 balance := c.invoice.select(i|i.payed = false)
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4 .collect(i|i.total).sum();
5
6 if (balance > c.credit){
7 (’Customer ’ + c.details + ’ has a negative balance’).println();
8 }
9 }

5 Conclusions and Further Work

In this paper we have presented a novel technique for aligning the OCL querying and naviga-
tional facilities with custom Domain Specific Languages to support instance-level queries. More-
over, we have presented a worked example of applying this technique in a DSL for modelling
Relational Databases that demonstrates its practicality and usefulness. We are currently exper-
imenting with diverse metamodels to enhance our approach by providing support for additional
features, such as packaging and enumeration-oriented constructs.

As discussed in Section3, in this work we are using EOL instead of pure OCL for defining the
alignment specification. This is primarily due to the practical difficulties involved in capturing
complex expressions such as this displayed in thegetRowOrCells() operation of Listing4 using
pure OCL. However, we realize that expressing the alignment specification in that way renders
re-use from plain OCL engines impossible. Therefore, we are considering developing a trans-
formation from EOL to pure OCL that will be able to translate sequential EOL statements into a
single OCL-compatible statement.
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