
Electronic Communications of the EASST
Volume 29 (2010)

Proceedings of the
Ninth International Workshop on

Graph Transformation and
Visual Modeling Techniques

(GT-VMT 2010)

Verification of Model Transformations

Bernhard Schätz

13 pages

Guest Editors: Jochen Küster, Emilio Tuosto
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Verification of Model Transformations

Bernhard Schätz

fortiss GmbH
Guerickestr. 25, 80805 Mnchen, Germany

schaetz@fortiss.org

Abstract: With the increasing use of automatic transformations of models, the
correctness of these transformations becomes an increasingly important issue. Es-
pecially for model transformation generally defined using abstract description tech-
niques like graph transformations or declarative relational specifications, however,
establishing the soundness of those transformations by test-based approaches is not
straight-forward. We show how formal verification of soundness conditions over
such declarative relational style transformations can be performed using an inter-
active theorem prover. The relational style allows a direct translation of transfor-
mations as well as associated soundness conditions into corresponding axioms and
theorems. Using the Isabelle theorem prover, the approach is demonstrated for a
refactoring transformation and a connectedness soundness condition.

Keywords: Model transformation, rule-based, verification, theorem prover

1 Motivation

The construction of increasingly sophisticated software products has led to widening gap be-
tween the required and supplied productivity in software development. To overcome the com-
plexity of realistic software systems and thus increase productivity, current approaches increas-
ingly focus on a model-based development using appropriate description techniques. Besides
increasing efficiency, these transformations can offer consistency ensuring modification of mod-
els, ranging from refactoring steps to improve the architecture of a system to the consistent
integration of standard behavior. However, with the increased use of transformation, the ques-
tion of the correctness of transformations arises: How can we verify that the models constructed
via transformation are ‘well-formed’ given a ‘well-formed’ source model, e.g., by ensuring that
no relevant elements of the source model are absent in the target model. Obviously, testing is
one possible way of ensuring the correctness of transformations. However, concepts like cov-
erage etc. are not immediately transferable to model-transformations, especially if those are
rules-based or declarative.

In the following, a approach for the verification of transformations is introduced, supporting
the formal proof of properties over these transformations. The approach uses a declarative re-
lational style to provide a transformation mechanism, implemented on the Eclipse/EMF Ecore
platform, using a Prolog rule-based interpretation.

1 / 13 Volume 29 (2010)

mailto:schaetz@fortiss.org

Verification of Model Transformations

1.1 Related Approaches

Verification of model transformations has been specifically investigated for graph-based trans-
formation technquies (e.g., [GGL+06] and [Str08]). In that respect, the presented approach is
similar: The introduced transformation framework is used to describe graph transformations, us-
ing a relational calculus focused on basic constructs to manipulate nodes (elements) and edges
(relations) of a conceptual model. A theorem prover based on on high-order logics is used to
prove characteristics of the transformation by deducing properties of the target model from some
properties of the source model.

In contrast to other graph-based approaches like MOFLON/TGG [KKS07], Viatra [VP04],
or FuJaBa [GGL05], however, here the specification of transformations is not based on triple
graph-grammars or graphical, rule-based descriptions, but uses a textual description based on a
relational, declarative calculus. Therefore, in contrast to those approaches, the approach intro-
duced here uses only a single formalism to describe basic transformations as well as their com-
positions.Furthermore, only a single homogenous formalism with two simple construction/de-
construction operators to describe the basic transformation rules and their composition; complex
analysis or transformation steps can be easily modularized since there are no side-effects or in-
cremental changes during the transformation. Thus, a specification can be immediately used for
verification without complex translations; furthermore, proofs on the formal level more directly
reflect intuitive reasoning about the transformation.

This homogeneity is especially important for verification since is drastically simplifies the con-
struction of proofs: [GGL+06] focusses on TGG-based translation and therefore uses substantial
proof parts to model (and verify) the effective construction of correspondence graphs to describe
the application of individual graph rules. Furthermore – due to that approach – there struc-
tural induction over the pre/post-models is used which is less convenient when if non-translation
transformations are verified. Here, in contrast, induction over the transformation itself rather
than the pre/post models is performed, thus having a more direct proof principle and avoiding
the proof overhead of correspondence graphs and applicability conditions. Similarly, [Str08], –
using Isabelle as theorem proving support, too – also requires substantial effort to specify and
verify correspondence graph and application conditions for single transformation rules as well
their combination using while and case constructs. Thus, the application and ordering of rules
provided implicitly by a TGG approach has to be verified explicitly and using rather different
proof principles. In contrast, here, a more direct and homogenous form of proof is supported
by the declarative rule-based style. [CR09] uses a relational description of graphs similar to the
presented approach as well as similar proof principles. However, neither is their formalism is
supported by an executable implementation nor do they use mechanic proof support.

a rule-based description of transformations.
Another advantage of the presented approach is its capability to interpret loose characteriza-

tions of the resulting model, supporting the exploration of a set of possible solutions. By making
use of the back-tracking mechanism provided by Prolog, alternative transformation results can
not only be applied to automatically search for an optimized solution, e.g., balanced compo-
nent hierarchies, using guiding metrics; the set of possible solutions can also be incrementally
generated to allow the user to interactively identify and select the appropriate solution.

Proc. GT-VMT 2010 2 / 13

ECEASST

Figure 1: Example of Hierarchical Component Model and Corresponding Conceptual Model

1.2 Overview and Contribution

As the main contribution, an approach to formally verify model transformations is presented
in the following sections. The approach is based on a transformation of EMF Ecore models
using a completely declarative relational style in a rule-based fashion, introduced in [Sch08].
To provide such a form of transformations, the approach uses a term-based formalization of an
EMF model as shown in Section 2. With this form of model representation, as shown in Section 3
transformations can be described as declarative relations in Prolog style, supporting rules similar
to graph grammars as a specific description style.

Based on these previously established results, as new contribution in Section 4 the suitability
of this declarative relational style of defining models and transformation rules for the verification
of transformations is shown: The formalization of (meta-)models and transformation rules can be
directly translated in representations suited for theorem provers for predicate logic like Isabelle;
furthermore, due to the relational style correctness proofs of transformations can be performed
by reasoning on the level of their specifications. Section 5 highlights some benefits and open
issues.

2 Model Structure

To provide verified transformations of descriptions of systems, first the means of specifying
a system in form of a system model is needed. The left-hand side of Figure 1 shows such a
model, describing the hierarchical structure of the components of a system: the system System,
consisting of subcomponents SubSystem, ComponentB, and SiblingSystem, the first and the last
with subcomponents ComponentA and ComponentC, resp.1

To construct formalized descriptions of a system under development, a ‘syntactic vocabulary’
is needed. This conceptual model2 characterizes all possible system models built from the mod-
eling concepts and their relations used to construct a description of a system; typically, class

1 For simplification, here only components and their containment-relation is modeled; other typical aspects like
interfaces or communication links are ignored.
2 In the context of technologies like the Meta Object Facility, the class diagram-like definition of a conceptual model
is generally called meta model.

3 / 13 Volume 29 (2010)

Verification of Model Transformations

diagrams are used to describe them. The right-hand side of Figure 1 shows the corresponding
conceptual model – with the concept of a Component with an attribute name and a subComp-
relation – used to describe the architectural structure of a system.

2.1 Structure of the Model

The transformation framework provides mechanisms for a pure (i.e., side-effect free) declarative,
rule-based approach to model transformation, accessing EMF Ecore-based models [SBPM07].
Based on the conceptual model, a system model consists of sets of elements (each described as
a conceptual entity and its attribute values) and relations (each described as a pair of conceptual
entities), syntactically represented as a Prolog term. Since these elements and relations are in-
stances of classes and associations taken from an EMF Ecore model, the structure of the Prolog
term – representing an instance model – is inferred from the structure of that model. The structure
of the model is built using only simple elementary Prolog constructs, namely compound functor
terms and list terms. To access a model, the framework provides predicates to deconstruct and
reconstruct a term representing a model. [Sch08] describes the model in more detail.

A model term describes an instance of a EMF Ecore model. Each model term is a list of
package terms, one for each packages of the EMF Ecore model. Each package term, in turn,
describes the content of the package instance. It consists of a functor, identifying the package,
with a sub-packages term, a classes terms, and an associations term as its argument. The sub-
packages term describes the sub-packages of the package; it is a list of package terms.

The classes term describes the EClasses of the corresponding package. It is a list of class
terms, one for each EClass. Each class term consists of a functor, identifying the class, and an
elements term. An elements term describes the collection of objects instantiating this class, and
thus is a list of element terms. Finally, an element term consists of a functor, identifying the class
this object belongs to, with an entity identifying the element and attributes as arguments. Each
of the attributes are atomic representations of the corresponding values of the attributes of the
represented object. The entity is a regular atom, unique for each element term.

Similarly to an elements term, each associations term describes the associations, i.e., the in-
stances of the EReferences of the EClasses, for the corresponding package. Again, it is a list of
association terms, with each association term consisting of a functor, identifying the association,
and an relations term, describing the content of the association. The relations term is a list of
relation terms, each relation term consisting of a functor, identifying the relation, and the entity
identificators of the related objects. In detail, the Prolog model term has the structure shown in
Table 1 in the BNF notation with corresponding non-terminals and terminals.3

The functors of the compound terms are deduced from the EMF Ecore model: The functor of
a PackageTerm from the name of the EPackage; the functor of a ClassTerm from the name of
the EClass; the functor of an AssociationTerm from the name of the EReference. Similarly, the
atoms of the attributes are deduced from the instance of the EMF Ecore model, which the model
term is representing: The entity atom corresponds to the object identificator of an instance of a
EClass, while the attribute corresponds to the attribute value of an instance of an EClass.

3 While actually a ModelTerm consists of a set of PackageTerms, here for simplification purposes only one Pack-
ageTerm is assumed.

Proc. GT-VMT 2010 4 / 13

ECEASST

ModelTerm ::= PackageTerm
PackageTerm ::= Functor(PackagesTerm,ClassesTerm,AssociationsTerm)
PackagesTerm ::= [] | [PackageTerm (,PackageTerm)*]
ClassesTerm ::= [] | [ClassTerm (,ClassTerm)*]
ClassTerm ::= Functor(ElementsTerm)
ElementsTerm ::= [] | [ElementTerm (,ElementTerm)*]
ElementTerm ::= Functor(Entity(,AttributeValue)*)
Entity ::= Atom
AttributeValue ::= Atom
AssociationsTerm ::= [] | [AssociationTerm(,AssociationTerm)*]
AssociationTerm ::= Functor(RelationsTerm)
RelationsTerm ::= [] | [RelationTerm(,RelationTerm)*]
RelationTerm ::= Functor(Entity,Entity)

Table 1: The Prolog Structure of a Model Term

2.2 Construction Predicates

In a strictly declarative rule-based approach, the transformation is described in terms of a predi-
cate, relating the models before and after the transformation. Therefore, mechanisms are needed
in form of predicates to deconstruct a model into its parts as well as to construct a model from its
parts. As the structure of the model is defined using only compound functor terms and list terms,
only two forms of predicates are needed: union and composition operations.

2.2.1 List Construction

The(de)construction of lists is managed by means of the union predicate union/3 with tem-
plate4 union(?Left,?Right,?All) such that union(Left,Right,All) is true if
all elements of list All are either elements of Left or Right, and vice versa. Thus, e.g.,
union([1, 3,5],R,[1,2,3,4,5]) succeeds with R = [2,4].

2.2.2 Compound Construction

Since the compound structures used to build the model instances depend on the actual structure
of the EMF Ecore model, only the general schemata used are described. In all three schemata
– package, class/element, or association/relation – the name of the package, class, or relation is
used as the name of the predicate for the compound construction.

Packages For (de)construction of packages, package predicates of the form
package/4 are used with template package(?Package,?Subpackages, ?Clas-
ses,?Associations) where package is the name of the package (de)constructed. Thus,
e.g., a package named Architecture in the EMF Ecore model is represented by the compound
constructor Architecture. The predicate is true if Package consists of subpackages
Subpackages, classes Classes, and associations Associations.

4 According to standard convention, arbitrary/input/output arguments of predicates are indicated by ?/+/-.

5 / 13 Volume 29 (2010)

Verification of Model Transformations

Figure 2: Example: Result of Clustering ComponentB and SiblingSystem

Classes and Elements For (de)construction of – non-abstract – classes/elements, class/ele-
ment predicates of the form class/2 and class/N+2 are used where N is the number of
the attributes of the corresponding class, with templates class(?Class, ?Elements)
and class(?Element,?Entity,?Attr1,...,?AttrN) where class is the name of the
class and element (de)constructed. Thus, e.g., the class named Compound in the EMF Ecore
model in Figure 1 is represented by the compound constructor Compound. The class predi-
cate is true if Class is the list of Objects; it is used to deconstruct a class into its list of
objects, and vice versa. Similarly, the element predicate is true if Element is an Entity
with attributes Attr1,. . . ,AttrN; it can be used to deconstruct an element into its entity and
attributes, to construct an element from an entity and attributes (e.g. to change the attributes of
an element), or to construct a new element including its entity from the attributes. Thus, e.g.,
Compound(Compounds,[Sys,Sub,Sib]) is used to construct a class Compounds from
a list of objects Sys, Sub, and Sib. Similarly, Compound(Sub,Subsys,"SubSystem")
is used to construct a new element Sub with entity Subsys, and name "SubSystem".

Association and Relation Compounds For (de)construction of associations and relations,
association and relation predicate of the form association/2 and association/3
are used with templates association(?Association,?Relations) and
association(?Relation,?Entity1,?Entity2) where association is the name
of the association and relation constructed/deconstructed. Thus, e.g., a relation named subComp
in the EMF Ecore model in Figure 1 is represented by the compound constructor subComp. The
relation predicate is true if Association is the list of Relations; it is generally used to de-
construct an association into its list of relations, and vice versa. Similarly, the relation predicate
is true if Relation associates Entity1 and Entity2; it is used to deconstruct a relation into
its associated entities and vice versa. E.g., subComp(subComps,[SubSys,SibSys]) is
used to construct the subcomponent association subComps from the list of relations SubSys
and SibSys. Similarly, subComp(SubSys,Sub,Sys) is used to construct relation
SubSys with Sub being the subcomponent of Sys.

Proc. GT-VMT 2010 6 / 13

ECEASST

1 cluster(Pre,Group,Post) :−
2 Architecture(Pre,Pack,PreClass,PreAssoc),
3 Compound(PreComp,PreComps),union(OtherClass,[PreComp],PreClass),
4 subComp(PreSub,PreSubs),union(OtherAssoc,[PreSub],PreAssoc),
5 link(PreSubs,Group,PreRoot,OutSubs),
6 Compound(PreRootComp,PreRoot,Name),union([PreRootComp],Comps,PreComps),
7 subComp(NewSub,PostRoot,PreRoot),union([NewSub],OutSubs,InSubs),
8 Compound(PostRootComp,PostRoot,Name),union([PreRootComp,PostRootComp],Comps,PostComps),
9 link(PostSubs,Group,PostRoot,InSubs),

10 subComp(PostSub,PostSubs),union(OtherAssoc,[PostSub],PostAssoc),
11 Compound(PostComp,PostComps),union(OtherClass,[PostComp],PostClass),
12 Architecture(Post,Pack,PostClass,PostAssoc).

Figure 3: Cluster-Transformation: Rule for (De-)Constructing the Model

3 Transformation Definition

The conceptual model and its structure defined in Section 2 was introduced to define transforma-
tions of system models as shown in the left-hand side of Figure 1. A typical transformation step
is the clustering of a group of sibling components within a container component, making them
subcomponents of that container. Figure 2 shows the result of such a transformation clustering
subcomponents ComponentB and SiblingSystem of component System in Figure 1 into a new
System container. Besides introducing the new additional component System and making it a
subcomponent of the original System root component, the transformation also requires changing
the supercomponent of ComponentB and SiblingSystem.

In a relational approach to model transformations, such a transformation is described as a
relation between the model prior to the transformation (e.g., as given in the left-hand side of
Figure 1) and the model after the transformation (e.g., as given in Figure 2). In this section, the
basic principles of describing transformations as relations are described.

3.1 Transformations as Relations

In case of the clustering operation, the relation describing the transformation has the interface
cluster(Pre,Group,Post) with parameter Pre for the model before the transformation,
parameter Post for the model after the transformation, and parameter Group for the group of
components of the model to be clustered. In the relational approach presented here, a transfor-
mation is basically described by breaking down the pre-model into its constituents and build up
the post-model from those constituents using the relations from Section 2, potentially adding or
removing elements and relations. With Pre taken from the conceptual domain described in Fig-
ure 1 and packaged in a single package Architecture with no sub-packages, it can be decomposed
in contained classes (e.g., Compound) and associations (e.g., subComp) as shown in Figure 3,
lines 2 to 4.5 In the same fashion, Post can be composed in lines 12 to 10. Lines 6 to 8 obtain
the Name of the common super-component with entity PreRoot of the group (line 6), provide

5 For ease of reading, quotes required in Prolog for capital functor identifiers like Architecture or Compound are
dropped.

7 / 13 Volume 29 (2010)

Verification of Model Transformations

1 link(Subs,[],Root,Subs).
2 link(InSubs,Group,Root,OutSubs) :−
3 subComp(SubRel,Sub,Root),union([Sub],Rest,Group),union([SubRel],Subs,InSubs),
4 link(Subs,Rest,Root,OutSubs).

Figure 4: Cluster-Transformation: Rule for (Un-)Linking SubComponents

a newly created compound container component PostRootComp this Name and entity PostRoot
(line 8), and make this PreRoot the super-component of PostRoot (line 7). Note that the relation
is bidirectional: Besides clustering a group of siblings into a common container, it can also be
used to uncluster the group of subcomponents contained in a common container.

Besides using the basic relations to construct and deconstruct models (and add or remove
elements and relations, as shown in the next subsection), new relations can be defined to support a
modular description of transformation, decomposing rules into sub-rules. E.g., in the cluster
relation, the transformation can be decomposed into the addition of the new container component
and the reallocation of the components to be clustered; for the latter, then a sub-relation link
with corresponding rules is introduced, as shown in Figure 4. Note that link is effectively used
in both directions in the cluster relation: In line 5, link is used to unlink subcomponents
by removing the subComp-associations between Group elements and the original component
PreRoot from PreSubs to obtain OutSubs; in line 9, link is used to link subcomponents by
adding the subComp-associations between Group elements and the new component PostRoot to
InSubs to obtain PostSubs.

3.2 Transformations as Rules

To define the transformation steps for (un)linking components and subcomponents, relation
link(InSubs,Group,Root,OutSubs) is used, by making the set OutSubs of associa-
tions the reduction of set InSubs when removing all subComp-associations between elements
from Group and Root. The (un)linking of a group depends on whether the group is empty or
not. Therefore, in a declarative approach, two different – recursive – (un)link rules for those two
cases are needed, each with the interface described above.

To define these rules as shown in Figure 4, the conceptual model and its structured represen-
tation introduced in Section 2 are used. Line 1 simply states that in case of an empty group the
sets of associations are the same since no elements can be (un)linked. This case also handles the
termination of the inductive rule definition. In case of a non-empty group, line 3 (un)links a Sub
element from the Group – leaving a rest Rest – and Root, while line 4 repeats this (un)linking
recursively for the Rest of the group. Note that this rule-based description allows to compose
complex transformations by simple application of rules in the body of another rule (like link in
cluster). In contrast, graphical specifications generally use additional forms of diagrams, e.g.,
state-transition diagrams. As shown in the following section, this direct combination of rules,
however, is essential to simplify the formal verification of the correctness of transformations.

Proc. GT-VMT 2010 8 / 13

ECEASST

4 Verification

The relational and declarative approach introduced in the previous sections supports an easy
transition to formal reasoning. In this section, the formalization of an EMF Ecore meta-model
in constructive type theory is presented, as well as the straight-forward formalization of transfor-
mations. Based on these formalizations, the construction of formal correctness proof is demon-
strated using the example of typical invariants. To support formal verification, the interactive
theorem prover Isabelle/HOL [NPW02] is applied.

4.1 Meta-Model Formalization

Isabelle/HOL supports the form of (typed) terms used to represent the EMF models in the rule-
based transformation process. Thus, the transition from the specifications used in Section 2 to
Isabelle/HOL is straight-forward, as shown in the – syntactically slightly simplified – formaliza-
tion of the meta-model of Figure 1:6

1 typedecl ids
2 typedecl string
3 datatype comp = Comp ids string, atom = Atom ids string
4 datatype subComp = SubComp ids ids
5 datatype cls = Comp comp set | Atom atom set
6 datatype asc = SubComp subComp set
7 datatype architecture = Architecture cls set asc set

After introducing – via typedecl – uninterpreted ids and string types for representing entities
and string attributes in lines 1 and 2, the corresponding element (line 3), relation (line 4), class
(line 5), association (line 6), and package (line 7) term types are introduced simply by providing
– via datatype – constructor functions, using the same scheme as introduced in Subsection
2.1.7 Based on these constructors and using the set operations provided by Isabelle/HOL, Prolog
model terms can be directly translated, thus enabling the translation of transformations.

4.2 Transformation Formalization

Besides type terms, Isabelle also supports the definition of predicates in a rule-based fashion
analogue to the Prolog-based rules in the transformation approach. To define the transformation
relations in Isabelle, inductive definitions of predicates are used to allow recursive definitions.
The non-recursive cluster relation of Section 3 is – trivially inductively – defined via:8

1 inductive cluster :: architecture => ids set => model => bool where
2 pre = (Architecture preclass preassoc) &
3 precomp = (Comp precomps) & otherclass Un {precomp} = preclass &
4 presub = (SubComp presubs) & otherassoc Un {presub} = preassoc &
5 (link presubs group preroot outsubs) &
6 prerootcomp = (Comp preroot name) & {prerootcomp} Un comps = precomps &
7 newsub = (SubComp postroot preroot) & {newsub} Un outsubs = insubs &

6 set introduces a set type, | a variant type, => a function type.
7 The Compound and AtomicComponent element/class constructors are abbreviated to Comp and Atom, resp.
8 Standard Isabelle notation is used, including &, |, and --> for conjunction, disjunction, and implication; <= and :
for the subset and element relation; ? for the existential quantor.

9 / 13 Volume 29 (2010)

Verification of Model Transformations

8 postrootcomp = (Comp postroot name) & {prerootcomp,postrootcomp} Un comps = postcomps &
9 (link postsubs group postroot insubs) &

10 postsub = (SubComp postsubs) & otherassoc Un {postsub} = postassoc &
11 postcomp = (Comp postcomps) & otherclass Un {postcomp} = postclass &
12 post = (Model postclass postassoc)
13 −−> (cluster pre group post)

Obviously, again the transition from the specifications used in the previous sections to Is-
abelle/HOL is straight-forward: Line 2 to 12 directly correspond to line 2 to line 12 in Figure 3;
in the former only a direct formalization with equality combined the constructors and set union is
used, while the later uses (de)construction predicates. Line 13 of the former corresponds to line
1 of the later. Line 1 additionally defines the type of the predicate in Isabelle/HOL designated
by “::”. In a similar fashion, the specification of link can be directly translated:

1 inductive link :: subComp set => ids set => ids => subComp set => bool where
2 (link subs {} root subs) |
3 (link subs rest root outsubs) −−> (link ({subComp.SubComp sub root} Un subs) ({sub} Un rest) root outsubs)

4.3 Proof Construction

Using the formalization of the transformations introduced above, now correctness properties of
the clustering operation can be defined. In the following, two conditions – one concerning class
and one concerning association properties – are considered:

1. Each Compound element contained in the pre-model is also contained in the post model.

2. Each subComp relation between a component and some super-component in the pre-model
has a counter-part in the post-model for the same component and some – potentially dif-
ferent – super-component.

The first property is formalized as theorem keep Comp cluster:

1 theorem keep Comp cluster:
2 (cluster pre group post) & pre = (Architecture preclass preassoc) & post = (Architecture postclass postassoc) &
3 preComp = (Comp preComps) & preAtom = (Atom preAtoms) & {preComp, preAtom} = preclass &
4 postComp = (Comp postComps) & postAtom = (Atom postAtoms) & {postComp, postAtom} = postclass &
5 (somecomp:preComps) −−> (somecomp:postComps)

This theorem is straightforward to prove, requiring no induction but only case distinction. There-
fore, the proof is mainly performed by applying Isabelle’s automatic proof tactics (e.g., auto,
clarify, clarsimp), rendering the theorem (or lemma) applicable in further proof steps:

1 apply auto
2 apply (erule pushpull.cases)
3 apply clarify
4 apply (drule equalityD1)
5 apply (drule equalityD2)
6 apply (drule Un sub D)
7 apply (drule Un sub D)
8 apply clarsimp

Proc. GT-VMT 2010 10 / 13

ECEASST

Beside the case distinction (line 2), the proof requires three standard simplifications (lines 1, 3,
8) and four simple interactions deadline with equality and sub-set relation properties, where the
latter could also be further automized by providing suitable rules.

The second, more challenging property is formalized as theorem keep subComp cluster:

1 theorem keep subComp cluster:
2 (cluster pre group post) & pre = (Architecture preclass preassoc) & post = (Architecture postclass postassoc) &
3 preSubComp = (SubComp preSubComps) & {preSubComp} = preassoc &
4 postSubComp = (SubComp postSubComps) & {postSubComp} = postassoc &
5 (? root. (SubComp some root):preSubComps) −−> (? root .(SubComp some root):postSubComps)

The proof script for theorem keep subComp cluster uses the same steps as before; however, since
the corresponding super-component in a subComp-relation in the post-model is different whether
the sub-component is in the group to be clustered or not, the proof requires one additional step –
a lemma application – for distinction between these cases. To that end, corresponding lemmata
are introduced and proved, e.g., keep link group to deal with the case on non-group elements.
Since this distinction essentially affects link, these lemmata operate on the link relation:

1 lemma keep link group: (link pre group old lsubs) & (link post group new rsubs) −−> (lsubs <= rsubs & some:group)
2 −−> (SubComp some root):pre −−> (SubComp some root):post

Since these lemmata make use of the inductively defined relation link, induction must be used.
However, besides suggesting the use of the induction principle on the definition of link, again
the proof can performed fully automatic. These lemmata can be combined in a single lemma
keep link with a trivial proof:

1 lemma keep link: (link pre group old lsubs) & (link post group new rsubs) −−> lsubs <= rsubs
2 −−> (? root. (SubComp some root):pre) −−> (? root. (SubComp some root):post)

In its proof, proven lemmata like keep link group can be applied in the form

1 apply (insert keep link group [of pre group old lsubs post new rsubs some])

The complete proof of theorem keep subComp cluster consists of the proof of the lemmata with
23 steps and 10 steps for the proof of the theorem itself with the resulting keep link lemma.

5 Conclusion and Outlook

The PETE transformation framework – provided as an Eclipse PlugIn [Sch09] – supports the
transformation of EMF Ecore models using a declarative relational style and allows a simple,
precise, and modular specification of transformation relations on the problem- rather than the
implementation-level. By including operational aspects, the relational declarative form of speci-
fication can be tuned to ensure an efficient execution. In the application to problem from the
embedded software domain, the approach has demonstrated practical feasibility for medium
real-world sized models (e.g, refactoring models consisting of more than 3000 elements and
more than 5000 relations within a few seconds). Furthermore, debugging on the level of the
specification supports the construction of transformations.

The use of a declarative relational style of specifying transformations is an important asset
for the formal verification of correctness conditions of these transformations: It allows the direct
translation of the conceptual model as well as the transformation rules into a predicate-logical

11 / 13 Volume 29 (2010)

Verification of Model Transformations

formalization. Since no indirections are introduced between the specifications on the execution
and the verification level, the proof can be constructed following a natural argumentation. Using
a verification tool like Isabelle/HOL, the verification process can be automized to a large extent.

While the previous sections have demonstrated the applicability of the approach, additional
means of automation should be provided for a extensive application. This includes the mechanic
translation of EMF Ecore models into the corresponding type definitions. Furthermore, the trans-
lation should include the definition of the basic manipulation predicates in the (de)constructor
format to allow the 1:1 use of the executable specification of transformations in the verifica-
tion. Additionally, general lemmata, tailor-made tactics, or using ISAR for more readable proof
scripts should be provided to simplify proofs. Also, other property languages like OCL and
pre/post schemata should be included, to circumvent the specification of property conditions on
the level of predicate logics. Finally, the practicability of the verification approach requires the
analysis of larger case studies to understand in which cases a formal verification of a rule-based
transformation can be favorable, e.g., over a testing-based verification of a programming-level
transformation.

Since the declarative relational style can also be used to support a search-based design-space
exploration involving backtracking – e.g., when computing correct deployments in embedded
systems – making test-based verification even more complex, simple formal verifiability of the
correctness of such explorative transformations is especially helpful.

Bibliography

[CR09] S. A. da Costa, L. Ribeiro. Formal Verification of Graph Grammars using Math-
ematical Induction. Electronic Notes in Theoretical Computer Science 240:43–60,
2009.

[GGL05] L. Grunske, L. Geiger, M. Lawley. A Graphical Specification of Model Transforma-
tions with Triple Graph Grammars. In Hartman and Kreische (eds.), Model Driven
Architecture. LNCS 3748. Springer, 2005.

[GGL+06] H. Giese, S. Glesner, J. Leitner, W. Schfer, R. Wagner. Towards Verified Model
Transformations. In In Proceedings of MoDeVa workshop associated to MoD-
ELS’06. Pp. 78–93. 2006.

[KKS07] F. Klar, A. Königs, A. Schürr. Model Transformation in the Large. In ESEC/FSE’07.
ACM Press, 2007.

[NPW02] T. Nipkow, L. C. Paulson, M. Wenzel. Isabelle/HOL - A Proof Assistant for Higher-
Order Logic. Lecture Notes in Computer Science 2283. Springer, 2002.

[SBPM07] D. Steinberg, F. Budinsky, M. Paternostro, E. Merks. EMF: Eclipse Modeling
Framework. Addison Wesley Professional, 2007. Second Edition.

[Sch08] B. Schätz. Formalization and Rule-Based Transformation of EMF Ecore-Based
Models. In Dragan Gasevic (ed.), Software Language Engineering. LNCS. Springer,
2008.

Proc. GT-VMT 2010 12 / 13

ECEASST

[Sch09] B. Schätz. Prolog EMF Transformation Eclipse-PlugIn. www4.in.tum.de/
˜schaetz/PETE, 2009.

[Str08] M. Strecker. Modeling and Verifying Graph Transformations in Proof Assistants.
Electr. Notes Theor. Comput. Sci. 203(1):135–148, 2008.

[VP04] D. Varro, A. Pataricza. Generic and meta-transformations for model transformation
engineering. In Baar et al. (eds.), UML 2004. Springer, 2004. LNCS 3273.

13 / 13 Volume 29 (2010)

	Motivation
	Related Approaches
	Overview and Contribution

	Model Structure
	Structure of the Model
	Construction Predicates
	List Construction
	Compound Construction

	Transformation Definition
	Transformations as Relations
	Transformations as Rules

	Verification
	Meta-Model Formalization
	Transformation Formalization
	Proof Construction

	Conclusion and Outlook

