
Electronic Communications of the EASST
Volume 30 (2010)

International Colloquium on Graph and Model
Transformation On the occasion of the 65th birthday of

Hartmut Ehrig
(GraMoT 2010)

Graph Modelling and Transformation: Theory meets Practice

Karsten Ehrig and Claudia Ermel

21 pages

Guest Editors: Claudia Ermel, Hartmut Ehrig, Fernando Orejas, Gabriele Taentzer
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Graph Modelling and Transformation: Theory meets Practice

Karsten Ehrig1 and Claudia Ermel2

1 BAM Bundesanstalt für Materialforschung und -prüfung, Berlin, Germany
karsten.ehrig@bam.de

2 Institut für Softwaretechnik und Theoretische Informatik
Technische Universität Berlin, Germany

claudia.ermel@tu-berlin.de

Abstract: In this paper, we focus on the role of graphs and graph transformation
for four practical application areas from software system development. We present
the typical problems in these areas and investigate how the respective systems are
modelled by graphs and graph transformation. In particular, we are interested in the
usefulness of theoretical graph transformation results and graph transformation tools
in order to solve these problems. Finally, we characterize concepts and tool features
which are still missing in practice to solve the presented and related problems even
better.

Keywords: graph modelling, graph transformation, graph transformation tools

1 Introduction

Graphs are one of the key concepts for modelling. Since the early days of mankind, graphs are
used to depict the relationship between two or more entities as abstractions of real world systems
and processes. The visual nature of graphs makes them an intuitive language for human beings
to think and discuss about partitioning systems into different components, and about processes
of running systems which can be drawn as related but changing system state graphs. Throughout
the history of software engineering, graph models have been used for software system design,
such as entity-relationship diagrams for databases, class diagrams for static software structure,
and the diagram types offered by the Unified Modeling Language (UML) [OMG07] to model
different static and dynamic system aspects. Yet, when it came to programming, often enough a
yawning gap opened between what the modellers meant when designing their graph models and
what the programmers encoded using standard textual programming languages, where the graph
models played the role of a rough guideline for programmers. Ambitious programming projects
resulted in failure, went over their budgets or proved to be unstable over time.

Hence, the objective of model-driven development (MDD) is creating models closer to do-
main concepts rather than computing concepts [Béz05]. This means that for software developers
the abstraction level is now raised. No longer do they need to worry about technical details and
features of programming languages but can concentrate on more creative parts of software en-
gineering: analysis, design and validation, all based on models. Sometimes, models are refined
to a certain level of detail, and the code is written by hand in a separate step. Sometimes, code
can be generated from models, ranging from system skeletons to complete, deployable products.

1 / 21 Volume 30 (2010)

mailto:karsten.ehrig@bam.de
mailto:claudia.ermel@tu-berlin.de

Graph Modelling and Transformation: Theory meets Practice

In all cases, the MDD perspective raises the importance of graph models and calls for rigorous
methods to capture the semantics of graph models and their evolution over time [Eng00]. The
fundamental notions behind graph models have been captured long ago by mathematical terms,
thus allowing for rigorous reasoning at model level. Yet, experience shows that many problems
in using formal methods in software development arise because the formal model and the prob-
lem domain are too far apart. Since any software system is situated in a particular social context,
this context (domain) should be represented also in models based on formal notations. Here,
again, graph models with their visual nature are a good candidate for uniting the domain-specific
and the formal aspects of real-world problems. Domain specific languages based on graphs may
use a graphical concrete syntax with adequate intuitive symbols which are manipulated ade-
quately to model dynamic system aspects. Thus, the system behaviour may be animated in a
domain-specific visualization to validate system properties by domain experts.

Since real world systems evolve, their models need to model evolution as well. Algebraic
graph transformation is a formally defined calculus based on graphs and graph transformation
rules [EEPT06]. For ages, rules have proven to be extremely useful for describing computa-
tions by local transformations. Areas like language definition, logic, functional programming,
algebraic specification, term rewriting and expert systems have rules as key concepts. Graph
transformation, also known as graph rewriting or graph reduction, combines the potential and
advantages of both graphs and rules into a single computational paradigm.

In this paper, we summarize a few selected case studies from recent literature which have been
modelled by graphs and algebraic graph transformation (reviewed in Section 2). In particular,
we focus on four case studies from different application areas: a medical information system
(Section 3), a model transformation between two different modelling notations (Section 4), a
metabolic pathway analysis (Section 5), and a self-healing system (Section 6). For each applica-
tion area, we ask the following questions:

1. What are typical problems in this area?

2. How can they be modelled by graphs or graph transformation?

3. What kind of graph transformation results can be applied to solve these problems?

4. What are missing graph modelling and transformation concepts and results?

In the evaluation (Section 7), we summarize the experiences gained from the case studies and
state what kinds of concepts and results we find still missing.

2 Algebraic Graph Transformation: Background

For nearly 40 years, graph transformation has been studied in a variety of approaches, moti-
vated by application domains such as pattern recognition, semantics of programming and visual
modelling languages, specification of distributed systems etc. [EEKR99, EKMR99, BTMS99].

A detailed presentation of different graph transformation approaches, is given in volume 1
of the Handbook of Graph Grammars and Computing by Graph Transformation [Roz97]. The
algebraic approach is based on pushout constructions, where pushouts are used to model the

Proc. GraMoT 2010 2 / 21

ECEASST

gluing of graphs. In fact, there are two main variants of the algebraic approach, the double and
the single pushout approach. The double pushout (DPO) approach [EEPT06], is the formal basis
for visual modelling of behavioural models and model transformations considered in this article.
The DPO approach is based on category theory: a graph transformation rule is a pair of mor-
phisms in the category of graphs with total graph morphisms as arrows: r = (L←K→ R) where
K→ L is injective. Graph K is called gluing graph. Another graph morphism m : L→G models
an occurrence of L in G and is called a match. Intuitively, this means that L is a subgraph that is
matched to G, and after a match is found, the rule can be applied.

A direct transformation or application of rule r to graph G is de-
fined by two pushout diagrams (see the diagram to the right). Ap-
plying the rule, m(L) is replaced with m∗(R) in graph G, leading
to the transformed graph H. A graph transformation, or, more
precisely, a graph transformation sequence, consists of zero or

L

(1)m
��

K

(2)

loo r //

��

R

m∗

��
G Doo // H

more direct transformations, written G0
∗

=⇒ Gn. A set of graph rules is called graph transfor-
mation system. A type graph defines a set of types which can be used to assign a type to the
nodes and edges of a graph. The typing itself is done by a graph morphism from the graph to the
type graph. A typed graph transformation system GT S = (T G,P) consists of a type graph TG
and a set P of typed graph rules. A (typed) graph grammar GG = (GT S,S) consists of a (typed)
graph transformation system GT S and a (typed) start graph S. The (typed) graph language L of
GG is defined by L = {G | ∃ (typed) graph transformation S ∗

=⇒ G}. The key idea of attributed
graph transformation is to model graphs with node and edge attributes, i.e. an attributed graph is
a pair AG = (G,A) of a graph G and a data type algebra A. Typed attributed graph transforma-
tion, combining process and data modelling proved to be well-suited to define and analyse visual
models and model transformations [EEPT06, MVVK05].

A variety of tools for graph transformation exist [TEG+05] to be used as transformation engine
and for analysis purposes, to reason about issues such as conflicts and dependencies of actions
as well as consistency of object structures.

3 Case Study 1: Medical Information System

Problem
Information systems are very common nowadays in almost all common application areas of soft-
ware systems. In health care, data from different domains like admission, physical examination,
medical record archive, etc. have to be coordinated and presented to the employees. Data ma-
nipulations, like the admission of a new patient, have to be supported intuitively.

Aim of the Model
An interactive visual application with a suitable graphical user interface shall be generated from
a suitable model. Instead of complex textual data, visual symbols shall be used to support the
necessary information system operations. The operations shall be modelled in a precise, unam-
biguous way.

3 / 21 Volume 30 (2010)

Graph Modelling and Transformation: Theory meets Practice

Technique to solve the problem / realize the aim
We use typed, attributed graphs to model the abstract syntax of the information systems, and
graph transformation rules on the abstract syntax model to define the operations to be performed
by the clinical staff. Moreover, we combine the abstract syntax elements with concrete syntax
symbols to visualize graphs in an adequate, domain-specific way. Constraints and application
conditions are used to check the consistency of the model and the operations to be performed.
From this model, the interface and operation code allowing the users to operate on the informa-
tion system visually is generated automatically.

Overview of the model
Figure 1 shows icons for patients, beds, rooms, admission and discharge (from left to right) used
in our information system.

Figure 1: Graphical Symbols for Medical Information System

In Figure 2, the current ward patient allocation diagram shows bed icons inside the room icons
to represent the number of available beds in the ward rooms.

Figure 2: Sample User Interface Diagram for Medical Information System

A patient icon is connected with a bed if occupied, otherwise the bed is left empty. Patients
currently not associated with a bed are shown next to the admission symbol. This requires a
user action. Dragging an female patient symbol onto a free bed symbol evokes rule Admission
(Figure 3).

Applying this rule, the user of the information system assigns a female patient to a bed and a
room, unless there are male patients in the same room (modelled by a NAC). With a visual rule
editor, the information system designer may define new rules and user policies according to the
needs and standards of the hospital.

Proc. GraMoT 2010 4 / 21

ECEASST

Figure 3: Sample Rule Admission

Tool Support
TIGER 2 [BEEH09] is an generator of modeling tool environments for visual domain specific
languages. In the modelling environment, a set of graph transformation rules called editing rules
define the editing commands of the generated visual editor, i.e. the model syntax; on the other
hand, a set of simulation rules may describe a model’s operational semantics.

Figure 4: Abstract Syntax definition in TIGER 2

Figure 4 shows the (simplified) abstract syntax of the case study modelled in TIGER 2. A
patient is associated with a bed located in a room of the ward numbered with the attribute num-
ber of data type String to allow for combinations of letters and numbers (e.g. ’room A15’).
Node patient is an abstract node, specialized to nodes female patient and male patient. The pa-
tient attribute health record id of is used for unique identification of the current health record
in the system database. One patient may acquire more than one health record ids for different
admissions. The attributes x, y, width, and height are used for icon visualization.

Related Work

Starting with an EMF domain model, the Graphical Modeling Framework (GMF) [GMF07]
provides a code generation facility for a graphical editor with basic editor operations for inserting
graphical objects and links between them. Apart from GMF [GMF07], also the TOPCASED

modeler generator of the OPENEMBEDD [Ope09] MDE platform provides graphical patterns
for common parts of user specific EMF domain models and thus allows to easily create a basic
graphical editor, visualizing mainly the abstract model syntax as graph-like diagrams with nodes

5 / 21 Volume 30 (2010)

Graph Modelling and Transformation: Theory meets Practice

and edges. More sophisticated tools generating graph-based modelling environments that can be
customized to various domains are e.g. Metaedit+ [TR03], the Generic Modeling Environment
GME [AKL03] and DiaGen [Min07], a diagram editor generator based on graph transformation.

Unsolved Problems
Graph-based modelling environments need to integrate various domain specific editors and views
for defining e.g. simulations and model transformations. All views have to be interconnected and
customized to the domain. Up to now, such multi-view editors cannot be generated automatically
from domain models by generators like GMF. We are convinced that a combination of EMF-
based modeling tools [EMF09] and graph transformation tools [Tae06] provide a solid basis to
define complex operations for editing, simulation, and model transformation of domain specific
languages based on a well-defined theoretical background [BET08]. Up to now, a comprehensive
generation framework combining graph transformation, EMF-based meta-modeling and for the
generation of customized visual modelling environments has not yet been implemented.

4 Case Study 2: Business Process Model Transformation

Problem
The Business Process Modelling Notation (BPMN) [Whi04] is a graph-oriented language in
which control and action nodes can be connected almost arbitrarily. It defines a Business Pro-
cess Diagram (BPD), which is a kind of flowchart incorporating constructs tailored to business
process modelling, such as AND-split, AND-join, XOR-split, XOR-join. It is supported by var-
ious modelling tools but so far no systems can directly execute BPMN models. The Business
Process Execution Language for Web Services (BPEL) [IBM03], on the other hand, is a mainly
block-structured language. BPEL is emerging as a de-facto standard for implementing busi-
ness processes on top of web services technology. Numerous platforms support the execution of
BPEL processes.

Aim of the Model
The aim of this case study is to define the BPMN2BPEL model transformation at an adequate
abstraction level. A challenge in formalizing the particular model transformation is the transla-
tion of BPMN And and Xor constructs to the corresponding BPEL language elements Flow and
Switch. Translating those constructs with ordinary graph transformation rules requires a complex
control structure for guidance. We aim for an intuitive, visual description of the model transfor-
mation where arbitrary many branches of And and Xor constructs can be treated in parallel.

Technique to solve the problem / realize the aim
We use typed, attributed graph transformation based on an integrated type graph T GI . This type
graph consists of the type graphs for the source and target language, and, additionally, reference
nodes with arcs mapping source elements to target elements. We express model transformations
directly by T GI-typed graph transformation rules L←K→R where L basically represents source
model elements, and R represents the corresponding generated target model elements. The model

Proc. GraMoT 2010 6 / 21

ECEASST

transformation starts with graph GS typed over T GS.
As T GS is a subgraph of T GI , GS is also typed
over T GI . During the model transformation process,
the intermediate graphs GS = G1, ..,Gn are all typed
over T GI . To delete all items in Gn which are not

T GS
� � incS // T GI T GT? _

incToo

GS

typeGS

OO

r1 +3 ... rn +3 Gn

typeGn

OO

GT

typeGT

OO

oo

typed over T GT , we can construct a restriction (a pullback in the category Graphs), which
deletes all those items in one step. In addition to normal graph transformation rules, we also
use rule schemes to express parallel transformation of arbitrary many similar model element
patterns. The application of rule schemes is defined by the concept of amalgamated graph trans-
formation [BFH87].

Overview of the Model Transformation
The complete model transformation case study is described in [BEE+10]. The type graph inte-
grating the BPMN source model (left-hand part), the reference part connecting source and target
model (the node type F2ARef and its adjacent edge types bpmn and bpel), and the BPEL target
model (right-hand part) is shown in Figure 5.

Figure 5: BPMN2BPEL type graph

As an example we consider a BPMN diagram which models a person’s interaction with an
ATM (see Figure 6 where the concrete and abstract syntax of the diagram are depicted). In
the upper part, the ATM machine accepts and holds the card of the person while simultaneously
contacting the bank for the account information. (The language elements AndSplit and AndJoin are
used to model parallel actions.) Afterwards, the display prompts the user for the PIN. Depending
on the user’s input there are three alternative actions possible: (1) the user enters the correct PIN
and can withdraw money, (2) a wrong PIN is entered – a message is displayed, (3) the operation
is aborted – an alarm signal is given.

We give one example for a model transformation rule scheme (in abstract syntax) to translate
Xor constructs. All other rules and rule schemes can be found in [BEE+10]. An Xor construct
(a number of branches surrounded by an XorSplit and XorJoin element) is translated to a Switch
container node which contains a child for each branch emerging from the XorSplit. Since the
number of branches can be arbitrary, a normal graph transformation rule or any finite number

7 / 21 Volume 30 (2010)

Graph Modelling and Transformation: Theory meets Practice

Figure 6: ATM machine in BPMN in concrete syntax (a) and abstract syntax (b)

of rules would not be sufficient to express this situation. Therefore, we here use amalgamated
graph transformation, a technique to specify forall-operations on recurring model patterns (e.g.
for each branch in an And construct). A multi-rule scheme contains a fixed kernel rule part and
the recurring model pattern (called multi-rule). The kernel rule part defines the elements in the
graph which are common to all recurring model patterns (e.g. the XorSplit and XorJoin nodes that
surround all branches). An amalgamated rule, induced by such a scheme, is a kind of parallel
rule operating on all recurring model patterns in parallel but synchronized by the kernel rule part.
Applying the amalgamated rule to a graph, it modifies all recurring matches of the model pattern,
which overlap in the match of the kernel rule in one step.

We model a multi-rule scheme as a rule embedding of the kernel rule part into the multi-rule,
which contains in addition to the kernel rule part the recurring model pattern. The upper part
of Figure 7 shows the kernel rule part, where one branch surrounded by an XorSplit and XorJoin
is translated to a BPEL Switch node with one Case branch where the condition in the Next node
is translated to a Case distinction. The multi-rule for processing And constructs is shown in
the bottom part of Figure 7. It extends the kernel rule by one more branch, which comprises
the recurring model pattern, and translates it accordingly. The rule embedding from the kernel
rule to the multi rule is indicated in Figure 7 by corresponding numbers of some of the graph
objects. For applying a multi-rule scheme, first, a match of the kernel rule is selected. Then,
copies of the multi-rule are constructed, one for each new match of a multi-rule in the current
host graph that overlaps with the match of the kernel rule. At last, all multi rule copies are glued
at their corresponding kernel rule objects which leads to a new rule, the amalgamated rule. The
application of the amalgamated rule is called amalgamated graph transformation.

The application of the multi-rule scheme CreateSwitch in Figure 7 to the ATM graph in Figure 6
yields the amalgamated rule in Figure 8 where the kernel rule is glued with two multi-rule copies

Proc. GraMoT 2010 8 / 21

ECEASST

Figure 7: Multi-rule scheme CreateSwitch

(since we have three branches in Figure 6 between the XorSplit and the XorJoin). The amalgamated
rule in Figure 8 is then used to translate the three branches in one step by applying it to the ATM
graph in Figure 6.

Figure 8: Amalgamated rule of scheme CreateSwitch constructed for the ATM model in Figure 6

For this case study, a theoretical result [GEH10] is applied which allows us to show parallel
independence of amalgamated graph transformations by analyzing the underlying multi-rules.
Hence, we may translate the And construct and the Xor construct using amalgamated graph trans-
formation in arbitrary order. After applying our transformation rules and schemes starting with
the ATM model in Figure 6, we get the resulting integrated graph shown in Figure 9 (b). The
abstract syntax of the BPEL expression is the red tree with root node Sequence. The concrete
syntax of the BPEL model corresponding to this tree is shown in Figure 9 (a).

9 / 21 Volume 30 (2010)

Graph Modelling and Transformation: Theory meets Practice

Figure 9: ATM machine after transformation: (a) in concrete BPEL syntax, (b) in abstract syntax

Tool Support
We implemented the case study in our tool AGG [AGG09, BEL+10], supporting the definition
of type graphs, typed attributed graph rules and constraints. AGG has been extended recently by
support for defining and applying amalgamated graph transformation. All screenshots in this sec-
tion are taken from the AGG editors for rules and interaction schemes. Moreover, AGG supports
verification of model transformations w.r.t. termination and confluence (functional behaviour).

Related Work
A related model transformation approach based on graph transformation are triple graph gram-
mars (TGGs) [Sch94] which transform pairs of related models simultaneously while maintaining
their consistency. TGGs generate languages of triple graphs, consisting of a source graph GS and
a target graph GT , together with a correspondence graph GC “between” them. A triple graph is
typed by a meta-model triple which contains the source and target meta-models, and declares
the types of mappings between the elements of both languages. A triple rule tr consists of triple
graphs L = (SL←CL→ T L) and R = (SR←CR→ T R), and an injective triple graph morphism
tr = (s,c, t) : L→ R, representing a non-deleting rule which adds target elements. Further graph
transformation tools tuned for domain-specific model transformations are VIATRA2 [BNS+05]
and the Graph Rewriting and Transformation Language (GReAT) [SAL+03]. A tool that also
supports amalgamated graph transformation is AToM3 [LVA04] where the technique is used for
model simulation [LETE04].

Unsolved Problems
An open problem is the semantical correctness of model transformations. In order to be seman-
tically correct, a model transformation should lead to target models which behave equivalently
w.r.t. the corresponding source models. This is an important property of e.g. code generators
for behavioural models. In the case that a model is more abstract than the code, semantical
properties are defined explicitly, and it has to be shown that these properties are fulfilled by the
respective pairs of source and target models.

Proc. GraMoT 2010 10 / 21

ECEASST

5 Case Study 3: Metabolic Pathway Analysis

Problem
Metabolic pathway analysis is one of the tools in biology and medicine in order to understand
chemical reaction cycles in living cells. The problem is that often, reactions are analysed at the
level of structural formulae only, thus summarising the number of atoms of certain types in a
compound without keeping track of their identity.

Aim of the Model
This case study [EHL06] aims at understanding chemical reactions at the level of individual
atoms or component molecules. In particular, we are interested in the analysis of causal depen-
dencies between biochemical reactions. Given a metabolic pathway (a sequence of reactions)
we would like to be able to trace the history of particular atoms or molecules. This is relevant,
for example, when trying to anticipate the outcome of experiments using radioactive isotopes
of such atoms. Such questions have been crucial to the detailed understanding of the nature of
reactions like the citric acid cycle.

Techniques used to solve the problem / realize the aim
Biological systems and chemical reactions are characterized by their inherent concurrency, al-
lowing reactions to take place simultaneously as long as they involve different resources and to
keep track of causal dependencies and conflicts between them. Graph transformation systems
provide concurrency concepts which are suitable to be applied in this area. For modeling the
metabolic pathway, we propose a new hypergraph model for chemical compounds which refines
the classical representation in terms of structural formulae in two different ways.

• Our representation keeps track of the identity of atoms or molecular components by means
of the identities of hyperedges. In contrast, when writing down chemical reactions with
structural formulae, the identities of the reacting atoms are not explicitly represented in the
notation. In situations where several atoms of the same element are involved, this lack of
information leads to ambiguity as to where a new atom is placed in the resulting molecule.
Our graph transformation-based model allows to track atom identities by graph homomor-
phisms between the graphs representing the compounds before and after the reaction.

• Modelling atoms as hyperedges, each connected to an ordered sequence of nodes, the rela-
tive spatial orientation of different molecular components is recorded through the ordering
of the nodes connected to a hyperedge.

Using this model we are able to trace the dependencies between different steps in the reaction
based on individual atoms and their spatial arrangement.

Formally, given a ranked set of labels A = (An)n∈N, an A -labelled hypergraph (V,E,s, l)
consists of a set V of vertices, a set E of edges, a function s : E → V ∗ assigning each edge a
sequence of vertices in V , and an edge-labelling function l : E→A such that, if length(s(e)) = n
then l(e) = A for A ∈An, i.e., the rank of the labels determines the number of nodes the edge is
attached to. A morphism of hypergraphs is a pair of functions φV : V1→V2 and φE : E1→ E2 that

11 / 21 Volume 30 (2010)

Graph Modelling and Transformation: Theory meets Practice

preserve labels and assignments of nodes, that is, l2 ◦φE = l1 and φ ∗V ◦ s1 = s2 ◦φE . A morphism
thus has to respect the atom represented by an edge and also its chemical valence (number of
bonds). Labelled hypergraphs can be considered as hierarchical graph structures. As shown by
Löwe [Löw93], pushouts can be computed elementwise for all hierarchical graph structures and
therefore the standard graph transformation approaches can be applied.

Overview of the Model
We consider as an example the citric acid cycle, a classical, but non-trivial reaction for energy
utilisation in living cells [ZPV95]. Our approach supports a molecular analysis of the cycle, trac-
ing the flow of individual carbon atoms based on a simulation. This cycle is a series of chemical
reactions of central importance in all living cells that utilise oxygen as part of cellular respiration.
Starting with acetyl-CoA, one of the resulting products of the chemical conversion of carbohy-
drates, fats and proteins, the citric acid cycle produces fast usable energy in the form of NADH,
GTP, and FADH2 which are precursors of the well known adenosine-tri-phosphate (ATP). The
diagram to the right shows reaction 2 of the citric
acid cycle. The input agent of reaction 2, citrate,
has two CH2COO− groups, one on the top and
one on the bottom. To fit into the enzyme aconi-
tase catalysing reaction 2, only the CH2COO−

group marked with 3 is able to fit into the enzyme
due to 3-dimensional spatial relations.

COO

COO

CH2

Isocitrate

CH

COOCH
11

22

33

44

COO

COO

CH2

Citrate

CH2

COOCHO
11

22

33

44

HO

In our hypergraph model, we interpret the hyperedges as atoms and the nodes as bonds
between them. The string s(e) of vertices incident to an edge e ∈ E gives the specific or-
der of the bonds to other atoms, coding also their spatial configuration, as we will see. As
ranked set of labels, we use A1 = {H, CH3,OH, . . .}, A2 = {O, CH2,S, . . .}, A3 = {CH, N, . . .},
A4 = {C, S, . . .}, . . . to denote elements of the periodic system or entire chemical groups. The
rank of a label models the valence of an atom. For instance, a carbon atom with l(e) = C always
has s(e) = v1v2v3v4, a word of length 4. Hence, we define C as a label of rank 4. For elements
with more than one possible valence (e.g. sulphur), the corresponding label can belong to several
of the sets An. Given an organic molecule, we
represent the 3-dimensional configuration of the
ligands of a C atom as a hypergraph by relating
it to D-glyceraldehyde, one of the simplest chiral
organic compounds. We impose a numbering on
the ligands of a carbon atom such that a substitu-
tion of ligand 1 by OH, ligand 2 by CHO, ligand
3 by CH2OH, and ligand 4 by H would result in
D-glyceraldehyde. This convention defines the spatial arrangement of the ligands unambigu-
ously. Substitution of ligands may change the angles between the ligands, and they often differ
from the regular tetrahedral angle of 109◦28′, but the so called angle strain [Mos96] does not
affect the uniqueness of the molecule represented by our notation.

Proc. GraMoT 2010 12 / 21

ECEASST

As example, Figure 10 shows the representation of the prochiral molecule citrate as a hyper-
graph, where

V = {v1,v2, . . . ,v6},E = {e1,e2, . . . ,e7},

s(e1) = v1,s(e2) = v1v2,s(e3) = v3,s(e4) = v2v3v4v5,s(e5) = v4,s(e6) = v5v6,s(e7) = v6

l(e1) = COO−, l(e2) = CH2, l(e3) = OH, l(e4) = C, l(e5) = COO−, l(e6) = CH2, l(e7) = COO−

Figure 10: Structural formula (left) and hypergraph representation (right) of citrate.

Tool Support
We provide an encoding of the model in terms of attributed bipartite graphs that can be imple-
mented in the AGG system for simulation and analysis [Tae04, AGG09].

Figure 11 shows reaction 2 of the citric acid cycle modelled in AGG. The enzyme aconitase
accepts only the source agent citrate with the indicated o edge attribute order of the 1:C atom in
the left-hand side of Figure 11. In this reaction the OH group of the 1:C atom is exchanged with
the OH group of the 3:C atom. This leads to the new agent isocitrate.

Figure 11: Reaction 2 of the citric acid cycle in AGG.

13 / 21 Volume 30 (2010)

Graph Modelling and Transformation: Theory meets Practice

Related Work
The use of graph transformation for biological systems has a long history (see [RV05]), but
early applications were mostly devoted to the field of morphogenesis. Our approach focuses on
biochemistry, a field which gained much importance in the last decades because of the growth of
biotechnology. Providing automated assistance for analyzing biochemical reactions can help in
understanding the principles which govern the processes in living cells.

Unsolved Problems
The citric acid cycle is a very common cycle for energy utilization in living cells. However,
biological systems are very complex and hard to understand, so most of the biological path-
ways are still not completely understood. For analyzing more complex pathways, big computer
clusters are needed. Modelling with graph transformations might produce an overhead of data
structures for the internal representation and computation with graphs. In general, the graph
transformation problem is NP-complete. Putting several reactions together, the system might be
unsolvable in a usable time frame. Recently, more focus has been given to the comparison of
graph transformation tools with respect to performance (memory usage and efficiency). Starting
with Varró’s benchmark study [VSV05], a transformation tool contest1 is held regularly nowa-
days where scalability and performance of graph-based transformation tools are important issues
(see also [RV10]).

6 Case Study 4: Self-Healing Automated Traffic-Light

Problem
Self-healing (SH-)systems are characterized by an automatic discovery of system failures, and
techniques how to recover from these situations. The problem is that failures can occur at any
time during system operation. It is very important for such systems that recovery actions can
always be applied after a failure has occurred and that they always lead to a system that works
as expected.

Aim of the Model
The aim of our model is to verify that SH-systems have certain self-healing properties. For an
SH-system, we distinguish reachable, failure and normal states (depending on which sets of
constraints they fulfill), where reachable states split into normal and failure states. In particular,
we call an SH-system is self-healing if each system state considered as failure state can be
repaired, i.e. the system state after the repair action is considered as normal state. Furthermore,
we want to ensure certain liveness properties of SH-systems. We call an SH-system deadlock-
free if no reachable system state is a deadlock. A stronger liveness property is strong cyclicity,
meaning that each pair of reachable states can be reached from each other.

Technique to solve the problem / realize the aim
In this case study, we model SH-systems by typed attributed graph transformation systems en-

1 Case studies and solutions of the last three years’ contests are available at http://www.planet-research20.org/ttc2010/

Proc. GraMoT 2010 14 / 21

http://www.planet-research20.org/ttc2010/

ECEASST

riched with graph constraints expressing their operational properties. We make use of theoretical
results, i.e. sufficient static conditions for self-healing properties, deadlock-freeness and liveness
of SH-systems.

Overview of the Model
The complete case study is given in [EER+10]. We model an automated Traffic Light System
(TLS). The traffic light technology is based upon electromagnetic sensors buried some centime-
ters underneath the asphalt of car lanes. The sensors register traffic data and send them to other
system components. The TLS is connected to cameras which record videos of the violations and
automatically send them to the center of operations. In addition to the normal behavior, we may
have failures caused by a loss of signals between a traffic light or a camera and the supervisor
component. For each of the failures there are corresponding repair actions which can be applied
after monitoring the failures during run-time.

We define the Traffic Light SH-system TLS by a type graph T G, an initial state, a set of normal
rules Rnorm (modelling the ideal behaviour), a set of failure rules R f ail modelling failures, a set
of repair rules Rrepair, which are the inverse repair rules, and sets of constraints that characterize
properties of states being either consistent or failure states.

In our example, we model a single traffic crossing with two traffic lights in directions north-
south and east-west. In the initial state (see Figure 12), both traffic lights are red and there
are no cars at the crossing. The TL nodes represent the traffic lights, connected to a crossing
supervisor component, and to cameras which are currently not in use (onCamera=false). The
infraction attribute becomes true in the case that a car runs a red light.

Figure 12: TLS initial state Ginit

Normal rules Rnorm model the behaviour of cars arriving at the crossing and leaving it, as well
as cars running a red light and being filmed by a camera. Failure rules Renv (applied from the
environment) model the loss of a signal of either a traffic light (in this case the signal attribute of
a TLSup edge changes to false), or of a camera (here, the signal attribute of a CamSup becomes
false). Repair rules Rrpr model the recovery from the respective signal loss. In [EER+10], we
formalize operational properties, including self-healing and deadlock-freeness and provide static
conditions for them based on rule set analysis.

An SH-System SHS is called self-healing, if each failure state can be repaired, i.e. ∀Ginit⇒∗ G
via (Rnorm ∪Renv) with G ∈ Fail(SHS) ∃ G⇒+ G′ via Rrpr with G′ ∈ Norm(SHS). SHS is
called deadlock-free, if no reachable state is a deadlock, i.e. ∀G0 ∈ Reach(SHS) ∃ G0

p
=⇒ G1

via p ∈ Rnorm ∪Renv ∪Rrpr. In particular, SHS is normally deadlock-free, if no state reachable
via normal rules is a (normal) deadlock, i.e. ∀Ginit ⇒∗ G0 via Rnorm ∃ G0

p
=⇒ G1 via p ∈ Rnorm.

15 / 21 Volume 30 (2010)

Graph Modelling and Transformation: Theory meets Practice

SHS is strongly cyclic, if each pair of reachable states can be reached from each other, i.e.
∀G0,G1 ∈ Reach(SHS) ∃ G0⇒∗ G1 via Rnorm∪Renv∪Rrpr.

For the analysis of SH-systems, we have the following results concerning self-healing proper-
ties and deadlock-freeness: An SH-System is self-healing, if it has the following three properties:
1) the initial state is normal and all normal rules preserve normal states, 2) each pair (p,q)∈ Renv

× Rnorm is sequentially independent, and 3) the effect of each environment rule can be repaired
up to normal transformations. Furthermore, an SH-System is deadlock-free, if it is normally
deadlock-free, and each pair (p,q) ∈ (Renv∪Rrpr) × Rnorm is sequentially and parallel indepen-
dent. For the proof of these analysis results and further self-healing and liveness properties see
[EER+10].

Tool Support
For the automatic analysis of the static conditions ensuring the self-healing properties we use
AGG, in particular to check on sequential and parallel independence of pairs of rules. AGG
computes dependencies and conflicts of rules and visualizes their reasons. All properties are
verified for our traffic light system.

Related Work
Different related approaches exist, either based on graph transformation [6,14,15,16,17,18,19]
or on temporal logics and model checking [20,21,22]. In many cases, though, the state space of
behavioral system models becomes too large or even infinite, and in this case model checking
techniques have their limitations.

Unsolved Problems
A helpful extension of the formal approach would be the analysis and verification of consistency
properties using the theory of graph constraints and nested application conditions in [EHL10b].
Moreover, we will investigate how far the techniques for SH-systems can be used and extended
for more general self-adaptive systems.

7 Evaluation and Conclusion

The table in Figure 13 summarizes the problem domains and modelling features and results for
our four case studies. In the last line, we state concepts which, from our point of view, are
missing not only for the particular case study presented in this paper but rather in general for the
respective application domain.

In the area of visual language modelling, e.g. for Case Study (1), the concept of typed at-
tributed graph transformation, which is close to meta-modelling, proved to be suitable for defin-
ing syntax and semantics of domain-specific languages. But to be useful in the context of larger
systems, these principles should be integrated in tools that are used in practical applications. In
our case study, a suitable user interface should hide the formal representation of abstract graph
and rule syntax, and the underlying model needs to be linked to the clinic information system.
Here, advanced tool support integrating graph transformation tools to existing tools used in prac-
tice is one aim for graph transformation technology transfer.

Proc. GraMoT 2010 16 / 21

ECEASST

 (1) Medical
Information

System

(2) Business
Process Model
Transformation

(3) Metabolic
Pathway Analysis

(4) Self-Healing
Automated
Traffic Light

Problem Adequate
visualization of

clinical processes

Source-to-Target
model

transformation

Molecular ana-
lysis of chemical

reactions

System modelling
with failures and

recovery
GraTra
Model

Visual language

modelling by typed
attributed GraTra

GraTra based on
source-target type
graph inclusion

TGS → TGI ← TGT

Hypergraph

transformations
with simulation

GraTra with
different rule sets

Rnormal, Rfailure,
Rrepair and
constraints

GraTra
Results

Graph constraint
satisfaction after
transformation

Parallel
independence of

amalgamated
GraTra

Simulation,
embedding and

extension

Static analysis of
self-healing
properties

Missing
Concepts

Advanced tool
support for visual

user interfaces

Semantical
correctness of
model trafos

Scalability of
graph

representation

Critical pair
analysis for

general conditions

Figure 13: Comparison of Case Studies

Model transformations from domain-specific models to more machine-centric formats like
Case Study (2) have become a necessary step towards unified and standards-based development
environments. Here, important results have been achieved in recent years concerning the syntac-
tical correctness of model transformations and their functional behaviour, i.e. termination and
uniqueness. Also, for triple graph grammars, properties concerning the consistency of source
and target models w.r.t. triple rules can be shown formally. An open problem for model transfor-
mations remains the semantical correctness, i.e. how can be shown in general that the behaviour
of the source and the target model are equivalent (see also [Erm09]).

Often, a validation by simulation is helpful to provide new insights on behavioural system
properties. Case Study (3) showed that a simulation by graph transformation, supported by
tools, can help to find a suitable abstraction level and visualize model features (like molecule
identities) which are not easily seen using standard techniques and tools. Here, the problem
arises that in contrast to standard tools, a graph representation might lead to a larger memory
consumption than e.g. the standard format for chemical formulae. Morover, scalability, i.e.
effieciency of the rewriting in large models is a general problem. These problems have been
tackled already by comparing and improving the performance of existing graph transformation
engines and by experimenting with different data formats for graphs and rules and by optimizing
the pattern matching process which is the bottleneck of graph transformation. Here, more future
work will be necessary for further optimizations.

Many verification results for graph transformation systems are based on critical pair analysis.
This kernel technique is also used in Case Study (4), where we analyze conflicts and depen-
dencies of rules to show self-healing properties. Recently, general (nested) conditions on graphs
have been defined by Habel and Pennemann [HP09]. These conditions allow for a very flexi-
ble modelling of graph rules. In this context, it remains to provide a suitable theory for critical

17 / 21 Volume 30 (2010)

Graph Modelling and Transformation: Theory meets Practice

pair analysis of rules with nested application conditions while a formal background is presented
already in [EHL+10a]. .

Some of the “missing concepts” are topics of ongoing research projects2. We are confident
that the visibility of graph transformation technology in practice will be further enhanced and
that meetings between theory and practice, aided by good tool support, will be the rule rather
than the exception.

Bibliography

[AGG09] TFS-Group, TU Berlin. AGG. 2009. http://tfs.cs.tu-berlin.de/agg.

[AKL03] A. Agrawal, G. Karsai, A. Ledeczi. An End-to-End Domain-Driven Software De-
velopment Framework. In Proc. Conf. on Object-Oriented Programming, Systems,
Languages and Applications. ACM SIGPLAN, USA, 2003.

[BEE+10] E. Biermann, H. Ehrig, C. Ermel, U. Golas, G. Taentzer. Parallel Independence of
Amalgamated Graph Transformations Applied to Model Transformation. In Graph
Transformations and Model-Driven Engineering. Essays Dedicated to Manfred
Nagl. LNCS 5765. Springer, 2010. To appear.
http://tfs.cs.tu-berlin.de/publikationen/Papers10/BEE+10.pdf

[BEEH09] E. Biermann, K. Ehrig, C. Ermel, J. Hurrelmann. Generation of Simulation Views
for Domain Specific Modeling Languages based on the Eclipse Modeling Frame-
work. In Taentzer and Heimdahl (eds.), Automated Software Engineering (ASE’09).
Pp. 625 – 629. IEEE Press, 2009.

[BEL+10] E. Biermann, C. Ermel, L. Lambers, U. Prange, G. Taentzer. Introduction to AGG
and EMF Tiger by Modeling a Conference Scheduling System. Int. Journal on Soft-
ware Tools for Technology Transfer 12(3-4):245–261, Juli 2010.
doi:10.1007/s10009-010-0154-x
http://www.springerlink.com/content/p4n1g45627852743/

[BET08] E. Biermann, C. Ermel, G. Taentzer. Precise Semantics of EMF Model Transfor-
mations by Graph Transformation. In Czarnecki (ed.), Proc. Int. Conf. on Model
Driven Engineering Languages and Systems (MoDELS’08). LNCS 5301, pp. 53–
67. Springer, 2008. http://tfs.cs.tu-berlin.de/publikationen/Papers08/BET08.pdf

[Béz05] J. Bézivin. On the unification power of models. Software and System Modeling
4(2):171–188, 2005.

[BFH87] P. Böhm, H.-R. Fonio, A. Habel. Amalgamation of graph transformations: a syn-
chronization mechanism. Computer and System Sciences (JCSS) 34:377–408, 1987.

2 See e.g. our project Behaviour Simulation and Equivalence of Systems Modelled by Graph Transformation (sup-
ported by the German Research Council) at http://www.tfs.tu-berlin.de/menue/forschung/#BehaviourGT.

Proc. GraMoT 2010 18 / 21

http://tfs.cs.tu-berlin.de/agg
http://tfs.cs.tu-berlin.de/publikationen/Papers10/BEE+10.pdf
http://dx.doi.org/10.1007/s10009-010-0154-x
http://www.springerlink.com/content/p4n1g45627852743/
http://tfs.cs.tu-berlin.de/publikationen/Papers08/BET08.pdf
http://www.tfs.tu-berlin.de/menue/forschung/#BehaviourGT

ECEASST

[BNS+05] A. Balogh, A. Németh, A. Schmidt, I. Rath, D. Vágó, D. Varró, A. Pataricza. The
VIATRA2 Model Transformation Framework. In Proc. European Conference on
Model Driven Architecture (ECMDA’05). 2005.

[BTMS99] R. Bardohl, G. Taentzer, M. Minas, A. Schürr. Application of Graph Transforma-
tion to Visual Languages. In Ehrig et al. (eds.), Handbook of Graph Grammars
and Computing by Graph Transformation, Volume 2: Applications, Languages and
Tools. World Scientific, 1999.

[EEKR99] H. Ehrig, G. Engels, H.-J. Kreowski, G. Rozenberg (eds.). Handbook of Graph
Grammars and Computing by Graph Transformation, Volume 2: Applications, Lan-
guages and Tools. World Scientific, 1999.

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer. Fundamentals of Algebraic Graph
Transformation. EATCS Monographs in Theor. Comp. Science. Springer, 2006.

[EER+10] H. Ehrig, C. Ermel, O. Runge, A. Bucchiarone, P. Pelliccione. Formal Analysis and
Verification of Self-Healing Systems. In Proc. Int. Conf. on Fundamental Aspects
of Software Engineering (FASE’10). LNCS 6013, pp. 139–153. Springer, 2010.
http://www.springerlink.com/content/hv51032524v38321/

[EHL06] K. Ehrig, R. Heckel, G. Lajios. Molecular Analysis of Metabolic Pathway with
Graph Transformation. In Proc. Int. Conf. on Graph Transformation (ICGT’06).
LNCS 4178, pp. 107–121. Springer, 2006.

[EHL+10a] H. Ehrig, A. Habel, L. Lambers, F. Orejas, U. Golas. Local Confluence for Rules
with Nested Application Conditions. In Proc. Int. Conf. on Graph Transformation
(ICGT’10). 2010. To appear.
http://tfs.cs.tu-berlin.de/publikationen/Papers10/EHL+10.pdf

[EHL10b] H. Ehrig, A. Habel, L. Lambers. Parallelism and Concurrency Theorems for Rules
with Nested Application Conditions. Electr. Comm. of the EASST 26, 2010.
http://journal.ub.tu-berlin.de/index.php/eceasst/issue/view/36

[EKMR99] H. Ehrig, H.-J. Kreowski, U. Montanari, G. Rozenberg (eds.). Handbook of Graph
Grammars and Computing by Graph Transformation. Vol 3: Concurrency, Paral-
lelism and Distribution. World Scientific, 1999.

[EMF09] Eclipse Consortium. Eclipse Modeling Framework Technology. 2009.
http://www.eclipse.org/modeling/emft.

[Eng00] G. Engels. Graph Changes are Everywhere: The Role of Graph Transformations in
Software Engineering. In Proc. Joint APPLIGRAPH and GETGRATS Workshop on
Graph Transformation Systems. pp. 12-13. TU Berlin, 2000.

[Erm09] C. Ermel. Visual Modelling and Analysis of Model Transformations based on
Graph Transformation. Bulletin of the EATCS 99:135 – 152, 2009.

19 / 21 Volume 30 (2010)

http://www.springerlink.com/content/hv51032524v38321/
http://tfs.cs.tu-berlin.de/publikationen/Papers10/EHL+10.pdf
http://journal.ub.tu-berlin.de/index.php/eceasst/issue/view/36
http://www.eclipse.org/modeling/emft

Graph Modelling and Transformation: Theory meets Practice

[GEH10] U. Golas, H. Ehrig, A. Habel. Multi-Amalgamation in Adhesive Categories. In
Proc. Int. Conf. on Graph Transformation (ICGT’10). 2010. To appear.
http://tfs.cs.tu-berlin.de/publikationen/Papers10/GEH10.pdf

[GMF07] Eclipse Consortium. Eclipse Graphical Modeling Framework (GMF). 2007.
http://www.eclipse.org/gmf.

[HP09] A. Habel, K.-H. Pennemann. Correctness of high-level transformation systems rela-
tive to nested conditions. Mathematical Structures in Comp. Science 19:1–52, 2009.

[IBM03] IBM, BEA Systems, Microsoft, SAP AG, Siebel Systems. Business Process Exe-
cution Language for Web Services version 1.1. May 2003.
http://www.ibm.com/developerworks/library/ws-bpel/.

[LETE04] J. de Lara, C. Ermel, G. Taentzer, K. Ehrig. Parallel Graph Transformation for
Model Simulation applied to Timed Transition Petri Nets. ENTCS 109:17–29, 2004.
http://tfs.cs.tu-berlin.de/publikationen/Papers04/LETE04.pdf

[Löw93] M. Löwe. Algebraic Approach to Single-Pushout Graph Transformation. TCS
109:181–224, 1993.

[LVA04] J. de Lara, H. Vangheluwe, M. Alfonseca. Meta-Modelling and Graph Grammars
for Multi-Paradigm Modelling in AToM3. Software and System Modeling: Special
Section on Graph Transformations and Visual Modeling Techniques 3(3):194–209,
2004.

[Min07] M. Minas. DiaGen / DiaMeta – The Diagram Editor Generator. 2007.
http://www.unibw.de/inf2/DiaGen/.

[Mos96] G. Moss (ed.). IUPAC Basic Terminology of Stereochemistry. Volume 68(12). Pure
& Applied Chemistry, 1996.

[MVVK05] T. Mens, P. Van Gorp, D. Varrò, G. Karsai. Applying a Model Transformation Tax-
onomy to Graph Transformation Technology . In Proc. Int. Workshop on Graph and
Model Transformation (GraMoT’05). ENTCS 152, pp. 143–159. Elsevier Science,
2005.

[OMG07] Object Management Group. Unified Modeling Language: Superstructure – Version
2.1.1. 2007. http://www.omg.org/technology/documents/formal/uml.htm.

[Ope09] OpenEmbeDD: Model Driven Engineering open-source platform for Real-Time &
Embedded systems. 2009. http://openembedd.org.

[Roz97] G. Rozenberg. Handbook of Graph Grammars and Computing by Graph Transfor-
mations, Volume 1: Foundations. World Scientific, 1997.

[RV05] F. Rosselló, G. Valiente. Graph Transformation in Molecular Biology. In Formal
Methods in Software and System Modeling, LNCS 3393, pp. 116–133. Springer,
2005.

Proc. GraMoT 2010 20 / 21

http://tfs.cs.tu-berlin.de/publikationen/Papers10/GEH10.pdf
http://www.eclipse.org/gmf
http://www.ibm.com/developerworks/library/ws-bpel/
http://tfs.cs.tu-berlin.de/publikationen/Papers04/LETE04.pdf
http://www.unibw.de/inf2/DiaGen/
http://www.omg.org/technology/documents/formal/uml.htm
http://openembedd.org

ECEASST

[RV10] A. Rensink, P. Van Gorp (eds.). International Journal on Software Tools for Tech-
nology Transfer (STTT), Special Section on Graph Transformation Tool Contest
2008. Volume 12(3-4). Springer, 2010.
http://www.springerlink.com/content/p4n1g45627852743/

[SAL+03] J. Sprinkle, A. Agrawal, T. Levendovszky, F. Shi, G. Karsai. Domain model transla-
tion using graph transformations. In Int. Conf. on Engineering of Computer-Based
Systems. Pp. 159–168. 2003.

[Sch94] A. Schürr. Specification of Graph Translators with Triple Graph Grammars. In
WG94 20th Int. Workshop on Graph-Theoretic Concepts in Computer Science.
LNCS 903, pp. 151–163. Springer, 1994.

[Tae04] G. Taentzer. AGG: A Graph Transformation Environment for Modeling and Vali-
dation of Software. In Application of Graph Transformations with Industrial Rele-
vance (AGTIVE’03). LNCS 3062, pp. 446 – 456. Springer, 2004.

[Tae06] G. Taentzer. Characterizing Tools for Visual Modeling Techniques. In Ehrig et al.
(eds.), Lecture Notes of SegraVis Advanced School on Visual Modelling Techniques.
Univ. of Leicester, 2006.
http://tfs.cs.tu-berlin.de/publikationen/Papers06/Tae06a.pdf

[TEG+05] G. Taentzer, K. Ehrig, E. Guerra, J. de Lara, L. Lengyel, T. Levendovsky, U. Prange,
D. Varro, S. Varro-Gyapay. Model Transformation by Graph Transformation: A
Comparative Study. In Proc. Workshop Model Transformation in Practice. 2005.
http://tfs.cs.tu-berlin.de/publikationen/Papers05/TEG+05.pdf

[TR03] J. Tolvanen, M. Rossi. MetaEdit+: Defining and Using Domain-Specific Modeling
Languages and Code Generators. In Proc. Conf. on Object-oriented programming,
systems, languages, and applications (OOPSLA ’03). Pp. 92–93. ACM Press, 2003.

[VSV05] G. Varró, A. Schürr, D. Varró. Benchmarking for Graph Transformation. In Proc.
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC
05). Pp. 79–88. IEEE Press, 2005.

[Whi04] S. White. Business Process Modeling Notation (BPMN) Version 1.0. BPMI.org,
2004.

[ZPV95] G. Zubay, W. Parson, D. Vance. Principles of Biochemisty. Volume 2. McGraw-Hill
College, 1995.

21 / 21 Volume 30 (2010)

http://www.springerlink.com/content/p4n1g45627852743/
http://tfs.cs.tu-berlin.de/publikationen/Papers06/Tae06a.pdf
http://tfs.cs.tu-berlin.de/publikationen/Papers05/TEG+05.pdf

	Introduction
	Algebraic Graph Transformation: Background
	Case Study 1: Medical Information System
	Case Study 2: Business Process Model Transformation
	Case Study 3: Metabolic Pathway Analysis
	Case Study 4: Self-Healing Automated Traffic-Light
	Evaluation and Conclusion

