
Electronic Communications of the EASST
Volume 30 (2010)

International Colloquium on Graph and Model
Transformation On the occasion of the 65th birthday of

Hartmut Ehrig
(GraMoT 2010)

Modeling a Service and Session Calculus
with Hierarchical Graph Transformation

Roberto Bruni, Andrea Corradini, and Ugo Montanari

17 pages

Guest Editors: Claudia Ermel, Hartmut Ehrig, Fernando Orejas, Gabriele Taentzer
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Modeling a Service and Session Calculus
with Hierarchical Graph Transformation∗

Roberto Bruni, Andrea Corradini, and Ugo Montanari

[bruni,andrea,ugo]@di.unipi.it
Dipartimento di Informatica, Università di Pisa, Italy

Abstract: Graph transformation techniques have been applied successfully to the
modelling of process calculi, for example for equipping them with a truly concurrent
semantics. Recently, there has been an increasing interest towards hierarchical
structures both at the level of graph-based models, in order to represent explicitly
the interplay between linking and containment (like in Milner’s bigraphs), and at
the level of process calculi, in order to deal with several logical notions of scoping
(ambients, sessions and transactions, among others). In this paper we show how
to encode a sophisticated calculus of services and nested sessions by exploiting a
suitable flavour of hierarchical graphs. For the encoding of the processes of this
calculus we benefit from a recently proposed algebra of graphs with nesting.

Keywords: Hierarchical graphs, service oriented architecture, process calculi, CaSPiS

1 Introduction

The use of graphs or diagrams of various kinds is pervasive in Computer Science, as they are
very handy for describing in a two-dimensional space the logical or topological structure of
systems, models, states, behaviors, computations, metamodels, and several other entities of
interest; well-known examples are the graphical presentations of data structures (like lists and
trees), of entity-relationship diagrams, of various kinds of automata and labeled transition systems,
of static and behavioral UML diagrams (like class, message sequence and state diagrams), of
computational formalisms like Petri nets, and so on.

The advantage of drawing graphs or diagrams, rather than using their underlying set-theoretical
definition or some term-like linear syntax, lies in the fact that graphs emphasize relevant topologi-
cal features of the systems or models they describe, like adjacency and connectivity of components,
sharing of data and structures, causal dependencies, hierarchical structuring, among others, mak-
ing such features easily understandable and detectable also to non-specialists. In several cases
graphs provide a representation of models or systems at the “right” level of abstraction: for
example, as drawings are always understood “up to isomorphism”, the order in which nodes and
arcs are drawn is typically irrelevant (unless some tacit drawing convention is enforced) and if
the concrete identity of certain entities is irrelevant (e.g., the names of the states of a finite state
automata), it is sufficient to omit them in the drawing.

The use of graphs as a domain for the visualization of algebraically-specified systems, in general,
and process calculi, in particular, has been pursued in a vast literature of which it is not possible

∗ Research supported by the EU FP6-IST IP 16004 SENSORIA.

1 / 17 Volume 30 (2010)

mailto:[bruni,andrea,ugo]@di.unipi.it

Modeling a Service and Session Calculus with Hierarchical Graph Transformation

to give a comprehensive account here (see, e.g., [BL05] and references therein), but one striking
example is the research on “optimal” implementations for functional calculi [AG98]. Here we
restrict the attention to the analysis of the concurrent behavior of process calculi with name passing,
in the style of [MP95, Gad03, BMM06]. To this aim, there are several “graphical specification
frameworks” which provide general techniques and/or tools for the graphical description of
systems and, possibly, of their behavior, including Graph Transformation [Roz97], Bigraphical
Reactive Systems [Mil06] and Synchronized Hyperedge Replacement [FHL+06].

Recently, there has been an increasing interest towards hierarchical structures both at the
level of graph-based models, in order to represent explicitly the interplay between linking and
containment (like in Milner’s bigraphs), and at the level of process calculi, in order to deal with
several logical notions of scoping (ambients, sessions, and transactions, among others). The
goal of the work summarized in this paper is to show how to encode both the static aspects and
the dynamics of CaSPiS, a sophisticated calculus of services and nested sessions [BBDL08], by
exploiting a suitable flavor of hierarchical graphs and corresponding transformation rules.

Following a methodological approach that has been applied recently to provide a graphical
encoding of the static aspects of a variety of formalisms (including process calculi, workflow
languages, entity relationship diagrams and others, see [BGL10b, BGL10a]), we will not present
the graph encoding of CaSPiS processes directly, but we will exploit instead as an intermediate
language a recently proposed algebra of hierarchical diagrams, which allows to reduce the
representation distance between the considered formalisms. Roughly, such diagrams are typed
(hyper)graphs whose (hyper)edges can contain other sub-diagrams. This way, edges can be seen as
representing some sort of interfaces of their enclosed graphs. We call them designs, because they
have been first introduced to model recurrent design patterns in software architectures [BLMT08].

The algebra is defined by an equational signature, whose operator symbols are interpreted
as operations on graphs, and where the axioms formalize suitable properties of such operators.
Therefore the terms of the initial algebra can be interpreted as graphs, and the axioms can be
shown to be sound and complete with respect to the interpretation, in the sense that two terms
are equivalent if and only if they denote the same graph (up to isomorphism). The interesting
fact is that the interpretation of the terms of the algebra can be given over different kinds of
graphs, resulting in different layouts. As a typical example, the nested structure of designs can be
interpreted adequately in a class of truly hierarchical graphs, where subgraphs can be encapsulated
in hyperedges, or also can be rendered by over-imposing a tree of locations representing the
hierarchy to a standard, flat hypergraph.

Therefore, the advantages of the use of an intermediate algebra for the encoding are twofold:

• the algebra provides explicit operators for parallel composition, nesting of components,
names representing shared resources, local and global restriction, as well as aliasing
mechanisms: the richness of such operators makes the encoding of process algebras like
CaSPiS quite intuitive, less error-prone and easy to understand;

• the various interpretations of the terms of the algebra as different kinds of graphs can be
defined once and for all, and reused for the encoding of several other formalisms.

In the next sections we shall first account for the algebra of hierarchical graphs, sketching, only
at the informal level, how it can be interpreted over both hierarchical graphs and term graphs.

Proc. GraMoT 2010 2 / 17

ECEASST

Next we introduce the syntax and the reduction semantics of (a significant fragment of) CaSPiS,
and show how the static aspects of CaSPiS can be encoded in the algebra. As far as the dynamics
of CaSPiS processes is concerned, the work is still ongoing, but some interesting aspects will be
discussed. In particular, as the CaSPiS reduction semantics allows for reactions in (static) contexts
of arbitrary depth, the standard notion of graph transformation rule, which has a local effect only,
is not sufficient to model it. We will sketch some possible approaches to overcome this problem.

Some preliminary work on the graphical encoding of CaSPiS and its behavioral semantics has
been presented in [Ter08].

2 An algebra of hierarchical graphs

We introduce here our algebra of (typed) hierarchical graphs that we call designs. The alge-
braic presentation of designs is inspired by our previous work on Architectural Design Rewrit-
ing [BLMT08] (hence the name) and by the graph algebra of CHARM [CMR94].

Definition 1 (design) A design is a term of sort D generated by the grammar

D ::= Lx[G] G,H ::= 0 | x | l〈x〉 | G |H | (νx)G | D〈x〉

where l and L are drawn from disjoint vocabularies E and D of edge and design labels, respectively,
x is taken from a global set N of nodes, and x ∈N ∗ is a list of nodes.

As a matter of notation, in the following, we let bxc denote the set of elements of a list x and
overload | · | to denote both the length of a list and the cardinality of a set.

Terms generated by G and D are meant to represent hierarchical graphs and “edge-encapsulated”
hierarchical graphs, respectively. The syntax has the following informal meaning: 0 represents the
empty graph, x is a discrete graph containing a single node named x (node names are global), l〈x〉
is a graph formed by an l-labeled (hyper)edge attached to nodes x (the i-th tentacle to the i-th node
in x, sometimes denoted by x[i]), G |H is the graph resulting from the parallel composition of
graphs G and H (their disjoint union, but nodes with the same name in both graphs are identified),
(νx)G is the graph G after hiding the name of node x (therefore the node cannot be shared with
other graphs in case of parallel composition; borrowing nominal calculus jargon we say that the
node x is restricted), and D〈x〉 is a graph formed by attaching design D to nodes x (the i-th node
in the interface of D to the i-th node in x).

A term Lx[G] is a design labeled by L, with body graph G whose nodes x are exposed in
the interface. To clarify the exact role of the interface of a design, we can use a programming
metaphor: a design Lx[G] is like a procedure declaration where x is the list of formal parameters.
Then term Lx[G]〈y〉 represents the application of the procedure to the list of actual parameters y;
of course, in this case x and y must have the same length.

Restriction (νx)G acts as a binder for x in G and similarly Lx[G] binds bxc in G, leading to the
usual notion of free nodes fn(D) and fn(G), defined inductively as follows:

fn(Lx[G]) = fn(G)\bxc fn(0) = /0 fn(x) = {x} fn(l〈x〉) = bxc

fn(G |H) = fn(G)∪ fn(H) fn((νx)G) = fn(G)\{x} fn(D〈x〉) = fn(D)∪bxc

3 / 17 Volume 30 (2010)

Modeling a Service and Session Calculus with Hierarchical Graph Transformation

Without loss of generality, we can assume that for any design Lx[G] it holds bxc ⊆ fn(G).
The algebra includes the structural graph axioms of [CMR94] such as associativity and commu-

tativity for | with identity 0 (axioms DA1–DA3 in Definition 2) and restricted nodes (DA4–DA6).
In addition, it includes axioms to α-rename bound nodes (DA7–DA8), an axiom for making
immaterial the addition of a node to a graph where that same node is already free (DA9) and
another one ensuring that free nodes are not localized within hierarchical edges (DA10).

Definition 2 (≡D) The structural congruence ≡D over well-formed designs and graphs is the
least congruence satisfying the axioms in Fig. 1, where in axiom (DA7) the substitution is required
to be a function (to avoid node coalescing).

G |H ≡D H |G (DA1)
G | (H | I) ≡D (G |H) | I (DA2)

G | 0 ≡D G (DA3)
(νx)(νy)G ≡D (νy)(νx)G (DA4)

(νx)0 ≡D 0 (DA5)
G | (νx)H ≡D (νx)(G |H) if x 6∈ fn(G) (DA6)

Lx[G] ≡D Ly[G{y/x}] if byc∩ fn(G) = /0 (DA7)
(νx)G ≡D (νy)G{y/x} if y 6∈ fn(G) (DA8)

x |G ≡D G if x ∈ fn(G) (DA9)
Lx[z |G]〈y〉 ≡D z | Lx[G]〈y〉 if z 6∈ bxc (DA10)

Figure 1: Structural congruence axioms for designs

It is immediate to observe that structural congruence respects free nodes, i.e. G≡D H implies
fn(G) = fn(H) for any G,H. Moreover, being ≡D a congruence, it is closed w.r.t. all operators; in
particular, we have Lx[G]≡D Lx[H] whenever G≡D H.

Two different classes of models have been studied for our design algebra, as summarized in the
next two subsections: these are in straight analogy with two common visual representations of
file systems. In the icon view each folder is a window recursively containing files and folders,
like a global view of the system taken “from the top”. In the tree-like view the whole hierarchy
is presented as a tree whose nodes can be contracted and expanded and where containment is
rendered, for example, through indentation, like some sort of “side-view” of the system.

2.1 Top-view models

Several notions of hierarchical graphs have been introduced along the years in various domains,
often as a useful structuring mechanism to cope with the modelling of systems of realistic size.
One of the earliest proposals are Harel’s higraphs [Har88], used first for modelling database
structures and next as a basis for statecharts. Several other such models have been proposed
since then, for modelling database systems, object-oriented systems and hyper-media applications,
among others (see, e.g., the recap in Section 7 of [BKK05]).

In [BGL] we have proposed an original notion of hierarchical graphs with interfaces: roughly

Proc. GraMoT 2010 4 / 17

ECEASST

Figure 2: The hierarchical graphs corresponding to some terms of the graph algebra

they extend ordinary hyper-graphs with the possibility to embed (recursively) a hierarchical graph
within each edge, thus inducing a layered structure of nodes and edges. Differently from the
similar definition proposed in [DHP02], the nodes defined in one layer are also visible below in
the hierarchy (but not above). The main result of [BGL] shows that the encoding of design terms
in hierarchical graphs is surjective and that the axiomatization of the design algebra is sound and
complete w.r.t. the encoding. Moreover, in presence of the extrusion axiom, which is introduced
later (see Definition 3), the encoding can be slightly modified in order to preserve the validity of
the main results. The set-theoretical presentation of hierarchical graphs is quite heavy and out of
the scope of this paper: we refer the interested reader to [BGL] for all technical details.

The following example gives a better intuition of the algebra and of the model of hierarchical
graphs. For this purpose we use an informal, appealing visual notation.

Example 1 Let a,b ∈ E , A ∈D , u,v,w,x,y ∈N . Figure 2 includes the graphs corresponding
to the following terms: G = a〈u,w〉 | b〈w,v〉 (top-left), Au,v[(νw)G]〈x,y〉 (bottom-left), and
(νw)(Au,v[G]〈x,y〉 | Au,v[G]〈y,x〉) (right). Nodes are represented by circles and free nodes are
annotated with their name. Edges are represented by rounded boxes, annotated inside with the
edge label. Each design is represented by a rectangular box with the label in a top bar, and
encapsulating the body graph. Instead of numbering the tentacles of edges and designs, we use
different kinds of lines and arrows: in this example the first tentacle of an edge is represented by a
plain line, while the second one is denoted by a standard arrow.

To simplify the drawings, the interface nodes of a design are drawn as small black boxes on
its border, and tentacles connected to them are prolonged to the corresponding nodes which the
design is attached to.

In the rightmost graph of Fig. 2, note the difference among the tentacles connected to x and
y, and those pointing to the restricted node in the middle. The formers cross the border of the
designs, reaching x or y through the exposed interface nodes, while the latters access the restricted
node directly, as it is available globally.

The hierarchical graphs in Fig. 2 show a global view as taken from the top. Another possibility is
to take a side-view, where containment is represented by dependencies between items in different
layers. In many situations, the side-view can be more convenient in order to reuse classical graph
transformation techniques, because it relies on ordinary graphs (nesting is implicit).

5 / 17 Volume 30 (2010)

Modeling a Service and Session Calculus with Hierarchical Graph Transformation

Figure 3: Hierarchical structures as gs-graphs

2.2 Side-view models

In [BCG+] we have followed the tree-like analogy to define a second interpretation of the design
algebra, over a class of graphs called gs-graphs [FM00]. Roughly, gs-graphs are an extension
of term-graphs [BEG+87] tailored to many-sorted hyper-signatures. In fact, it is known that
the term-graphs over a standard one-sorted signature Σ can be generated freely from Σ itself by
closing it with respect to the axioms of gs-monoidal theories (see [CG99]). The same construction
works in the many-sorted case as well, and even if the operators in Σ can deliver an arbitrary, finite
number of results, instead of exactly one: in this case the result of the construction is the set of all
gs-graphs over Σ.

For the interpretation of the design algebra, we therefore fix a (many-sorted, hyper-) signature
ΣD with one sort ◦ for nodes and an additional one, denoted •, to represent locations. Assuming
that the labels in E ∪D have fixed ranks (see the next subsection), ΣD includes an operator
l : •◦k→ ε for each edge label l ∈ E of rank k, where ε denotes the empty list of sorts, and an
operator L : •◦k→•◦k for each design label L ∈D . Intuitively, all labels have as arguments one
location (where the edge/design is placed) and k nodes (which the edge/design is connected to);
furthermore design labels offer as results a new location (the interior of the design) and k nodes
(the inner formal parameters), while edge labels do not return anything. Finally, ΣD contains one
operator nu : •→ ◦ used to encode the (localized) restriction.

Then, the results in [BCG+] define a sound and complete encoding of design terms in gs-
graphs over ΣD.1 Again, we skip all technical details and we just sketch in Fig. 3 the gs-
graphs corresponding to the hierarchical graphs in Fig. 2: G = a〈u,w〉 | b〈w,v〉 on the left,

1 Actually the construction in [BCG+] is carried out for a slightly different algebra of designs/graphs, but it is there
discussed how to extend the results to the algebra considered here.

Proc. GraMoT 2010 6 / 17

ECEASST

Au,v[(νw)G]〈x,y〉 in the middle, and (νw)(Au,v[G]〈x,y〉 |Au,v[G]〈y,x〉) on the right. Each drawing
is decorated with an external dashed line enclosing the gs-graph and emphasizing its boundary, on
which the names of the available free nodes are placed; furthermore some dotted lines suggests
the correspondence between actual and formal parameters of A-labeled edges. Such decorations
are not part of the formal definition and have the only purpose of making easier the intuitive
correspondence with Fig. 2. Note that locations are structured in a tree-like fashion, while names
can be referred more liberally, across the hierarchy.

2.3 Well-typedness and extrusion

In practice, it is very frequent that one is interested in disciplining the use of edge and design
labels so to be attached only to a specific number of nodes (possibly of specific sorts) or to contain
graphs of a specific shape. To this aim it is typically the case that: 1) nodes are sorted, in which
case their labels take the form n : s for n the name and s the sort of the node; and 2) each label of
E and D has a fixed rank, which in the general case is a finite sequence of sorts. When this is the
case, we say that a design (or a graph) is well-typed if for each sub-term Lx[G] we have that the
(lists of) sorts of x and L coincide, and similarly for sub-terms D〈x〉 and l〈x〉.

In addition to the axioms of Fig. 1, another axiom that has been considered in the literature is
the so-called extrusion axiom.

Definition 3 (Extrusion axiom) The extrusion axiom is Ly[(νz)G]〈x〉 ≡ (νz)Ly[G]〈x〉, for any
L ∈D , where z 6∈ bxc∪byc.

The presence of the extrusion axiom implies that restriction of nodes is global, i.e., orthogonal
to nesting: like free nodes (see axiom DA10), also restricted nodes can cross the boundary of a
design. Instead its absence implies that restriction is located to a design.2 Concerning the side-
view encodings using gs-graphs sketched in Section 2.2, the extrusion axiom is easily captured by
replacing operator nu : •→ ◦ with nu : ε→◦, meaning that restriction does not take a location as
argument. Our encoding of CaSPiS requires the presence of the extrusion axiom, and the different
side-view encodings of restriction can be grasped by comparing the nu-labeled edges of Fig. 3
with the nu-labeled edge of Fig. 6.

3 A calculus with nested structures and communication: CaSPiS

This section recalls the basics of CaSPiS [BBDL08], a session-centered calculus. We have chosen
this calculus since it represents a non-trivial example of the interplay between nesting and linking
in presence of nested sessions, pipelines and communication.

While referring the interested readers to [BBDL08] for an exhaustive description of CaSPiS, we
remark that we focus here on the “close-free” fragment of the calculus and we present a slightly
simplified syntax (without summation and pattern-matching). Both decisions are for the sake of a
convenient and clean presentation only, and constitute no limitation on expressiveness.

CaSPiS is based on the following key computing entities: (i) service definitions s.P and

2 A different approach is taken in [BCG+], where two distinct restriction operators are introduced.

7 / 17 Volume 30 (2010)

Modeling a Service and Session Calculus with Hierarchical Graph Transformation

invocations s.Q, whose synchronization establishes (ii) a fresh session name r shared by the
two partner session sides r .P and r .Q, where respective interaction protocols can interact in
both directions by executing (iii) intra-session (synchronous) output 〈u〉 and input (?x) prefixes.
Moreover, (iv) session sides can be nested, and (v) a children side can execute an (extra-session)
return prefix 〈u〉↑ for making u available to its parent session side. Finally, (vi) on-site computation
can be achieved using the pipeline operator P > (?x)Q, which redirects each output 〈u〉 from P
to activate a corresponding new instance Q{u/x} of Q. Notably, any such instance will run in
parallel with P > (?x)Q. Summarizing all the above, each CaSPiS process can be thought of
as running in an environment providing him different means of communication: one channel
for “standard” input (expecting values from the partner session side), one channel for “standard”
output (either directed to the partner session side or to an in-side pipeline) and one channel for
returning values one level up (according to the nesting of session sides).

Definition 4 (CaSPiS syntax) Let S a set of service names, R be a set of session names,
V ⊇S a set of value names (disjoint from R), and X ⊆ V a set of value variables. The set P
of CaSPiS processes is the set of all the terms P generated by the grammar below

P,Q,R ::= 0 | r .P | P > Q | (νw)P | P | Q | A.P
A ::= s | s | (?x) | 〈u〉 | 〈u〉↑

where s ∈S , r ∈R, u ∈ V , w ∈ (V ∪R)\X and x ∈X .

As usual, we omit trailing 0, i.e. we write A as a shorthand for A.0.
The restriction operator (νw)P binds w in P, and similarly (?x).P binds x in P, leading to

straightforward definition of free names fn(P) of a process P.
Albeit the syntax allows for more general forms of pipelines, for simplicity we only consider

pipelines of the form P > (?x)Q: these match a standard pattern that, for example, is written as
P > x > Q in the Orc programming language [KCM06]. Moreover, we assume that in any process
P at most two session sides are present for the same session name and that the binary relation ≺+

P
over session names is irreflexive, where we write r ≺P r′ whenever in P a session side r′ appears
nested within a session side r, and ≺+

P denotes the transitive closure of ≺P.
The operational semantics is defined in terms of reduction rules over processes taken up to a

suitable structural congruence, that we introduce next.

Definition 5 (≡C) The structural congruence for CaSPiS processes is the relation≡C⊆P×P ,
closed under process construction, inductively generated by the axioms in Fig. 4.

The reduction rules that we will present make use of contexts; a context C[·] is simply a process
term in which there is a single occurrence of a process variable X , called the hole of the context.
With C[P] we denote the process obtained by filling the hole of the context with the process P (i.e.
we substitute X with P). We can easily generalize such definition to n holes: instead of a single
process variable X , we will have n process variables X1, . . . ,Xn.

Definition 6 (Static and dynamic operators) The operators A.[·] and P > [·] are dynamic. The
remaining operators (r . [·], [·]> P, (νn)[·], P|[·] and [·]|P) are static.

Proc. GraMoT 2010 8 / 17

ECEASST

P | (Q | R) ≡C (P | Q) | R (CA1)
P | Q ≡C Q | P (CA2)
P | 0 ≡C P (CA3)

(νn)(νm)P ≡C (νm)(νn)P (CA4)
(νn)0 ≡C 0 (CA5)

P | (νn)Q ≡C (νn)(P | Q) if n 6∈ fn(P) (CA6)
((νn)Q)> P ≡C (νn)(Q > P) if n 6∈ fn(P) (CA7)

r . (νn)P ≡C (νn)r .P if n 6= r (CA8)
(νn)P ≡C (νm)(P{m/n}) if m 6∈ fn(P) (CA9)
(?x).P ≡C (?y).(P{y/x}) if y 6∈ fn(P) (CA10)

Figure 4: Structural congruence axioms for CaSPiS.

Intuitively the dynamic operators, like the prefixes in the π-calculus or in CCS, do not allow a
transition to take place in their argument. We can now define the contexts in which the various
kinds of action prefixes are ready to be executed.

Definition 7 (Static and “immune” contexts) A context C[·] is static if its hole does not occur in
the scope of a dynamic operator. A static context is session-immune if the hole does not appear
in the scope of a session operator r . [·]. A static context is pipeline-immune if the hole does not
appear in the scope of a pipeline operator [·]> P.

Session-immune contexts are guaranteed not to interfere with inputs and returns of the process
in their hole, while contexts that are both session- and pipeline-immune are also guaranteed not to
interfere with outputs. In the latter case the hole can only appear under restriction and parallel
composition. We are ready now to present the reduction semantics of CaSPiS.

Definition 8 (Reduction rules of CaSPiS) Given two CaSPiS processes P and Q we have P⇒Q
if and only if one of the five cases in Fig. 5 holds, for some static contexts C[·], C[·, ·], some static
session-immune contexts S0[·] and S1[·], some processes P′,P′′,R and some names r,r′,u and x.

The first rule models the invocation of a service: there is a definition of service s (s.P′) and a
request of invocation of such service (s.R) located somewhere else in the system. Then a new
session r is created with the protocols P′ and R of the server and of the client respectively. Note
that differently from [BBDL08], here services are persistent: they are not discarded once invoked
and thus they can serve other requests.

Rule (SessionSync) allows session partners to exchange messages, through a output action
〈u〉.P′′ and an input action (?x).R. Technically, the output 〈u〉 can appear in an arbitrary session-
and pipeline-immune context within the session operator, but since restrictions can be moved
outside the session operator by structural congruence, this is equivalent to require that the output
is in parallel with an arbitrary process P′, as indicated in the rule. Instead the input (?x) can be
at an arbitrary depth in the syntax tree, for example in the left-side of a pipeline, but not in a
nested session operator: for this reason we use a static session-immune context S0[·]. The next
rule (SessionSyncRet) can be used for returning a value computed by a nested session side to the

9 / 17 Volume 30 (2010)

Modeling a Service and Session Calculus with Hierarchical Graph Transformation

(1)
P ≡C C[s.P′ , s.R]
Q ≡C (νr)C[s.P′ |r .P′ , r .R]

with r fresh for P′,C[·],R
(ServiceSync)

(2)
P ≡C (νr)C[r . (P′ | 〈u〉.P′′) , r .S0[(?x).R]]
Q ≡C (νr)C[r . (P′ |P′′) , r .S0[R{u/x}]]

with r not appearing in C
(SessionSync)

(3)
P ≡C (νr′)C[r′ . (P′ |r .S0[〈u〉↑.P′′]) , r′ .S1[(?x).R]]
Q ≡C (νr′)C[r′ . (P′ |r .S0[P′′]) , r′ .S1[R{u/x}]]

with r′ not appearing in C
(SessionSyncRet)

(4)
P ≡C C[(P′ | 〈u〉.P′′)> (?x).R]
Q ≡C C[R{u/x} | ((P′ |P′′)> (?x).R)]

(PipelineSync)

(5)
P ≡C C[(P′ |r .S0[〈u〉↑.P′′])> (?x).R]
Q ≡C C[R{u/x} | ((P′ |r .S0[P′′])> (?x).R)]

(PipelineSyncRet)

Figure 5: Possible cases for P⇒ Q

session partner. One can view this rule as composed of two steps: first the value computed in
session r is passed to the enclosing session side r′, then such session side sends the value to its
partner.

The pipeline rule (PipelineSync) shows that a value computed by the left-hand side P′|〈u〉.P′′
can trigger a new instance R{u/x} of the right-hand side (?x)R. Finally the rule (PipelineSyncRet)
describes the situation where a pipe can be activated through a value returned by a nested session
side of the process on the left side of the pipeline.

Example 2 To show some applications of reduction rules, consider for example the pro-
cess K |(C > (?y).P) consisting of a fresh-key generator service K = key.(νk)〈k〉, a client
C = key.(?x).〈x〉↑ and a generic process P. Then the above process can evolve as illustrated
below:

K |(C > (?y).P)⇒ K |(νr)(r . (νk)〈k〉 | ((r . (?x).〈x〉↑)> (?y).P)) by (ServiceSync)
≡C K |(νr)(νk)(r . 〈k〉 | ((r . (?x).〈x〉↑)> (?y).P)) by CA8 and CA6
⇒ K |(νr)(νk)(r .0 | ((r . 〈k〉↑)> (?y).P)) by (SessionSync)
⇒ K |(νr)(νk)(r .0 | ((r .0)> (?y).P) | P{k/y}) by (PipelineSyncRet)

Note that, as r .0 is clearly inert and therefore also (r .0)> (?y).P is inert, then the process
(νr)(νk)(r .0 | ((r .0)> (?y).P) | P{k/y}) behaves essentially as (νk)P{k/y}.

Proc. GraMoT 2010 10 / 17

ECEASST

4 Encoding CaSPiS into the algebra of designs

In [BGL10b, BGL] we have provided a sound and complete encoding of CaSPiS processes to our
algebra of designs, exploiting the fact that reduction rules can then be directly interpreted over and
applied to graphs instead of terms. Unfortunately, this way an interleaving semantics is obtained,
not a truly concurrent one, because the whole graph is rewritten at each step (no standard notion
of “preserved” nodes/edges is available).

Here we pursue a different objective, by establishing an encoding for which ordinary graph
rewriting techniques can be used to recover the dynamics. In particular, as rewrites are forbidden
under dynamic contexts of CaSPiS, we will expand dynamic operators only by need. This means
that for each term P having a dynamic top operator, we introduce a corresponding edge label,
sorted according to the free names of P, which are needed as parameters in the rewrite rule
that will expand P to the corresponding graph after a reaction. Instead, the static contexts will
be encoded in nested designs corresponding to the session and left-pipeline operators, while
restriction operators will be encoded directly as restrictions of the algebra of designs.

In the following we assume that a standard total order on names is available, and for a set of
names X we denote by dXe the list of names in X ordered accordingly. Moreover, we assume
the existence of a canonical set of totally ordered fresh names C disjoint from V ∪R, together
with a canonical (order preserving) renaming σX : X → C for any X ⊆ V ∪R such that whenever
|X |= |Y | then σX(X) = σY (Y). We denote by can(P) the term Pσfn(P) obtained by renaming the
free names of P according to σfn(P), and we write P for one chosen standard representative of the
equivalence class [can(P)]≡C .

Names (of services, sessions, etc.) are encoded as nodes of the algebra, thus we assume that
the set of nodes is sorted accordingly, even if we do not make this formal. The set of edge
labels is { A.P }, i.e. it includes all standard representatives for processes of the form A.P. The
tentacles of A.P are sorted according to fn(A.P). The set of design labels includes SES for
session sides (exposing an anonymous session name), and one standard representative x > Q for
each static context of the form [·] > (?x)Q, exposing n = |fn(Q)\{x}| canonical fresh variables
σfn(Q)\{x}(fn(Q)\{x}).

To make the encoding easier to parse, we introduce the following abbreviation for the terms in
our algebra: if byc∩ fn(G) = /0 and H is (the discrete graph) obtained as the parallel composition
of (all and only) the node names in byc, then we write L[G]〈x〉 as a shorthand for Ly[H|G]〈x〉.

Definition 9 (CaSPiS encoding) The interpretation of CaSPiS operators over the design algebra
(with extrusion, i.e., with global restriction) is given by

J0K def= 0
JA.PK def= A.P〈dfn(A.P)e〉
Jr .PK def= SES[JPK]〈r〉

JP > (?x)QK def= x > Q[JPK]〈dfn(Q)\{x}e〉
JP | QK def= JPK | JQK

J(νw)PK def= (νw)JPK

It is worth stressing that if one is interested in analyzing a finite set of CaSPiS processes through
the encoding to the algebra of designs and the transformation of the corresponding graphs, then

11 / 17 Volume 30 (2010)

Modeling a Service and Session Calculus with Hierarchical Graph Transformation

the resulting algebra will have a finite number of edge and design labels, determined by the set of
sub-processes of those of interest. Instead, to be able to accommodate the encoding of all possible
CaSPiS processes, denumerable sets of labels are needed.

Notably, structural congruence amounts to design equivalence, i.e. equivalent processes are
mapped into isomorphic graphs.

Proposition 1 For any Q,R ∈P we have P≡C Q iff JPK≡D JQK.

4.1 Transformation rules for CaSPiS reduction semantics

Given the encoding of CaSPiS processes as terms of the algebra of designs, and any suitable
model of the algebra in terms of a class of graphs (like those presented in Sections 2.1 and 2.2),
it is natural to try to lift the reduction semantics of CaSPiS, through these encodings, to a
corresponding notion of transformation over the resulting graphs. Ideally, we would like to
translate the reduction rules of Definition 8 to ordinary graph transformation rules, in order to
exploit the rich theory of graph transformation and the corresponding analysis and verification
tools, also accounting for concurrency aspects.

However, this is not possible in a direct way. In fact, the reduction rules of CaSPiS include
suitable contexts in the left- and right-hand sides, which can be instantiated in arbitrary ways
to match a subterm of the process to be reduced. In other words, each reduction rule can be
considered as a rule schema, summarizing the common shape of infinitely many similar rules,
obtained by consistently replacing the contexts with suitable terms. Quite obviously, if we are
interested in reducing a single process (or a finite set of processes), we need to consider only a
finite set of instances of the rules.

In Figures 6, 7 and 8 we depicted the graph transformation rule schemata corresponding to the
reduction rules (ServiceSync), (SessionSync) and (PipelineSync) of Fig. 5. For each reduction
rule, the corresponding graphical rule is obtained by encoding (with some liberality) the left- and
right-hand sides as terms of the design algebra, according to Definition 9, and then representing
the designs according to the side-view discussed in Section 2.2. A gray area identifies in each rule
the edges and nodes that are preserved.

For example, the left-hand side of Fig. 6 is a system containing processes s.P′ and s.R, rep-
resented by edges with the depicted labels; these processes can be in arbitrary locations (the
edges are attached to different black nodes), and each of them is attached to a list of nodes
representing the free names, which necessarily include s. This graph encodes the left-hand side
process C[s.P′ , s.R] of rule (ServiceSync): note that the generic static context C under which the
interacting redexes are found is omitted, because the left-hand side of a graph transformation rule
can always be applied in larger graphs. Correspondingly, the right-hand side of Fig. 6 encodes
process (νr)C[s.P′ |r .P′ , r .R]: the static context C is omitted again, the service definition s.P′

is preserved, and two session sides are generated, one for the server and one for the client, sharing
a ν-restricted fresh name. The dotted edges located under the session sides informally represent
the subgraphs obtained by encoding processes P′ and R, respectively.

Comparing the other graphical rule schemata with the corresponding reduction rules in Fig. 5,
we note that not only we can omit the static top level context C, but also, for the same rea-
son, we can omit safely any other idle item that runs in parallel, like process P′ from rules

Proc. GraMoT 2010 12 / 17

ECEASST

Figure 6: Rule (ServiceSync)

Figure 7: Rule (SessionSync)

Figure 8: Rule (PipelineSync)

13 / 17 Volume 30 (2010)

Modeling a Service and Session Calculus with Hierarchical Graph Transformation

(SessionSync) and (PipelineSync) in Fig. 5. However, we must still account for the presence of
any admissible static session-immune context S0 in rules (SessionSync), (SessionSyncRet) and
(PipelineSyncRet), because it constrains the applicability of the rule (in general JS0K can be a
chain of pipeline-labeled boxes of arbitrary length, possibly 0).

Even if we did not work out the corresponding definitions, we identified a few graph trans-
formation frameworks which can provide the means to turn such rule schemata into collections
of graph rewrite rules, whose overall effect would be the expected one when applied to a graph
representing a CaSPiS process.

Synchronized Hyperedge Replacement. In the SHR approach [FHL+06], the parallel appli-
cation of a set of rules to a graph is controlled by a synchronization mechanism which requires
a consistency check among the redex boundaries of the involved rules. This mechanism can be
used to build (standard) rules with unbound left-hand sides, starting from a finite set of rules.
Therefore a CaSPiS rule schema could be implemented by a set of SHR rules, which should be
able to induce the set of all its instantiations.

Graph Transactions. The notion of graph transaction proposed in [BCD+08] is based on a
notion of “unstable” graph items. A transaction is a minimal derivation starting and ending in
graphs not containing unstable items, up to shift equivalence, and the operational semantics of a
transactional graph transformation system includes only derivations that are made of transactions.
Therefore a CaSPiS rule schema could be translated into a collection of rules which simulate the
navigation of the process in order to identify an occurrence of the left hand side. This can be done
by generating unstable items in the graph: their presence conceptually inhibits the application of
other rules in parallel. When the left pattern is recognized and the effect of the rule is applied,
such unstable elements are deleted, resulting in the commitment of the transaction.

Several other graph transformation approaches provide features that could be useful to represent
the CaSPiS rule schemata, including mechanisms to control the application of rules (ranging
from various kinds of application conditions to explicit control structures, as in the PROGRES
specification language [SWZ99]), or the inclusion in rules of multiple nodes which can match an
arbitrary number of nodes (as in Adaptive Star Grammars [DHJ+06], where the application of a
rule may cause the cloning of some items of the rewritten graph).

The study of the possible translations of CaSPiS rule schemata into one or more of the mentioned
approaches is an interesting topic for future research.

5 Conclusions

In this paper we have shown the main issues regarding the graphical encoding of a sophisticated
process calculus with inherently hierarchical features. The encoding of processes can be written
quite smoothly by exploiting a recently proposed algebra of graphs with nesting (see Definition 9),
and it can be shown to preserve and respect the structural congruence of processes. On the
other hand, the encoding of reduction rules as ordinary graph transformation rules requires some

Proc. GraMoT 2010 14 / 17

ECEASST

ingenuity, because the redexes can require the traversal/inspection of an unbound number of
nesting levels due to the presence of static session-immune contexts in the rules of Fig. 5.

The main methodological innovation of the paper, with respect to other proposals of encoding
process algebras into graph transformation systems, resides in the identification of an intermediate
algebra of designs, which bridges the gap between the syntax of the process calculus and the set
theoretical definition of the graphs. A direct translation of CaSPiS processes to, for example,
gs-graphs, would be possible but more cumbersome. Furthermore, a sound and complete interpre-
tation of the algebra into a class of graphs can be reused for different process calculi. For example,
besides the top- and side-view graphs discussed in the paper, another natural graph model for the
algebra are Milner’s bigraphs [Mil06], which are naturally endowed with a notion of embedding
and of linking.

The ultimate motivation in equipping CaSPiS with a graph transformation operational semantics
is to exploit the rich theory of graph transformation and corresponding tools for the analysis and
verification of relevant properties of CaSPiS processes. The intermediate design algebra provides
one additional framework for such analysis, which could be performed by exploiting tools directly
based on the algebra, which are currently under development (see http://www.albertolluch.com/
adr2graphs/).

Acknowledgements: We want to thank Fabio Gadducci, Alberto Lluch Lafuente, Daniele
Terreni and Liang Zhao for many interesting discussions and exchanges of ideas regarding the
graphical encoding of CaSPiS.

Bibliography

[AG98] A. Asperti, S. Guerrini. The Optimal Implementation of Functional Programming
Languages. Cambridge University Press, 1998.

[BBDL08] M. Boreale, R. Bruni, R. De Nicola, M. Loreti. Sessions and Pipelines for Structured
Service Programming. In Barthe and de Boer (eds.), FMOODS 2008. LNCS 5051,
pp. 19–38. Springer, 2008.

[BCD+08] P. Baldan, A. Corradini, F. Dotti, L. Foss, F. Gadducci, L. Ribeiro. Towards a
Notion of Transaction in Graph Rewriting. In Bruni and Varró (eds.), International
Workshop on Graph Transformation and Visual Modeling Techniques (GT-VMT 2006).
ENTCS 211. Elsevier, 2008.

[BCG+] R. Bruni, A. Corradini, F. Gadducci, A. Lluch Lafuente, U. Montanari. On GS-
Monoidal Theories for Graphs with Nesting. In Festschrift for Manfred Nagl (65th
Birthday). LNCS. Springer. To appear.

[BEG+87] H. Barendregt, M. van Eekelen, J. Glauert, J. Kennaway, M. Plasmeijer, M. Sleep.
Term graph reduction. In PARLE’87. LNCS 259, pp. 141–158. Springer, 1987.

15 / 17 Volume 30 (2010)

http://www.albertolluch.com/adr2graphs/
http://www.albertolluch.com/adr2graphs/

Modeling a Service and Session Calculus with Hierarchical Graph Transformation

[BGL] R. Bruni, F. Gadducci, A. Lluch Lafuente. An Algebra of Hierarchical Graphs and
its Application to Structural Encoding. Scientific Annals of Computer Science. To
appear.

[BGL10a] R. Bruni, F. Gadducci, A. Lluch Lafuente. An Algebra of Hierarchical Graphs. In
Hofmann et al. (eds.), TGC 2010. LNCS 6084, pp. 205–221. Springer, 2010.

[BGL10b] R. Bruni, F. Gadducci, A. Lluch Lafuente. A Graph Syntax for Processes and Services.
In Su and Laneve (eds.), WS-FM 2009. LNCS 6194, pp. 46–60. Springer, 2010.

[BKK05] G. Busatto, H.-J. Kreowski, S. Kuske. Abstract Hierarchical Graph Transformation.
Mathematical Structures in Computer Science 15(4):773–819, 2005.

[BL05] R. Bruni, I. Lanese. On Graph(ic) Encodings. In Koenig et al. (eds.), Proceedings
of Dagstuhl Seminar n. 04241, Graph Transformations and Process Algebras for
Modeling Distributed and Mobile Systems. Pp. 23–29. 2005.

[BLMT08] R. Bruni, A. Lluch Lafuente, U. Montanari, E. Tuosto. Style Based Architectural
Reconfigurations. Bulletin of the European Association for Theoretical Computer
Science (EATCS) 94:161–180, February 2008.

[BMM06] R. Bruni, H. Melgratti, U. Montanari. Event Structure Semantics for Nominal Calculi.
In Baier and Hermanns (eds.), CONCUR 2006. LNCS 4137, pp. 295–309. Springer,
2006.

[CG99] A. Corradini, F. Gadducci. An Algebraic Presentation of Term Graphs, via GS-
Monoidal Categories. Applied Categorical Structures 7:299–331, 1999.

[CMR94] A. Corradini, U. Montanari, F. Rossi. An Abstract Machine for Concurrent Modular
Systems: CHARM. Theoretical Computer Science 122(1-2):165–200, 1994.

[DHJ+06] F. Drewes, B. Hoffmann, D. Janssens, M. Minas, N. V. Eetvelde. Adaptive Star
Grammars. In Corradini et al. (eds.), ICGT. Lecture Notes in Computer Science 4178,
pp. 77–91. Springer, 2006.

[DHP02] F. Drewes, B. Hoffmann, D. Plump. Hierarchical Graph Transformation. Journal on
Computer and System Sciences 64(2):249–283, 2002.

[FHL+06] G. L. Ferrari, D. Hirsch, I. Lanese, U. Montanari, E. Tuosto. Synchronised Hyperedge
Replacement as a Model for Service Oriented Computing. In Boer et al. (eds.), FMCO
2005. LNCS 4111, pp. 22–43. Springer, 2006.

[FM00] G. L. Ferrari, U. Montanari. Tile Formats for Located and Mobile Systems. Informa-
tion and Computation 156(1-2):173–235, 2000.

[Gad03] F. Gadducci. Term Graph Rewriting for the pi-Calculus. In Ohori (ed.), APLAS 2003.
LNCS 2895, pp. 37–54. Springer, 2003.

[Har88] D. Harel. On Visual Formalisms. Communication of the ACM 31(5):514–530, 1988.

Proc. GraMoT 2010 16 / 17

ECEASST

[KCM06] D. Kitchin, W. R. Cook, J. Misra. A Language for Task Orchestration and Its Semantic
Properties. In Baier and Hermanns (eds.), CONCUR 2006. LNCS 4137, pp. 477–491.
Springer, 2006.

[Mil06] R. Milner. Pure bigraphs: Structure and dynamics. Information and Computation
204(1):60–122, 2006.

[MP95] U. Montanari, M. Pistore. Concurrent semantics for the pi-calculus. Electr. Notes
Theor. Comput. Sci. 1, 1995.

[Roz97] G. Rozenberg (ed.). Handbook of Graph Grammars and Computing by Graph Trans-
formation, Volume 1: Foundations. World Scientific, 1997.

[SWZ99] A. Schürr, A. Winter, A. Zündorf. The Progres approach: Language and environment.
In Engels et al. (eds.), Handbook of Graph Grammars and Computing by Graph
Transformations, Volume 1: Applications, Languages and Tools. Pp. 487–550. World
Scientific, 1999.

[Ter08] D. Terreni. Computational models based on hierarchical graphs: bigraphs and cogs-
graphs. Master’s thesis, Dipartimento di Informatica, Università di Pisa, 2008.

17 / 17 Volume 30 (2010)

	Introduction
	An algebra of hierarchical graphs
	Top-view models
	Side-view models
	Well-typedness and extrusion

	A calculus with nested structures and communication: CaSPiS
	Encoding CaSPiS into the algebra of designs
	Transformation rules for CaSPiS reduction semantics

	Conclusions

