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Abstract: We present second-order value numbering, a new optimization method
for suppressing redundancy, in a version tailored to the application for optimizing
the decision procedure of jMosel, a verification tool set for monadic second-order
logic on strings (M2L(Str)). The method extends the well-known concept of value
numbering to consider not merely values, but semantics transformers that can be
efficiently pre-computed and help to avoid redundancy at the 2nd-order level. Since
decision procedures for M2L are non-elementary, an optimization method like this
can have a great impact on the execution time, even though our decision procedure
comprises the analysis and optimization time for second-order value numbering.
This is illustrated considering a parametric family of hardware circuits, where we
observed a performance gain by a factor of 3. This result is surprising, as the design
of these circuits exploits already structural similarity.

Keywords: Program Analysis and Optimization, Monadic Second-Order Logic,
(second-order) Value Numbering

1 Introduction

Value numbering is a well-known compiler optimization technique used to efficiently detect
and eliminate redundant code by identifying equality of values [CS70, AWZ88]. Considering
this (first order) concept there is a natural generalization to second-order (or even higher-order
in general): rather than considering just values, one could lift the analysis to second-order by
considering semantics transformers, which may then be efficiently pre-computed and help to
avoid redundancy at the second-order level.

In this paper we introduce second-order value numbering and illustrate its impact by applying
it to improve the decision procedure of jMosel [TWMS06], a verification toolset for monadic
second-order logic on strings (M2L(Str)). M2L [Chu63] is an extremely expressive specification
language with a non-elementary decision procedure. This makes jMosel a good candidate for
our new optimization technique, as there is room even for ambitious optimizations due to the
huge leverage potential. Our experiments support this judgement: we observed a performance
gain of a factor of three when analyzing a parametric family of hardware circuits, despite the fact
that the optimized decision procedure includes the analysis and optimization time for 2nd-order
value numbering as well. This result is surprising, as the design of these circuits exploits already
structural similarity. - Please note that our technique is quite general, and not restricted to the
considered application domain.

1 / 15 Volume 30 (2010)



Second-Order Value Numbering

This paper is organized as follows: Section 2 provides an introduction to the jMosel toolset
including the definition of its syntax and semantics. First-order value numbering in the jMosel
context is explained in Section 3, while Section 4 introduces second-order value numbering
together with a detailed discussion of a minimal example. Subsequently, Section 5 illustrates our
new method along a realistic case study, before we conclude with Section 6.

2 jMosel

jMosel is a toolset for M2L(Str) that computes the semantics of a formula in terms of a finite
state automaton. In this sense, it can be seen as a compiler from this logic into automata models.
A detailed presentation of the tool can be found e.g. in [TWMS06]. Its underlying concepts and
the predecessor MoSeL have been presented in [Mar96, KMMG97]. The following subsections
summarize the required background about jMosel and M2L.

2.1 Syntax

jMosel’s several user-level logics are built on top of the following Minimal Logic, which already
provides the full expressive power of M2L(Str):
T ::= Id
A ::= subseteq(T,T) | shifteq(T,T)
F ::= A | ˜ F | F & F | ex Id: F | (F)

In this BNF, the non-terminal T denotes 2nd-order terms in form of (2nd-order) variables Id.
Atomic predicates A allow comparisons in terms of subset relation and equality after bit-shifting.
jMosel’s minimal logic formulas, denoted by the non-terminal and start symbol F, may be con-
structed using the standard operators of (a minimal) first-order logic. For convenience, we will
later also use the usual derived operators like disjunction (here written |), implication and logical
equivalence.

2.2 Semantics

In M2L(Str) formulas are interpreted as sets of (ordered) positions in a string of arbitrary, but
finite length, which can be conveniently described as finite bitvectors, i.e. a finite word over
the alphabet {0,1}. One often refers to the interpretation of these bitvectors as characteristic
functions that describe subsets of a given ordered set. Typical is their interpretation as finite set
of natural numbers, illustrated in Figure 1.

10 1 0 1. . .

0, 2, 3, $

X:

set X:

position:

{ }

1

Figure 1: A set of positions set X and the corresponding bit vector X.
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The bit vector corresponding to a string variable X has value 1 at position n iff n ∈ N0 is
included in X , and value 0 otherwise. The figure shows a set X containing the positions 0, 2, 3
and $, its representation as a characteristic set, and its corresponding bit vector. Here, the symbol
$ stands for the last position in the parametric string, and therefore marks the last bit in the bit
vector; a special symbol for this last position is necessary since M2L(Str) allows reasoning about
strings of finite but arbitrary length, a convenient model for parametric hardware components.

The following development will entirely foot on the bit vector interpretation of M2L(Str),
which we formally define below.

Semantics of jMosel formulas

jMosel translates formulas into complete and deterministic finite automata (DFA) in such a way
that the language recognized by one such automaton corresponds to the formula’s interpretation
as a bit vector. Accordingly, the semantics of a formula is defined via the function J K : φ −→ α ,
where φ is the set of all jMosel formulas and α is the set of all complete DFAs.

Definition 1 (Boolean Automaton)
A Boolean Automaton A of α is defined as A = (Σ,S,s0,F,δ ), where

• Σ is the set of all edge labels, which themselves denote subsets of the set of free variable
V in the considered formula. They are represented as bitvectors of length |V |.

• S is the set of all states.

• s0 is the initial state, s0 ∈ S.

• F is the set of accepting states F ⊆ S.

• δ is the transition function defined as δ : S×Σ −→ S.

The edge labels determine for every string variable the Boolean value at position n, whenever
this label is taken as nth step of an accepting run. The number of edge labels is exponential in
the size of the formula’s free variables, since the value of every variable v ∈V has to be checked
for equality with 0 or 1. Therefore, each label consists of a bit vector of length |V |.

Boolean Automata typically have very many edges between two nodes. We therefore con-
struct the following equivalent Symbolic Automaton As, whose edges are labelled with Boolean
functions and therefore compactly represent a set of edges of the original automaton.

Definition 2 (Symbolic Automaton)
A symbolic automaton As is defined as As = (L ,S ,s0,F ,δ ), where

• L is the set of all possible edge labels, consisting of Boolean functions.

• S is the set of all states.

• s0 is the initial state, s0 ∈ S .

• F is the set of all accepting states, F ⊆ S .
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T
t

0 1 2 . . . $−1 $

X x0 x1 x2 . . . x$−1 x$
Y y0 y1 y2 . . . y$−1 y$
...

...
...

...
. . .

...
...

Z z0 z1 z2 . . . z$−1 z$

Figure 2: Values for 2nd-order variables

T
t

. . . i . . .

W . . . 0 . . .

X . . . 1 . . .

Y . . . 0 . . .

Z . . . 1 . . .

Figure 3: Representation of edge label ˜w & x & ˜y & z

• δ is the transition function defined as δ : S ×L −→ S .

To describe the transformation from A to As, we observe that values for a jMosel formula’s
2nd-order variables can be represented in table form, where a variable X is expressed as bit vector
with position literals x0,x1, ...,x$−1,x$. The ordering of variables is arbitrary but fixed.

A row for a variable X in Fig. 2 represents a word of the language JXK. Every column of the
table specifies one input symbol of A and must therefore match an appropriate edge label. The
position j in this label corresponds to the variable at position j in the ordering of variables. To
convert A into an Automaton As with Boolean formulas as edge labels, the labels of A are first
transformed as shown in Fig. 3. Subsequently, edges sharing the same source and target state are
merged; the resulting edge is labelled with the disjunction of the merged edges’ labels.

The formulas for the edge labels resulting from this transformation may be large, but their
BDD representations are canonical and typically nice and concise [Bry86]. The jMosel toolset
supports various BDD libraries to optimally exploit this observation.

Semantic Completeness:
Note that a symbolic automaton As composed this way is typically not complete: its input al-
phabet consists of all Boolean functions, but not every state considers the input of every possible
Boolean function. However, the automaton is complete at a semantical level: the automaton A
with bit vector labels it represents is always complete. It is this semantic notion of completeness
and determinism which we will refer to in the sequel of the paper.

Convention:
In the following sections, the semantics of jMosel formulas will always be given in terms of
symbolic automata As. In this section we used the index “s” to better distinguish between the
two types of automata, but we omit it from now on. In the figures depicting automata, the
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following applies: an arrow marks the initial state, accepting states are denoted as double circles,
non-accepting states as plain circles.

In the following, we first present the classical (first-order) value numbering for this application
domain, before we lift to second order in Section .

3 First-Order Value Numbering

First-order value numbering is an analysis method that allows the detection and removal of re-
dundant computations from a program [CS70]. This goal is achieved by assigning abstract identi-
fication values to computations that imply equality: as soon as an identification value reappears,
it is certain that the corresponding computation has been already performed before, thus the
previously computed result may be reused instead of performing the computation again. This
‘classical’ optimization is called DAGification in [KMS02].

3.1 Characterization of 1st-order Value Numbering

Given a syntax tree T of a jMosel formula in terms of

• L is the set of all labels for predicates, operators, and variables,
L = {subseteq,shifteq,̃ ,&,ex}∪{X ,Y,Z, ...}

• N is the set of nodes of the syntax tree T under consideration

• l : N −→ L maps every syntax node to its label.

the assignment of abstract identification values can be given by any function v1st : N −→N that
satisfies the following two characteristics:

For all nodes n1,n2 ∈ N of the syntax tree,

• v1st(n1) = v1st(n2) implies l(n1) = l(n2),
i.e. the coincidence of their syntactic labels. In addition we require

• if n1 and n2 are internal nodes with children c1
1, ...,c

1
i ∈N and c2

1, ...,c
2
j ∈N , respectively

i = j ∧ ∀k ∈ {1, ..., i} .v1st(c1
k) = v1st(c2

k)

3.2 Example

As an example for the process of first-order value numbering, we consider the following jMosel
formula:

F = (subseteq(X,Y)&shifteq(A,B))|(subseteq(X,Y)&shifteq(A,B))

Fig. 4 shows its syntax tree after computation of the value numbers.
At compilation, the compiler can benefit from the fact that the subformulas with value numbers

3, 6, and 7 all occur twice by only calculating each of them once, storing the result of the
computation, and referring to it when the corresponding value number occurs for the second
time. We will illustrate the impact of this optimization in Section 5.
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Figure 4: 1st order value numbering applied to the jMosel formula F .

4 Second-Order Value Numbering

While first-order value numbering is used to identify redundant computations and replacing them
by previously computed results, the goal of second-order value numbering is to identify redun-
dant transformations - the reason for the use of second-order here. As will be clear below, this
analysis and its corresponding optimizations is only a bit more involved than in the first-order
case, but has a far bigger impact, see Section 5.

4.1 Characterization of 2nd-order Value Numbering

The only difference in the characterization of the labelling function v1st : N −→ N concerns
the treatment of atomic predicates, i.e., of A = {subseteq,shifteq}. Their labelling does
no longer require the second clause for internal nodes. This results in the following slightly
modified characterization:

For all nodes n1,n2 ∈ N of the syntax tree,

• v1st(n1) = v1st(n2) implies l(n1) = l(n2),
i.e. the coincidence of their syntactic labels. In addition we require

• if n1 and n2 are internal nodes with children c1
1, ...,c

1
i ∈N and c2

1, ...,c
2
j ∈N , respectively

i = j ∧ ∀k ∈ {1, ..., i} .v1st(c1
k) = v1st(c2

k) unless they are labelled with
A = {subseteq,shifteq}

After this labelling, nodes sharing the same value number can be replaced by calls to a semantics
transformer. However note that transformers should only be created for subtrees containing at
least one logical operator, as otherwise the effect of the transformation is vacuous.
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4.2 Semantics Transformers

When implementing second-order value numbering for jMosel, the semantics transformers can
be implemented in terms of custom predicates similar to the atomic formulas subseteq and
shifteq. This means that every identification of redundancy results in the automatic definition
of a custom predicate. This process can be seen as an “on-the-fly enhancement” of the logic with
newly identified predicates with multiple occurrences.

For the definition of semantics transformers and calls to these transformers, the syntax of
jMosel is enhanced by the let-construct

let < predicatename > (< argumentlist > ) = < de f inition >
in < f ormula >

that allows one to formulate formulas like:

let pred(X,Y) =subseteq(X,Y) & shifteq(Y,X)
in pred(A,B) <-> pred(S,T).

where a new predicate predwith arguments X and Y is defined by the formula subseteq(X,Y)
& shifteq(Y,X) and instantiated twice in the formula pred(A,B) <-> pred(S,T).

Definition 3 (Semantics of the let-Construct)
For formulas f1, f2 ∈ F and a predicate Pred(A1,...,An) ∈ P, the semantics of the let-
construct is defined as follows:

Jlet Pred(arg1,...,argn) = f1 in f2K =d f J f2 [ f1/Pred(x1,...,xn)]K
where · [·/· ] : F × ID × ID −→ F denotes the usual syntactic substitution.

We use the let-construct to implement second-order value numbering for jMosel. There, the
definitions of and calls to semantics transformers are automatically inserted into the considered
formula according to the value numbers assigned to the individual computations.

In the following we first illustrate on a very simple example how a semantics transformer is
identified and inserted into the formula, then we consider a more complex case study in Section 5.

4.3 Example

As a short example for the process of second-order value numbering, we consider the following
jMosel formula:

(subseteq(A,B) & shifteq(C,D)) | (subseteq(X,Y) & shifteq(V,W))

This formula is similar to the one of Section 3.2, but cannot benefit from first-order value
numbering, since the atomic formulas subseteq and shifteq are called with different pa-
rameters. This is a very frequent case in practice: in hardware design, for example, circuits are
composed of a small number of component types, each instance of which has the same abstract
function, but is connected differently. Circuits would thus not be eligible for first order value
numbering, but are an excellent application for second-order value numbering.
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Figure 5: 2nd-order value numbering applied to a jMosel formula.

The formula’s syntax tree after computation of second-order value numbers is shown in Fig.
5. The nodes of the tree have been divided into two sets, formulas and terms; nodes representing
terms have not been numbered by the 2nd-order value-numbering procedure.

The two nodes labeled with “&” share the value number 3; this means they both perform the
same set of computations and can therefore be replaced by calls to a same semantics transformer
st 3. The nodes with the value numbers 1 and 2 are not taken into account, since they are
labeled with atomic predicates.

The definition of the st 3 transformer is isomorphic to the subtrees labeled with value num-
ber 3, but all occurring variables are replaced by fresh variables “arg n”. This transformer is
inserted via let-construct into the formula, and the subtrees labelled with 3 are replaced by calls
to st 3 (see the corresponding syntax tree in Fig. 7), resulting in the formula:

let st 3(arg 1,arg 2,arg 3,arg 4) =
subseteq(arg 1,arg 2) & shifteq(arg 3,arg 4)

in st 3(A,B,C,D) | st 3(X,Y,V,W)
When compiling this formula, the conjunction of the predicates subseteq and shifteq

is only computed once and stored as a semantics transformer, opposed to the original formula,
where the conjunction is computed twice. The detailed course of the optimization and compila-
tion is described in the next section.

4.4 The Optimizing Transformation

The optimization of the syntax tree for the formula

(subseteq(A,B) & shifteq(C,D)) | (subseteq(X,Y) & shifteq(V,W))

is performed in the following steps:

• Perform the numbering of the syntax tree, resulting in the labelling shown in Fig. 5.

• Identify the good targets for optimization: the nodes labelled with 3 qualify, as there exist
more than one, and the corresponding subtrees contain logical operators.
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Figure 6: Syntax tree with calls to the semantics transformer.

• Create a semantics transformer st 3 for the nodes labelled with 3 by duplicating one of
the syntax trees of the corresponding subfunction.

• Replace the two occurrences of syntax nodes labelled with 3 by calls to the newly created
semantics transformer st 3 (Fig. 6).

• Add the definition of st 3 to the top of the syntax tree (Fig. 7).

The compiler operates on the modified syntax tree as follows:

• At the “let” construct it compiles the semantics transformer’s definition, identified by the
subtree of the second child node of “let”.

• At the nodes representing the atomic predicates
subseteq(arg 1,arg 2) and shifteq(arg 3,arg 4)
it constructs the corresponding basic automata a1 and a2.
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Figure 7: Syntax tree after optimization.
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• At the node representing the formula

subseteq(arg 1,arg 2) & shifteq(arg 3,arg 4)

it constructs the product automaton a1∧2 representing the conjunction of a1 and a2.

• It stores the resulting automaton as a semantics transformer named st 3 with arguments
arg 1,...,arg 4.

• The compilation continues with the subtree of the third child node of “let”.

• At the node representing the call of a semantics transformer st 3(A,B,C,D) the pre-
computed definition of st 3 is copied, replacing the arguments arg 1, ...,arg 4 in
the edge labels with the terms A,B,C,D to yield the result automaton a3.
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• At the node representing the call of a semantics transformer st 3(X,Y,V,W) the pre-
computed definition of st 3 is copied again, this time the arguments arg 1,...,
arg 4 in the edge labels are replaced with the terms X,Y,V,W to form the result automa-
ton a4.

• At the node representing the formula

st 3(A,B,C,D) | st 3(X,Y,V,W)

it constructs the product automaton a representing the disjunction of a3 and a4 and returns
it as the compilation’s result.
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full_adder full_adder full_adder full_adder

@cin X Y

Result @cout

add

$ $

1 1 1 1 1 1 1 1

1 1 1 1

$

Figure 8: Structure of the parametric adder

5 Application and Performance Measuring

One of jMosel’s main application areas is the specification and verification of parametric hard-
ware systems. We tested the presented optimization with a “real-world” example, applying it to
the structural description of a parametric adder that describes the family of adder circuits for bit
vectors of length n.

Structural Description of a Parametric Adder

Fig. 8 shows the structure for this adder based on n interconnected full adders. The circuit adds
two bit vectors X and Y and stores the result as the new vector Result. The Boolean variables
@cin and @cout are the carry-in and carry-out bits.

The size of input formula and of the resulting automaton are too large for a detailed discussion
in this paper, so we only present the results in terms of key data at this point. The compilation
times have been measured on an Intel Centrino Duo System (2 x 2.16 GHz) with 1 GB of RAM:

Optimization none 1st-ord. VN 2nd-ord. VN
Nodes in synt. tree 472 469 452
Depth of synt. tree 26 27 32
overall run time 11.50 sec 10.49 sec 3.47 sec
Sem. transformers - 1 6

As we expected, first order value numbering does not contribute significatively to perfor-
mance: the sharing is at the level of subcircuit types, not of fully instanced values.
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The increased depth of the modified syntax tree is due to the fact that all definitions of se-
mantics transformers are added to the top of the tree. By identifying 6 semantics transformers,
the size of the tree could be reduced by 20 nodes. This does not seem too exciting at first sight;
however, it has quite some impact: the overall run time of the decision process is accelerated by
a factor of three.

The enormous speedup is quite surprising, since the adder’s structural description already
included user-defined predicates for frequently occurring constructs like the full adder and logical
gates. This shows that even a carefully written formula and well structured circuits might still
contain significant potential of redundancy, and therefore could benefit greatly from second-order
value numbering.

6 Conclusion

We have presented second-order value numbering, a new optimization technique for suppress-
ing redundancy, in a version tailored to the application for improving the decision procedure of
jMosel, a verification tool set for monadic 2nd-order logic on strings. Our technique extends the
well-known concept of value numbering to consider not merely values, but semantics transform-
ers that can be efficiently pre-computed and help to avoid redundancy at a second-order level.
We have illustrated the effect of this optimization for a parametric family of hardware circuits,
where we observed a performance gain by a factor of 3. This result is surprising, as the design
of these circuits exploits already structural similarity.

Currently we are working on a careful experimental analysis of the impact of our technique in
practice using standard benchmarks and libraries. We conjecture that we will observe a growth
of the improvement factor with the size of the system, i.e. a ‘felt’ superlinear speedup.

In a more general perspective, second-order value numbering can be regarded as a means
for a specific semantic form of procedural abstraction [SHKN76, DWF+07] in a similar way
as value numbering (or its generalization to Value Flow graphs) is a semantic support for code
motion [SKR90]. Thus besides looking for further application domains for second-order value
numbering, it would also be interesting to investigate how the structural generalization of value
numbering presented in [SKR90] can be raised to second-order in order to achieve a truly se-
mantic notion of procedure abstraction for imperative programs.
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