
Electronic Communications of the EASST
Volume 33 (2010)

Proceedings of the
Fourth International Workshop on
Foundations and Techniques for

Open Source Software Certification
(OpenCert 2010)

Open Source Verification under a Cloud

Peter T. Breuer and Simon Pickin

20 pages

Guest Editors: Luis S. Barbosa, Antonio Cerone, Siraj A. Shaikh
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Open Source Verification under a Cloud

Peter T. Breuer1 and Simon Pickin2

1 ptb@cs.bham.ac.uk
Dept. Comp. Sci., University of Birmingham, Birmingham, UK

2 spickin@it.uc3m.es
Dpto. Ing. Teleḿatica, Universidad Carlos III de Madrid, Leganés (Madrid), SPAIN

Abstract: An experiment in providing volunteer cloud computing support for auto-
mated audits of open source code is described here, along with the supporting theory.
Certification and the distributed and piecewise nature of the underlying verification
computation are among the areas formalised in the theory part.

The eventual aim of this research is to provide a means for open source developers
who seek formally backed certification for their project to run fully automated anal-
yses on their own source code. In order to ensure that the results are not tampered
with, the computation is anonymized and shared with an ad-hoc network of vol-
unteer CPUs for incremental completion. Each individual computation is repeated
many times at different sites, and sufficient accounting data is generated to allow
each computation to be refuted.

Keywords: Formal Methods, Software Verification, Static Analysis, Open Source,
Cloud Computing, Distributed Computation

1 Introduction

We have developed a fledgling volunteer cloud computing system for the formal verification and
static analysis of large open source software code bases, and performed experiments on some
millions of lines of C code with it. What has motivated this development is the vision of a
future in which a formal verification problem can be sent out to a cloud of volunteer solvers
somewhere on the Internet for completion. Hopefully, those supporters of an open source project
who do not have the skills to provide help at first-hand will instead contribute by lending their
CPU cycles to the task of certifying their favourite new release free from certain semantic errors
– or detecting them if they exist. They might also contribute extra regression tests or novel
verification procedures.

In this kind of framework, the bottleneck presented by the certification authority in a traditional
approach is removed. Moreover, the abundance of available CPU cycles allows the calculation
to be duplicated many times over for reliability, while enough intermediate results are stored
for accounting processes to check the computation as may be required. Our prototype software
provides a skeleton for a possible ‘open certification’ method, in other words. While neither
the design nor the implementation is perfect and complete, it is to be hoped that the initiative
stimulates better efforts and further progress in this direction.

1 / 20 Volume 33 (2010)

mailto:ptb@cs.bham.ac.uk
mailto:spickin@it.uc3m.es

Open Source Verification

An ‘open verification cloud’ as prototyped here physically consists of a database back-end and
its servers plus volunteer clients running the bespoke verification solver software. The clients
have volunteered to help perform the computations that resolve the verification problems stored
on the cloud’s database. The cloud-computation nature of the process is manifested in the fact
that no client knows about the other clients currently helping the computation and none knows
where the servers are physically located.

The code treated in the work reported here isANSI C [ANSI89, ISO99] with embedded as-
sembler, and no significant restrictions. There is no inherent limitation to a particular language,
however. It is of course universally realized that (unrestricted) C is an inherently intractable
candidate for verification because of its indirections via pointers and other infelicitous language
features, and those obstacles are overcome in this approach by using deliberately approximate
(but sound) verification logic [BG04, BP06a, BP06b].

1.1 Context and related work

The verification technology used in the work reported here falls in the class of ‘lightweight’
verification technologies. It is based at the top level on a symbolic programming logic [BP06b]
and at the very bottom level on decision procedures using mixed integer linear programming im-
plemented using the GNU Linear Programming Kit (GLPK). The GLPK is intended for solving
large-scale linear programming, mixed integer programming, and other related problems. It is a
set of routines itself written in ANSI C and organised as a library. It is available as part of the
GNU Project and is released under the GNU General Public License [Bob01, Gou99]. That is
particularly appropriate here because the principal target for our technology has historically been
the open source C code of the Linux operating system kernel (see for example [BG04]).

Other lightweight verification technologies in the same class include Splint [EL02] (derived
from Larch [GH91]), also ESC/Java and Spec# [BRLS04]. All these tools make some sacrifices
in the area of completeness or precision in order to be useful on the undecorated original source
codes, and some require expert annotations to be added to the source. And while the C language
is always a particularly difficult target for such technologies, some notable attempts at it have
been made.

David Wagner and collaborators in particular have been active in the area (see for example
[JW04], where Linux user space and kernel space memory pointers are given different types, so
that their use can be distinguished, and [WFBA00], where C strings are abstracted to a minimal
and maximal length pair and operations on them abstracted to produce linear constraints on these
numbers). That research group often uses model-checking [CES86].

Their approach in [WFBA00, JW04] makes use of both model-checking and abstract inter-
pretation [CC77] (abstraction is used in general in order to ‘airbrush out’ the more unsavoury
aspects of C from the formal view of it), and therefore contrasts with contributions like Jeffrey
Foster’s work with CQual [FTA02], which seek to extend the type system of C in a more con-
trollable direction. In particular, CQual has been used to detect “spinlock-under-spinlock”, a
sub-case of one of the analyses routinely performed by the tools used in the experiment reported
here.

The SLAM project [BR02] originating at Microsoft also analyses C programs using a mixture
of model-checking, abstract interpretation and deduction. That technology is intrinsically an

Proc. OpenCert 2010 2 / 20

ECEASST

order or more of magnitude slower than the basic technology used in the experiment described
here, but it also works by creating an abstraction of the program code, and it also generates
intermediate state descriptions mechanically.

The Coverity checker [ECCH00] has also come to be used in the context of the Linux kernel
source code. Coverity is a commercial tool based on an user-extensible version (ameta-compiler)
of the GNU C compiler,gcc [Gri02]. Coverity itself is proprietary, and its innards are not ac-
cessible to review, but it may be guessed that the staff of the company can configure into the
compiler framework any finite state machine-based computation for the purposes of a custom
analysis that they have in mind. It is a less abstract technological solution than the one used here,
but shares with it the characteristic of customizability.

Efforts to distribute verification computations to a large number of solvers organised in a
well-defined topology are made regularly – see [Abu09], for example – and it is a recognised
conference topic. Researchers have particularly sought to distribute model-checking problems
onto grid-based machinery. Holzmann defines the notion of ‘swarm verification’ to describe
the technique [HJG08a], adapting the SPIN [Hol03] model-checking tool to the paradigm. In
passing, it may be noted that the verification technology used here seems to be part of a recent
trend observed by Holzmann in [HJG08b] towards verification of an abstraction of the actual
code rather than of a design model. However, the work reported here aims to accommodate the
lower performance targets obtainable from zero-cost volunteer CPU cycles available out on the
Internet.

Existing infra-structure projects support so-called ‘volunteer computing’ -type projects. See
for example the BOINC software [And04, AKW05] from Berkeley. It is not clear at the time
of writing if that software would have been a significant aid to our exploratory project, because
BOINC clients expect a single data file and return a single result file to the database server,
rather than engaging in a substantially continuous interchange, as is the case here. Nevertheless,
it may in the future be very helpful in the organisation of the architecture in a full-scale project,
particularly in terms of the organisation of the permissions for access and the classification of
the provenance and reliability of the data returned.

Peter Lee [NL96] has approached the problem of automatically checking the trustworthiness
of machine code to be executed by an operating system. The idea inproof carryingapproaches
is that incoming code snippets carry a proof that a desired security property is satisfied, and
the operating system automatically checks the syntactic relationship of the machine code to the
proof. Our approach is to check the source code instead and is designed to handle large code
bases such as the Linux kernel in reasonable time.

1.2 Contents

This article is organised as follows.Section 2formally describes the process of certification from
the top down. After describing certification properties, the section describes in more detail the
process of analysis that produces the certification here, showing in particular how the calculation
is adapted to the exigencies of a part-time volunteer cloud-computing context.Section 3suc-
cinctly presents the programming logic used in order to provide a self-contained account of the
technology here, and readers may wish to skip that section if they are not interested in formal
logic. Section 4describes an experiment performed on about a million lines of C source code.

3 / 20 Volume 33 (2010)

Open Source Verification

That experiment was previously conducted using monolithic analysis tools [BP06a] and it has
been repeated in the volunteer cloud computing trial [BP09].

2 Certification

In this section a global view of the certification process is set out and related to the procedure
implemented.

2.1 Certification in the abstract

This section describes formally what certification means as implemented in the prototype project.
Three characteristics stand out. Firstly, certification is a process and it produces both a result

and a certificate. Secondly, the certificate has the property that it can be checked to have been
generated by following the purported process applied to the purported source code, generating
the purported result. Thirdly, the result apports certain guarantees about the code.

Consider then the certification process in the abstract. An automated procedureM takes a
software code baseC and, in the presence of a listL of known defects, produces a certificate
X that says that the list is complete. That is, the process takes codeC and (sometimes – the
alternative is that the certification process fails) produces a certificateX:

CM = X

Moreover, ifLd is the sub-list ofL of defects of kindd, and we writedp to mean that there is a
defect of kindd at point p in the code, thenLd contains all the pointsp in the code at which a
defect of kindd arises. That is:

{p∈C | dp} ⊆ Ld

Putting those two together, one gets a fundamental description of what certification means:

X = CM ⇒ ∀p∈C−Ld : ¬dp (1)

I.e. code that has more defects than stated does not get a certificate.

2.2 What is a defect?

In our implementation, a defectdp is defined by a condition expressed in symbolic logic asDp(x)
that is deduced to be possibly reachable afterp. That is, logical analysis deduces a post-condition

. . . p { postp }

for p and checking the formula using a model-based technique shows there is a non-empty inter-
section of the post-condition withDp(x). That is:

dp ⇔ ∃x. Dp(x)∧postp (2)

for some values of the logical variablesx. An example follows inSubsection 2.3immediately
below.

Proc. OpenCert 2010 4 / 20

ECEASST

2.3 Example

An example of an interesting defect condition is

Dex
p =

x > 1, p a lock call
x < 0, p an unlock call
false, otherwise

(3)

wherex is a logical (i.e., non-program) variable which counts the number of stacked locks taken
in the program. The variablex is incremented by lock calls and decremented by unlock calls.
The pre-/post-condition logic describingx for the analysis is:

{φ [x+1/x]} lock() {φ}
{φ [x−1/x]} unlock() {φ} (4)

Where this particular defect condition checks out as feasible in the sense of (2), it indicates
either that (a) a lock might have been taken twice by that point without a release between the two
takes; or (b) a lock may have been released twice by that point without a lock attempt between.
These defectsdex

p can by definition (3) only be detected at the sites of a lock or unlock callp.
Certification in this case means that the codeC has been scanned and defectsdex

p have been ruled
out. That is, no lock can be taken twice in a row, nor unlocked twice in a row, without an unlock,
respectively a lock, operation occurring between the two.

2.4 False positives

Note that there may be codesC which are flagged as having a defect in the sense of (2) but
which are nevertheless semantically correct (‘false positives’), in the sense of never in practice
triggering the conditionDp(x).

That is the rationale for in practice maintaining a listLd of detected defect sites – they have
individually to be signed off by the developer as ‘false positive’ or ‘noted for correction in the
next release’, or ‘noted but no solution yet’. The certificate certifies that it is unequivocally the
case that the defined defect cannot arise anywhere other than the sites listed.

False positives generally fall into two classes. In the first class, a guard condition such as
y2 < 0 cannot in practice be breached, but the analysing logic does not know that, and explores a
factually impossible code trace as though it were possible. That kind of semantic ‘inexactness’ is
a result of the deliberately approximating nature of the symbolic logic used in any real life anal-
ysis. The analysing logic has to be less exact (‘more alarmist’) than reality or the computation
would never finish in practice.

A typical instance of the second class of false positive arises naturally in the context of the
example above inSubsection 2.3. It occurs when twodifferent locks are taken in sequence in
the code, without an unlock between them. A defect will be detected. The fault here is purely
a definitional one. The situation is factually harmless in itself, but it is captured by the defect
definition. The problem may be said to be rooted either in the poverty of the analysis language
– different counts for different locks may be difficult to define – or in the poverty of the analysis
logic – one may not be able to reliably distinguish references to different locks in C. The latter
is the case here. Different pointers may point to the same underlying lock, and the same pointer
may point to different locks at different times.

5 / 20 Volume 33 (2010)

Open Source Verification

2.5 Accountability

It is important for a certification procedure that it can be checked that the certificateX produced
relates the certified codeC and the methodM used to certify it. That is, there is a checking
procedureK such that

K(X,C,M) =
{

true, if X = CM
false, otherwise

(5)

How is that guaranteed?
The answer is, in our procedure, via digital signatures, namely, the following: (a)σ(T‡) is

generated from a printout of intermediate resultsT‡ of the analysis inM; (b) σ(A) is generated
from the shortASCII file that configures the analysis; (c)σ(H) is generated from theASCII

file that expresses the defect condition(s) being scanned for; (d)σ(L) is generated for the list of
allowed defect exceptionsL; (e) σ(C) is generated for the codeC; (f) σ(P) is generated from
the file that configures the code parseP. Those digital signatures compriseX, as will be detailed
in the following paragraphs.

Then, provided the code developer holds on to a copy of the intermediate results, a copy of the
analysis method configuration, and a copy of the original code, then any part of the computation
via M can be repeated at will for the benefit of anyone that doubts it. That is the procedureK,
modulo checking the digital signatures to confirm the veracity of the three components. That is
to say

K(X,C,M) ⇔ CM = X

as required in (5). That means that

K(X,C,M) ⇔ ∀p∈C : ¬dp∨ p∈ Ld

according to (1). The important idea here is that a part of the calculation can be repeated as
needed in order to check the result, and that in order to be sure that the repeated calculation starts
from the right place (and finishes in the right place) the digital signatures in the certificate are
necessary – as is the data signed, but that has to be stored separately. It is not present in the
certificate. Where the data is kept is a separate question.

To explain how the calculation can be reconstructed when required, the calculation needs first
to be described in more detail. The certification methodM consists first of a parseP to give a
syntax treeT:

T = CP (6)

Next an analysisA is applied to the treeT to decorate it with symbolic logic expressions, giving
the decorated treeT†:

T† = T A (7)

Then a checkerH is applied which further decorates the tree with evaluations of the logic to see
if defects are feasible:

T‡ = T†H (8)

Proc. OpenCert 2010 6 / 20

ECEASST

The list of sitesp within the codeC at which defectsdp are detected is what is basically of interest
to developers and consumers alike, and it is supposed to be covered by the listL of knowns.

Ld ⊇ {p∈C : d decoration ofT‡ at p is not false} (9)

The certificateX consists exactly of the digital signatures of the code, (printed out) tree decora-
tions, and the configuration used for the parser, for the analysis and for the checker, and the list
of known defects:

X = (σ(C),σ(P),σ(T‡),σ(A),σ(H),σ(L)) (10)

Every step of this procedure can be repeated unambiguously. For example, to get toT‡, one needs
to repeat at least the step (8). That starts fromT†. But T† is justT‡ with some of the decoration
dropped. So it can be unambiguously obtained fromT‡, which is signed. The configuration for
H is signed and available, and soH can be applied unambiguously to check the derivation of
T‡ from T†.

2.6 Analysis and evaluation

The analysis procedureA is organised in detail according to the structure of the code. It gener-
ates a pre-/post-condition pair for each program fragmentp:

{prep} p {postp}

The pair is computed from the results for the component fragmentspi ∈ p : p = P
i
(pi) whereP

is the constructor (if , while , etc.) that producesp from thepi . That is

(prep,postp) = [P]
i

(prepi
,postpi

) (11)

where{prepi
} pi {postpi

} for pi ∈ p

and[P] is the appropriate generator of symbolic logic. It is specified for the source language (here
C) being treated in the configuration file for the analysis. ‘Appropriately’ here means that the
logic is sound with respect to the semantics of the language, in that for each pre-/post-condition
pair generated by the above formula (11):

prep ⇒ wp[p](postp) (12)

wherewp is the semanticweakest preconditionconstructor for the language.
That (12) is an implication and not necessarily an equivalence means that the symbolic logic

generated by the scheme (11) is approximate(but sound, according to (12)). That gives rise
to the namesymbolic approximation[BP06b] for the general technique. In practice, a slightly
different customized approximate symbolic logic is used for each defect analysis.

Note that some complexity reductionis performed by our tools via lightweight automatic
theorem-proving techniques at the stage of producing the treeT† with the symbolic logic anno-
tations. For example, a formula of the form

p∧q

7 / 20 Volume 33 (2010)

Open Source Verification

will be reduced toq if p→ q is proved on the fly as the formula is generated. Similarly forp∨q.
That has proven very effective in reducing complexity. What our tools are not good at is reducing
formulae of the general shape∨

i
∧
j
qi j to a simpler expressionp when there is one, such as in the

case ofp∧q∨p∧¬q. The inadvertent and unrecognised splintering of simple logical expressions
into multiple complex cases in this style is the most significant source of the computational
explosions that are occasionally encountered during processing. In principle the situation could
be detected and repaired at the checking stage of the process whenT‡ is generated (all the atomic
propositional forms here are linear inequalities and one could detect when dropping one failed
to relax the problem), but that is not done, because the extra computation is usually prohibitively
expensive and apparently only rarely productive in practice.

In the final phase that producesT‡, the volunteer clients in the cloud apply a modelling tech-
nique to decide whether

postp∧Dp(x)

is satisfiable at any nodep of the abstract syntax tree. Since all questions of satisfiability for the
predicates in our logic can be reduced to questions of the feasibility of systems of linear inequal-
ities in integer variables, the evaluation is performed using mixed linear integer programming.
The implementation uses only open source libraries, principally GNU’s Linear Programming Kit
(GLPK). A non-negative answer to the question asked by the evaluation procedure indicates a
possibledefectdp.

2.7 The cloud computation

The analysisA and evaluation calculationsH are incremental, stateless, and can be broken
off and restarted from the break-off point, as well as repeated either partially or wholly. That is
the basis for performing the computation via a cloud and the following paragraphs describe the
properties that permit that implementation in formal terms.

Let the constructsp (the nodes and leaves of the abstract syntax treeT produced by the parse)
that appear in the codeC be p = P

i
(pi) for a syntactic constructorP and componentspi . The

constructions define adependencypre-order:

p = P
i
(pi) ⇔ pi < p (13)

which extends uniquely to a minimal partial order via transitivity. In the partial order, one
code construct ‘depends on’ (is greater than) another if the second is a component or sub-
component, etc., of the first. For example,if(x<0){ x++; y++; } depends on the com-
ponentx++; y++ and on its componentx++ .

The operationsA andH can then be split up into fragmentsAp andHp at p∈C as follows:

A = ◦
p
Ap (14)

H = ◦
p
Hp (15)

Proc. OpenCert 2010 8 / 20

ECEASST

where the order of the compositions is constrained only by the dependenciespi < p. Formally,
operations on different parts of the tree can be performed in any order:

Ap1
◦ Ap2

= Ap2
◦Ap1

(16)

Hp1
◦Hp2

= Hp2
◦Hp1

(17)

where p1 6≤ p2 and p2 6≤ p1 in the dependency relationship. Also, sinceA andH work on
different decorative features on the tree

Ap1
◦Hp2

= Hp2
◦Ap1

(18)

wheneverp1 6= p2. Whenp1 = p2 thenH requires the decoration produced byA first.
In practice, the computation of the symbolic logic forms and their evaluation is performed at

the same time, because the former is usually a computationally cheap task relative to the latter.
That is, the computation

A ◦H = ◦
p
(Ap◦Hp) (19)

is performed. (16, 17, 18) justify the reordering of the components in (19).
That the computation can be broken off and restarted means only that (19) can be further

reordered via (16, 17, 18) as

A ◦H = ◦
p∈P

(Ap◦Hp) = ◦
p∈P1

(Ap◦Hp) ◦
p∈P2

(Ap◦Hp) (20)

whereP1, P2 is a partition of the full set of code fragmentsP = P1]P2 such that

p1 ∈ P1∧ p2 ∈ P2 ⇒ p2 6≤ p1 (21)

I.e., P1 already contains all the pre-dependenciesp2 < p1 for any p1 ∈ P1. P1 is the set of code
fragments that have been completely analyzed at the time of the break, andP2 is the remainder
at that time.

Moreover, the computation can be broken off and re-started any number of times. That is, the
equation (20) may be extended to match with any partitioningP = P1]·· ·]Pn that respects the
dependency order, as in (21). P1 is the set of code fragments completely analysed at the time of
the first break,P1]P2 the set completely analysed at the time of the second break, and so on.
The enabling conditions are (16, 17, 18).

3 Logic

Readers uninterested in formal logic may wish to skip this section, which is included to provide
a self-contained account here. It is not needed by what follows after.

The program logic used to generate the assertions which decorate the syntax treeT† from (7)
is called NRBG, for ‘normal, return, break, goto’, the principle kinds of program flow treated.
In a program there is the normal program flow, which passes from the beginning of a statement
through to its (normal) end, and there are exceptional flows, the break, return and goto flows

9 / 20 Volume 33 (2010)

Open Source Verification

(and also others in other languages), which exit a statement before it ends normally. The logic
considers the interaction of these flows though each code construct.

For example, the rule for sequential statements states that eithera;b may terminate normally
with conditionr or it may terminate exceptionally with conditionx. On the way to doing so,a
may either terminate normally with conditionq andb continue fromq to the required termination
conditions, or elsea may terminate exceptionally with conditionx right away. That is:

{p} a {Nq∨E x} {q} b {Nr∨E x}
{p} a;b {Nr∨E x}

whereN stands for ‘normal’ andE stands for any of theR (‘return’), B (‘break’), Gl (‘goto’)
exceptional flows, wherel is not a label defined ina or b.

The logic has been presented and explained many times over the years. See for example
[BP06a]. The presentation given here is innovative in that it introduces theN, R, B, Gl as modal
operators. The earlier presentations used a set of interacting logicsN, R, B, G. The advantage of
the new presentation is that the number of logical rules falls to about seven from about twenty.

The rule for a do-forever loop says that breaking from the body of the loop with conditionq is
the same as terminating the loop normally withq. That is:

{p} a {Bq∨Np∨E x}
{p} while(true) a {Nq∨E x}

whereE stands for any ofR, Gl , wherel is not a label defined ina. The rule also captures the idea
that exiting exceptionally in another way than through break (that is, with either return or goto)
from the body of the loop with conditionx means exiting the whole loop with conditionx too.
The normal termination conditionp for the body of the loop that appears in the rule is afixpoint,
and finding a useful fixpoint (lower than ‘true’) in practice is a non-trivial feat of leger-de-main.

Exceptional modal conditionsR p, B p, Gl p are generated uniquely by the corresponding state-
ments,return , break andgoto respectively:

{p} return {Rp} {p} break {Bp} {p} goto l {Gl p}

The rule for conditionals is, unsurprisingly:

{p∧c} a {Nq∨E x} {p∧¬c} b {Nq∨E x}
{p} if(c) a else b {Nq∨E x}

whereE stands for any ofR, B, Gl , wherel is not a label defined ina or b.
A suitable assignment rule is always:

{q[e/x]} x = e{Nq}

but in practice some weaker rule is usually implemented, with special cases that depend on
the form of the expressione. From the point of view of the correctness of the logic, it does
not matter what weaker rule is implemented because it will be sound. The practical effect of
a weaker implementation is eventually to generate more ‘false positive’ alerts for defects than

Proc. OpenCert 2010 10 / 20

ECEASST

would otherwise have been the case. For example, non-linear update expressions are typically
described in practice by very approximate logic such as:

{x > 0∧|x||y|< 231} x = x∗y {sign(y) = sign(x)}

(the preconditions avoid overflow).
The rule for a labelled statementl : b says that an initial conditionp is required that is the

same as the exit conditionp from all thegoto l statements withinb. I.e., p is a fixpoint:

{p} b {Nr∨E x∨Gl p}
{p} l : b {Nr∨E x}

Compare the rule for while forever loops.
A derived rule for labelled statements deals with the more general situation where a label

occurs in the middle of a sequence of statementsa; l : b, rather than at the beginning. There it
is the case that the entry conditionq for l : b must not only be the normal exit condition from
a, but also the condition that arises from the ‘forwards pointing’ gotos withina, as well as the
‘backwards pointing’ gotos inb:

{p} a {Gl q∨Nq∨E x} {q} b {Nr∨E x∨Gl q}
{p} a; l : b {Nr∨E x}

whereE stands for any ofR, B or Gl ′ wherel ′ is not a label defined ina or b.
There is a more convenient way to deal with the goto computations, however. It consists

of loading the rules with prior ‘assumptions’Gl pl (written to the left of a. in Gentzen style)
about the exit conditionpl that will be imposed by thegoto l statements encountered within the
program. The initial estimates are modified upwards by the conditionsp found at the sites where
the gotos are located in the program. The initial guesspl needs to be loosened top∨ pl , and so
on round and round until a fixpoint is found. A goto fixpoint achieved in practice is not usually
the least fixpoint, but it is generally a useful and nontrivial one.

p ⇒ pl

Gl pl . {p} goto l {Gl p}

The fixpointpl is available as an entry condition at the point in the code where the labell is sited:

Gl pl . {pl} a {Nr∨E x∨Gl pl}
. {pl} l : a {Nr∨E x}

The model underlying the logic is of individual statess which assign values to the program
variables, and links between them that are ‘coloured’N, R, B or Gl according to whether the
transition is as a result of respectively a normal program termination, hitting a return statement,
hitting a break statement, or hitting a goto. The following diagram is of aR-coloured (‘return
coloured’) transition from states1 to states2:

s1©
R ©s2

11 / 20 Volume 33 (2010)

Open Source Verification

Each state has only one exit in the present (deterministic) setting, but there may be many entries
to any state.

The semantics of theN, R, B, Gl operators is that, for example, a modal statement likeRp
holds at thepair of a states2 andan arce enteringthe state. For example,Rpholds at(e,s2) if
p holds ats2 ande is coloured withR. In general:

(e,s) |= E p ⇔ s |= p∧e is coloured byE

for E any ofN, R, B, Gl .
An atomic programming language statementa causes a change from a states1 to a states2 via

a link e that is of a ‘colour’ that is normallyN, but is exceptionallyR, B or Gl , depending as the
statement executed ina is a return, break or goto respectively.

Suppose that for the (non-atomic) statementa, the sequence

©
s0

e1©
s1

e2 . . .
en©

sn

is a sequence of states run through by the execution ofa. Then{p} a {q} means

{p} a {q} ⇔
∀s0,e1,s1, . . . ,en,sn. p(s0) ⇒ (en,sn) |= q

(22)

By convention, not specifying a ‘colour’ means that colours are ignored, i.e.:

p ⇔ Np∨Rp∨Bp∨Gl p∨ . . . (23)

for all possible labelsl in the program. Then (22) can more symmetrically be written as

∀e0,s0,e1,s1, . . . ,en,sn. (e0,s0) |= p ⇒ (en,sn) |= q

Making (23) work requires a few axioms for the modal operators. Firstly, repetition of modal
‘colouring’ operators has no effect:

E p ⇔ E E p (24)

for E any ofN, R, B, Gl . Also, an arc cannot be two colours at the same time:

E1 p∧E2q ⇒ false (25)

for E1, E2 from N, R, B, Gl andE1 6= E2. Similarly

E1E2 p ⇒ false (26)

for E1 6= E2. And colouring a (positive) formula is the same as colouring its parts:

E (p∨q) ⇔ E p∨E q (27)

E (p∧q) ⇔ E p∧E q (28)

for E from N, R, B, Gl . Together, (23), (24), (25), (26), (27), (28) mean that all modal formulae
have the form

NpN∨RpR∨BpB∨Gl pGl
∨ . . .

for non-modal formulaepN, pR, etc.

Proc. OpenCert 2010 12 / 20

ECEASST

4 Implementation and experiment

We report briefly here on our experience [BP09] in converting what were originally a set of
monolithic semantic analysis tools [BG04, BP06a] for C code to the service of the volunteer
cloud computing approach, and the re-running on the cloud of an experiment that had previously
been run locally.

The exact goal of the experiment was to solve a particular large formal verification problem
via an ad-hoc distributed network of automated solvers. The task consisted of an analysis of the
Linux kernel source code (written in C [ANSI89, ISO99] and assembler) to detect a particular
kind of runtime deadlock in the operating system as compiled for multi-CPU 32-bit Intel (IA32)
platforms. Those faults detected during the experiment are not intrinsically specific to the Intel
platform, however, because 80-90% of the code is shared with and common to the 15 other major
architectural types supported by the Linux kernel, and any faults found in a common section are
relevant to the other platforms too. The deadlock is known as ‘sleep under spinlock’. It happens
when a thread of computation sets a ‘spinlock’ (one which another thread will wait busily for,
spinning in a tight loop until it is released), but then ‘sleeps’ (is ejected from the CPU). Since
the ejected thread is the only one that will eventually release the lock, if a thread enters the CPU
meanwhile and spins waiting on the spinlock the situation is deadlocked. The CPU is occupied
by a spinning thread that will do nothing except keep the only thread that will release the lock
out of the CPU. The experiment detects about three such faults per million lines of code. It also
simultaneously checks for other similar deadlock possibilities (notably ‘spinlock under spinlock
under spinlock. . . ’), which are detected at close to the same frequency. The average lifetime
from appearance to elimination in the source code of the faults detected appears to be about six
months, checking against the version histories.

4.1 Populating the database

The first practical task for any submitter in presenting a problem to the cloud for solution consists
of parsing the source code and storing the resulting syntax tree into the cloud’s remote database.
But it is a considerable logistical problem, and it turned out to be too difficult to treat naively.

In our experiment [BP09], a million or so lines of Linux kernel source code was offered up for
analysis, and that gave rise to over ten million syntax tree nodes. Each insertion involved several
relational database updates on the (postgresql [Dou05]) back-end and the acknowledgement and
locking requirements slowed the transactions down to as much as a second or more across the
network (the average time was a tenth of a second or so). There are only 86400 seconds in
a day, and no developer is going to wait on the order of weeks to upload their problem. The
efficiency might have been improved tenfold with effort, but it would have still been too slow for
multi-million line source code bases.

This ‘population problem’ was eventually overcome by writing the parse data to a fast local
non-relational data store (a GNU DBM 1.8.3 based store was used), then copying it to the remote
database site in one lump, and converting it to relational database format in situ at the remote
database. That got the job done in a day. It may be expected that incremental updates will
comfortably handle new point releases of the source code base from there on. Attempts to use
local and remote database replication pool services to upload the data in trickle mode failed.

13 / 20 Volume 33 (2010)

Open Source Verification

Table 1: Top-level definitions with multiple instances (∑xy= 746844)

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000

#
u
n
iq

u
e
 d

e
fs

#instances

Each stream tended to stop completely while the database was otherwise in use, and the end
result was slower overall. Clearly in the future source code will have to be uploaded whole to an
extra cloud service from where it can be transferred into the database from close by.

4.2 Pruning the analysis

A single analysis task downloaded for solution by a volunteer client in the cloud usually consists
in practice of the analysis of a single top-level functional unit. However, it turned out in our
experiment that many of the function definitions from common header files had effectively been
duplicated up to thousands of times through being declaredstatic and inline, a combination
which, in C, signals local scope and context at every implantation site. SeeTable 1for a count of
the number of implanted definitions. At right in the table are represented the dozens of function
definitions implanted into more than a thousand different sites. The number of analysis tasks
was reduced tenfold overall by choosing to analyse only one representative from each class of
syntactically identical functional definitions.

There is a potential problem in that the semantics of some of these apparent duplicates might
have been modified unexpectedly by the differing contexts into which they were copied. It
was supposed that that did not happen. The assumption was made that no two syntactically
identical definitions captured identically named but different external references. This is a good
assumption for well-written code, but it was not checked systematically. The numbers were
certainly prohibitive - there were three quarters of a million top level function definitions in the
database. Only seventy-two thousand of them corresponded to non-duplicates, and those were
the ones eventually allowed to proceed to analysis.

Proc. OpenCert 2010 14 / 20

ECEASST

4.3 Improving performance

Fetching data from the database in the cloud to a client as needed turned out to be far too in-
efficient as a general strategy. The latency of each database transaction was sufficient that the
computation as a whole proceeded about one thousand times as slowly as it would have done on
locally stored data (that experiment had already been tried [BP06a]).

The situation was improved firstly by avoiding downloading syntax trees (node by node) in
favour of downloading the relevant source code text in one lump and re-parsing it locally on the
volunteer client. The issue of generating the same database keys locally as remotely was handled
by storing an elaborated version of the source decorated with extra annotations, among them the
in-database key for each identifier reference (each reference appeared in the elaborated text as
‘x@123456’, where ‘x’ was the label in the original source, and ‘123456’ the primary database
key indexing the reference to ‘x’ at that line and column in that source code file). The primary
provides enough information to generate all other keys locally too.

Secondly, a persistent cache was added on the client side just atop the database interface. The
cache scored hits around the 95% level, with the corresponding order-of-magnitude-and-more
speed-up.

Thirdly, the few database interactions that turned out to take minutes each – queries involving
complex searches and aggregates across millions of database entries, such as calculating new
priorities for the remaining work tasks after each task completion by a volunteer client – were
amortised by calculating up to five hundred results ahead of time and then doling them out as
needed. That implied that work task priorities in particular were never quite what they should
have been according to theory, but the effect was not significant in practice.

Finally, significant reductions in the complexity of the logical formulae generated during the
processing were achieved by building in automatic theorem-proving techniques to the mecha-
nisms that generated the formulae in the first place. There is a trade-off between expending
time to reduce complexity and gaining time through the reduced complexity, but there were huge
gains made by the simplest reduction techniques, based essentially on automatic deduction in
the symbolic logic in order to remove extraneous terms from the formulae. If the automatic de-
duction failed to obtain an improvement, abstract interpretation and finally mixed integer linear
programming were used first to see if a reduction in complexity could possibly be achieved and
then to check definitively [BP09].

4.4 Allocation and management strategy

Allocating work to volunteer clients required an allocation strategy. Naively sending out the next
work task in alphabetical order would have eventually gotten all working clients stuck executing
very hard tasks with no appreciable progress being made. The group of volunteer clients makes
more progress overall if they complete the easy work tasks first. But which are the easy tasks?
There is no definite way to tell other than by trying and seeing.

The size of analysis task taken on by volunteer clients was initially set to ‘one complete func-
tional unit’, i.e. a top-level function definition. Each functional unit was initially assumed to be
equally as hard to analyse as every other. Each volunteer was initially givenT0 = 10 minutes
of CPU time (normalised to a 1GHz CPU) in which to complete the work task. If the limit was
exceeded, the client abandoned the task, reported back the incompletion statistic to the cloud’s

15 / 20 Volume 33 (2010)

Open Source Verification

database, and moved on to a different work task. The task’s estimate of intrinsic difficulty was
raised, as reflected by an increased timeout valueT1 > T0 now associated with it.

It was intended by this means to tamp down as much as possible on the total concurrent inter-
actions with the cloud’s database. Network bandwidth is a finite bound that cannot be exceeded,
and the database has a limit on the number of transactions per second it can absorb. The cache
at each client served to prevent 90% of that client’s database transactions from escaping onto
the net but work task startup and shutdown are points where large amounts of novel information
are exchanged with the cloud. Giving volunteer clients by default a relatively large work unit
to chew on reduces the number of data requests flying about the network and thus in principle
helps the computation overall. The downside is that clients may be given more than they can
deal with, plugging progress overall. Unplugging by imposing a timeout was the simplest cure.
The downside is that it implies the loss of the data accumulated by the client up to the point of
abandonment.

Every time a work task was abandoned uncompleted, the estimated time required to complete
it was increased by 50% (i.e.,Tn+1 = 1.5Tn), so that the next client to take it on would spend
longer on it before abandoning. Moreover, tasks with a higher timeout were handed out with
lower frequency (i.e., with lower priority) so that clients would tend to take the easier tasks first.

In the end, the ‘hard’ work tasks that took longer than the initial 10 minutes turned out to
comprise only 0.5% (three hundred-odd) of the total. One might argue that the tasks handed
out initially were not difficult enough since 99.5% failed to prevent their host from emitting
significant noise on the network for less than ten minutes at a time.

However, of the hard tasks, two thirds (about two hundred) eventually did complete in an
hour or less, availing of lengthened timeouts. Abandonment wastes the earlier effort put in, but
the time taken overall is still dominated by the successful final stint, so at most three hours of
computation time were spent for each hour-long completion here.

Those ‘very hard’ work tasks that still were taking longer than an hour without completion (a
hundred or so, or 0.15% of the original total) were dealt with in accord with the theory developed
in Section 2. That is to say, the incremental progress in the client dealing with them was check-
pointed to the cloud’s database every minute. That pushed up the number of remote database
transactions, but in return for guaranteed progress. Any volunteer client could take up the work
where another had left off.

That eventually successfully dealt with all but 0.03% of the original set of seventy-two thou-
sand functional units submitted for analysis. Twenty or so ‘ultra hard’ exemplars remained in-
tractable. A few of these contained constructs particular to GNU C that could not be handled by
the parser, ‘interior’ (local) function definitions within other function definitions being the most
significant such. The rest were most notably characterised by the presence of generated sym-
bolic logical assertions of great complexity, containing more than 40,000 terms each. Clearly,
making progress on those requires better techniques with which to reduce the complexity of the
symbolic logic expressions encountered or else better techniques for reducing the granularity of
the calculations still further.

SeeTable 2for a graph of the time taken per task against the percentage of the overall time
taken. This graph shows inflexion points at about the 3600s point (corresponding to the one hour
mark at which tasks were shifted to checkpointing execution) and also at about the 4500s mark,
if not also the 60s mark. The cause behind the latter two inflections is not known.

Proc. OpenCert 2010 16 / 20

ECEASST

Table 2: Percentage of total time taken per analysis task (cumulative)

 0

 20

 40

 60

 80

 100

 1 10 100 1000 10000 100000

\%
ti

m
e

time taken per task in seconds

The graph shows that the tasks taking up to ah hour of computation time comprised only abut
30% of the total time taken. Two thirds of the computation time overall was spent on those only
a hundred or so ‘very hard’ tasks that in number comprised only 0.15% of the total numbers.
That is a very surprising observation.

4.5 Statistical Inferences

It should take around 500 1GHz volunteer clients in the cloud to complete the work undertaken
in the experiment in under six hours.

A rough average time needed overall for processing per top-level functional unit in the source
code was 116 seconds on a notional 1GHz CPU. The ‘very hard tasks’ (taking more than an
hour), though they accounted for not much more than 0.15% of the numbers, required around
8% of the processing time. SeeTable 3for a straightforward graph of the timing spreads.

Regarding the CPU load expressed on a volunteer, one may conclude that it is only significant
in the case of the hard work tasks, which comprise approximately 0.5% of the total number. For
these cases, CPU load could in the future be limited by throttling the software automatically.
It was not limited during the experiment undertaken, and CPU load was rarely more than a few
percent for 99.5% of the tasks undertaken, rising towards maximum levels only on the hard tasks.
The implication is that the clients were generally I/O bound, or CPU load would have routinely
been much higher. The relatively infrequent queries to the cloud database that penetrated the
local caches apparently stalled the client software significantly. The clients could be observed
averaging between 150-500 accesses per second to the local cache layer on a 1GHz system (about
90% reads, 10% writes), leaving about 10 transactions per second per client to wend their way
out to the rest of the cloud and back.

17 / 20 Volume 33 (2010)

Open Source Verification

Table 3: Time taken per analysis task (cumulative count)

 0

 20

 40

 60

 80

 100

 1 10 100 1000 10000 100000

%
ta

sk
s

time in seconds

The back-end database fanout is presently limited to about 10 clients per server in the cloud,
though that figure could be improved with better client-side caches. A fanout of around 40
would appear to be feasible by doubling the number of cores per server and increasing server
RAM to 64GB (our experiment used a single core 1.8GHz Athlon with 3GB RAM), since a
large proportion of real server load appears to come about through paging data to disk and back
in order to accommodate database images that exceeded the available RAM. So between 12-50
servers in the cloud are needed to support the 500 volunteer clients projected as necessary to
analyse a million lines of source code in 6 hours.

How does the cloud computation compare to the original monolithic computation from which
it is descended? The short answer is ‘about 50 times as slow’, at present, making parity with re-
spect to the original experiment occur about the 50-client mark now. But the original computation
threw away all its intermediate calculations as it produced answers, meaning that accountability
meant repeating the whole computation from scratch. It was not a scalable solution, while the
cloud-computing approach is scalable.

5 Summary

The computation of a certificate guaranteeing the absence of formally defined defects in an open
source code base has been formally described.

It has been shown that the computation may be handled incrementally by a distributed ‘vol-
unteer cloud’ of client CPUs each taking a fragment of the work upon themselves at a time. An
experiment in which the cloud was organised to analyse about a million lines of C code (requiring
about nine million seconds of standardised 1GHz CPU time) has validated the idea.

Proc. OpenCert 2010 18 / 20

ECEASST

Bibliography

[Abu09] F. Abujarad, B. Bonakdarpour and S. Kulkarni. Parallelizing Deadlock Resolution in
Symbolic Synthesis of Distributed Programs. InProc. 8th Intl. Workshop on Parallel
and Distributed Methods in Verification, Nov. 2009 (with Formal Methods 2009).

[And04] D. P. Anderson, BOINC: A System for Public-Resource Computing and Storage. In
Proc. 5th IEEE/ACM Intl. Workshop on Grid Computing, Nov. 2004.

[AKW05] D. P. Anderson, E. Korpela and R. Walton. High-Performance Task Distribution for
Volunteer Computing, InProc. 1st IEEE Intl. Conf. on e-Science and Grid Tech-
nologies, Dec. 2005.

[ANSI89] American National Standard for Information Systems – Programming Language C.
ANSI X3.159-1989. American National Standards Institute. 1989.

[BR02] T. Ball and S. K. Rajamani. The SLAM Project: Debugging System Software via
Static Analysis. InProc. 29th ACM Symp. on Principles of Programming Lan-
guages, Jan. 2002.

[Bob01] P. K. Bobko. Open-Source Software and The Demise Of Copyright.Rutgers Com-
puter & Technology Law Journal51, 2001.

[BRLS04] M. Barnett, K. Rustan, M. Leino and W. Schulte. The Spec# programming system:
An overview. InProc. Intl. Workshop on Construction and Analysis of Safe, Secure
and Interoperable Smart Devices, Mar. 2004. LNCS 3362, Springer, 2004.

[BG04] P. T. Breuer and M. Garcı́a Valls. Static Deadlock Detection in the Linux Kernel. In
A. Llamośı and A. Strohmeier (eds.),Reliable Software Technologies – Ada-Europe
2004, Proc. 9th Ada-Europe Intl. Conf. on Reliable Software Technologies, June
2004. LNCS 3063, Springer, 2004.

[BP06a] P T. Breuer and S. Pickin. One Million (LOC) and Counting: Static Analysis for
Errors and Vulnerabilities in the Linux Kernel Source Code. In L. M. Pinho and
M. Gonźalez Harbour (eds.),Reliable Software Technologies – Ada-Europe 2006,
Proc. 11th Ada-Europe Intl. Conf. on Reliable Software Technologies, June 2006.
LNCS 4006, Springer, 2006.

[BP06b] P. T. Breuer and S. Pickin. Symbolic Approximation: An Approach to Verification
in the Large.Innovations in Systems and Software Engineering2(3-4), Dec. 2006.

[BP09] P. T. Breuer and S. Pickin. A Formal Nethod (a Networked Formal Method).Inno-
vations in Systems and Software Engineering, 6(4), Dec. 2010.

[CES86] E. Clarke, E. Emerson and A. Sistla. Automatic Verification of Finite-State Concur-
rent Systems using Temporal Logic Specifications.ACM Trans. on Programming
Languages and Systems, 8(2), 1986.

19 / 20 Volume 33 (2010)

Open Source Verification

[CC77] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. InProc. 4th
ACM Symp. on Principles of Programming Languages, Jan. 1977.

[Dou05] K. Douglas. PostgreSQL. Sams Publishing (2nd ed.), 2005.

[ECCH00] D. Engler, B. Chelf, A. Chou and S. Hallem. Checking System Rules Using System-
Specific, Programmer-Written Compiler Extensions. InProc. 4th Symp. on Operat-
ing System Design and Implementation, Oct. 2000.

[EL02] D. Evans and D. Larochelle. Improving Security using Extensible Lightweight Static
Analysis.IEEE Software19(1), Jan/Feb 2002.

[FTA02] J. S. Foster, T. Terauchi, and A. Aiken. Flow-Sensitive Type Qualifiers. InProc.
ACM SIGPLAN Conf. on Programming Language Design and Implementation, June
2002.

[Gou99] R. W. Gomulkiewicz. How Copyleft Uses License Rights to Succeed in the Open
Source Software Revolution and the Implications for Article 2B.36 Houston Law
Review 179, 1999.

[GH91] J. V. Guttag and J. J. Horning.Introduction to LCL, A Larch/C Interface Language.
http://ftp.digital.com/pub/Compaq/SRC/research-reports/abstracts/src-rr-074.html.

[Gri02] A. Griffith. GCC: The Complete Reference. McGrawHill/Osborne, 2002.

[Hol03] G. J. Holzmann.The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley, Sep. 2003.

[HJG08a] G. J. Holzmann, R. Joshi1 and A. Groce. Swarm Verification. InProc. 23rd
IEEE/ACM Intl. Conf. on Automated Software Engineering, Sep. 2008.

[HJG08b] G. J. Holzmann, R. Joshi1 and A. Groce. Model driven code checking.Automated
Software Engineering, 15(3-4), Dec. 2008.

[ISO99] ISO/IEC 9899-1999, Programming Languages – C. International Standards Organ-
isation, 1999.

[JW04] R. Johnson and D. Wagner. Finding User/Kernel Pointer Bugs With Type Inference.
In Proc. 13th USENIX Security Symp., 2004, Aug. 2004.

[NL96] G. C. Necula and P. Lee. Safe Kernel Extensions without Run-Time Checking.
SIGOPS Operating Systems Review30, SI, Oct. 1996.

[WFBA00] D. Wagner, J. S. Foster, E. A. Brewer and A. Aiken. A First Step Towards Automated
Detection of Buffer Overrun Vulnerabilities. InProc. Network and Distributed Sys-
tem Security Symp., Feb. 2000.

Proc. OpenCert 2010 20 / 20

http://ftp.digital.com/pub/Compaq/SRC/research-reports/abstracts/src-rr-074.html

	Introduction
	Context and related work
	Contents

	Certification
	Certification in the abstract
	What is a defect?
	Example
	False positives
	Accountability
	Analysis and evaluation
	The cloud computation

	Logic
	Implementation and experiment
	Populating the database
	Pruning the analysis
	Improving performance
	Allocation and management strategy
	Statistical Inferences

	Summary

