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Abstract: Efficient constraint handling is essential in UML, in metamodeling as
well as in model transformation. OCL is a popular, textual formal language that
is used in most of the modeling frameworks to express constraints. Our research
focuses on the optimization of OCL handling. Previous work have presented algo-
rithms that can accelerate the constraint validation by rewriting and decomposing
the constraints and caching the model queries. Although these algorithms can be
used in general, there are special cases, where additional restrictions apply. The aim
of this paper is to present these refined restrictions and the extended optimization
algorithms.
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1 Introduction

Metamodeling techniques can describe the structural rules of Domain Specific Modeling Lan-
guages (DSMLs). The available model items, their attributes, and the possible relations between
the items can be defined, but these definitions have a tendency to be incomplete or imprecise.
For example, there is a resource editor domain for mobile phones. Here, it is useful to define the
valid range for slider controls that cannot be accomplished using structural metamodeling tech-
niques. Another example is a metamodel that defines a DSML with computer networks. A single
computer can have input and output connections, but these connections use the same cable with
maximum n channels. Thus, the number of the maximum available output connections equals the
total number of channels minus the current number of input channels. Such constraints cannot
be expressed by metamodel rules.

The real need for constraints also applies to graph rewriting-based model transformation
[LLC04]. Here the Left Hand-Side (LHS) of the rewriting rules define the pattern to find in
the host graph. Beyond the topology of the visual models, additional constraints must be spec-
ified. Model transformations constraining the pattern matching are very popular, they are used
for example in QVT [QVT]. Additionally, dealing with constraints means a solution to several
unsolved model transformation issue [LLC04].

One of the most wide-spread approaches to constraint handling is the Object Constraint Lan-
guage (OCL) [OCL]. OCL is a flexible formal language. It was originally created to extend
the capabilities of UML [UML], but due to its flexibility, it can also be used in metamodeling
environments with minor extensions [MLLC06]. Nowadays OCL is becoming essential both in
metamodel-based model validation and model transformations.
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Visual Modeling and Transformation Systems (VMTS) [VMTS] is an n-layer metamodeling
and model transformation tool. VMTS uses OCL constraints in model validation as well as in the
graph rewriting-based model transformation [LLC04]. VMTS contains an OCL 2.0 compliant
constraint compiler that generates a binary executable for constraint validation [MLC06]. The
constraints contained both by the rewriting rules and by metamodel diagrams are attached to the
metamodel, thus they can be handled with the same algorithms.

Previous papers [MLLCOPT06] and [MLCOPT06] have presented three optimization algo-
rithms. These algorithms can reduce the navigation steps in the constraints (i) by relocating the
constraints, (ii) separating clauses based on Boolean operands and (iii) caching the result of the
model queries applied during validation. The main advantage of the algorithms is that they do not
rely on system-specific features, thus, they can easily be implemented in any modeling or model
transformation framework. The general correctness of the algorithms has also been proved.

While implementing and by further examining these algorithms, we have refined their appli-
cation conditions. We have found that the scope of usability of the first algorithm is limited.
Furthermore, the second algorithm can accelerate the validation in certain cases only, according
to the type of the Boolean operand. The cases where the decomposition to clauses are mean-
ingless, thus, the advantage of the optimization that equals zero have to be excluded from the
algorithm. The primary aim of the paper is to present these restrictions and the extended algo-
rithms.

The paper is organized as follows: firstly, Section 2 elaborates the original version of the two
optimization algorithms. Secondly, Section 3 introduces the limitations of the algorithms, while
Section 4 presents the new, extended algorithms. Finally, Section 5 summarizes the presented
work.

2 Backgrounds and Related Work

In general, the evaluation of OCL constraints consists of two steps: (i) selecting the object and its
properties that we need to check against the constraint and (ii) executing the validation method.
Although the second step can use several OCL-related optimization methods, our optimization
algorithms focus on the first step, because (i) the efficiency of the validation depends on the
realization of the OCL library (types and expressions), thus, optimizing the validation process
is usually more implementation-specific; (ii) in general, the first step has more serious compu-
tational complexity, since each navigation step means a query in the underlying model. The
original version of the algorithms were published in [MLLCOPT06] and in [MLCOPT06].

2.1 Relocation

One of the most efficient way to accelerate the constraint evaluation is to reduce the navigation
steps in a constraint. This is the aim of the first algorithm, called RelocateConstraint (Alg. 1).
The algorithm processes the propagated OCL constraints, and tries to find the optimal context
for the constraint. The function CalculateSteps counts the number of steps, if the constraint
would be relocated in a new context. The main foreach loop examines the navigation paths of
the actual constraint and relocates the constraint to the node at the smallest navigation cost.
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U pdateNavigation updates the navigation references, while Relocate applies the relocation.
Here, relocation means changing the context of the constraint without changing the result of
the evaluation.

Algorithm 1 RELOCATECONSTRAINT algorithm
1: RELOCATECONSTRAINT(Model M)
2: for all InvariantConstraint C in M do
3: minNumberO f Steps = CALCULATESTEPS(CurrentNode in C)
4: optimalNode = CurrentNode of the C
5: for all Node N in C do
6: numberO f Steps = CALCULATESTEPS(N)
7: if numberO f Steps < minNumberO f Steps then
8: minNumberO f Steps = numberO f Steps
9: optimalNode = N

10: if optimalNode 6= CurrentNode of C then
11: UPDATENAVIGATIONS of C
12: RELOCATE C to optimalNode

2.2 Decomposition

Constraints are often built from sub-terms and linked with operators (age = 18 and name =
′Jay′), or require property values from different nodes (sel f .age = sel f .teacher.age). Thus,
using the RelocateConstraint algorithm, it is not always possible to eliminate all navigation steps.
Although these sub-terms are not decomposable in general, they can be partitioned to clauses if
they are linked with Boolean operators. A clause can contain two expressions (OCL expression,
or other clauses) and one operation (AND/OR/XOR/IMPLIES) between them. By separating
the clauses, we can reduce the number of the navigation steps contained by the OCL expressions
and the complexity of the constraint evaluation during the constraint validation process.

The ANALYZECLAUSES algorithm (Algorithm 2) processes the syntax tree constructed
from the constraint: The algorithm is invoked for the outermost OCL expression of each invari-
ant, recursively searches the constraint for possible clause expressions and creates the clauses.
The algorithm uses the following rules: (i) A clause is created for every logical expression, the
two sides of the expression are added to the clause as children. The children are recursively
checked to decompose nested Boolean relations. (ii) Parentheses are eliminated, the inner ex-
pressions are checked. (iii) In other cases, if there is only one expression in the whole constraint,
then a special clause is created, otherwise the RelocateConstraint algorithm is used on the ex-
pression.

3 Contributions

In general, there are two key questions in connection with optimization algorithms: (i) whether
they result in the same output as the original algorithm for every possible input and (ii) whether
they are more efficient. The first question is crucial, because having proper evaluation results
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Algorithm 2 ANALYZECLAUSES algorithm
1: ANALYZECLAUSES(Model Exp)
2: if Exp is LOGICALEXPRESSSION then
3: Clause = CREATECLAUSE(Exp.RelationType)
4: Clause.ADDEXPRESSION(ANALYZECLAUSES(Exp.Operand1))
5: Clause.ADDEXPRESSION(ANALYZECLAUSES(Exp.Operand2))
6: return Clause
7: else
8: if Exp is EXPRESSIONINPARENTHESES then
9: return ANALYZECLAUSES(Exp.InnerExpression)

10: else
11: if Exp is ONLYEXPRESSIONINCONSTRAINT then
12: Clause = CREATECLAUSE(SpecialClause)
13: Clause.ADDEXPRESSION(RELOCATECONSTRAINT(Exp))
14: return Clause
15: else
16: return RELOCATECONSTRAINT(Exp)

is essential. These guidelines, these two questions are taken into account when constructing
limitations for the optimization algorithms.

3.1 Correctness

Primarily, the correctness of the relocation algorithm is examined. An algorithm or a relocation
is correct only if the output of the optimized and original constraint is the same for every possible
input. The aim of the limitations is to eliminate the cases where the result of the original and the
optimized algorithms would differ. To achieve this, it is necessary to examine when and how we
can apply correct relocations.

Since the original and the new context node are not always neighbors, the optimization stores
a path between them. This path is called RelocationPath. RelocationPath does not allow circular
references that could cause erroneous, infinite navigation sequences. Storing RelocationPath is
necessary, because there can exist more then one paths between the two nodes in the host graph.
The differences between the paths can mean that one path is acceptable, while the other is not.
In the following propositions, we often say — for the sake of simplicity — that a RelocationPath
is correct, although we mean that the relocation using the RelocationPath is correct.

Proposition 1 If the steps of RelocationPath are separately correct, then their composition,
the RelocationPath is also correct.

Example 1 The original constraint is located in node A, the optimal node is D (Fig. 1). The
RelocationPath is drawn from A to D (dashed line). If neither the relocation from node A to C
(solid line), nor the relocation from node C to D (dotted line) change the result of the constraint
(if they are correct), then the proposition states that the relocation from A to D is correct as well.
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Figure 1: The steps and the whole RelocationPath

Proof. Let C be the original constraint and P a complex RelocationPath found by the search
steps. P contains finite number of steps, since the host model contains finite number of model
items and no circular navigation paths are allowed as mentioned earlier. Furthermore, let O be
the original context; S the first step of P and O’ the destination node of S in P. According to the
premise of the proposition, the correctness of S is proven, thus, relocating the constraint from O to
O’ can be accomplished. After applying this relocation, a new constraint, C’ can be constructed.
Applying the relocation algorithm on C’ results a new RelocationPath, P’ containing one less
step, than the original one. Since P has a finite number of steps, the algorithm always terminates.

Corollary 1 The steps in a path can be examined separately. If in a certain case the correctness
of the algorithm is proven to be correct for each single navigation step in the RelocationPath,
then it is also proven for the whole RelocationPath. Thus, in general, if the correctness of each
possible single navigation step is proven, then the correctness of the whole relocation path is
proven. Therefore, it is enough to examine the correctness of single relocation steps.

In the next propositions, the following abbreviations are used: C denotes the original con-
straint, C′ the new (relocated) constraint, M0 is metamodel, M is model, O is the original context,
N is the new context. O and N are metamodel elements, and their instantiations are O1, O2. . . On,
and N1, N2. . . Nn.

Example 2 Fig. 2 shows an example metamodel, its instantiation, and the constraint reloca-
tion. The metamodel represents a domain that can model computers and display devices (here
monitors only). A single computer can use multiple monitors. The model defines a simple con-
straint attached to the node Computer, this constraint is relocated by the optimization to the node
Monitor.

Using the abbreviations, we can say the following: M0 is the metamodel shown in Fig. 2/a,
M is its instantiation (Fig. 2/b). O is Computer, N is Monitor in M0. O has two instantiations,
Computer1 (O1) and Computer2 (O2). Similarly, PrimaryMonitor is N1, SecondaryMonitor is
N2, and finally, Monitor is N3.

The multiplicity of relations in metamodels is defined by a lower, and an upper limit. The
limits can contain an integer representing the number of participants exactly, or * allowing any
number of objects. A multiplicity allowing zero value means that there can be unconnected
nodes in the relation. A multiplicity allowing a value greater than one means that navigation
between the nodes must use a set operation. Since relations need different handling according
their multiplicities, the following categories can be constructed:
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Figure 2: Example metamodel and model

• ZeroOrOne - the lower limit of the multiplicity is 0, the upper limit is 1

• ZeroOrMore - the lower limit of the multiplicity is 0, the upper limit is more than 1

• ExactlyOne - the lower and the upper limits are 1

• OneOrMore - the lower limit of the multiplicity is 1, the upper limit is more than 1

Multiplicities on the source and on the destination side have different meanings, thus, possible
modeling structures can be described by a combination of the presented multiplicity categories.
For example in the previous metamodell (Fig. 2) the multiplicity is ExactlyOne (source side) -
OneOrMore (destination side).

The following propositions are based on the multiplicity combinations. This first case is the
most simple, allowing only ExactlyOne multiplicity on both sides.

Proposition 2 (Case A) A relation with multiplicity ExactlyOne on both sides can be used for
relocation. In this case the relocated expression differs from the original version in the navigation
steps (or navigation step sequences) only. The new constraint expression is transformed from the
original definition using the following rules:

Rule 1. If the expression is a navigation to the new context (N), then the expression is trans-
formed into self.

Rule 2. If the expression is an attribute query in the old context (O), then the new expression
is a navigation from N to O and an attribute query applied there (e.g. self.Manufacturer
is transformed to self.computer.Manufacturer).

Rule 3. If the expression is a navigation from the old context (O), then the new expression is a
navigation from N to O.

Rule 4. Other expressions in the constraint are not altered.

Example 3 Let the example metamodel presented above define that computers are able to han-
dle exactly one monitor, and monitors are always connected to exactly one computer (Fig. 3).

Proc. OCLApps 2006 6 / 18



ECEASST

Furthermore, let the constraint C state that the monitor is an LCD monitor (display.Type =
′LCD′). In this case relocating the constraint will result C′: Type = ′LCD′.

Figure 3: ExactlyOne multiplicity on both sides - metamodel and model

Proof. An ExactlyOne multiplicity on both sides means that O and N objects can refer to each
other the same way (using the role name of the destination node). The result of the navigation
reference is always a single model item, not a set of model items and not an undefined value.
This means that changing the navigation steps can be accomplished.

The transformation rules remains correct if the rules above are satisfied:
Rule 1. The relocation has changed the context, thus, the navigation step in the original

context is not necessary any more.
Rule 2. and Rule 3. Since the original attribute reference, or the destination node of the

navigation is invalid in the new context, thus, the constraint has to navigate back to the original
context first, and apply the expression there.

Rule 4. Rule 1-3. covers all possible valid attribute and navigation expressions, thus, no
additional rules are required.

Handling multiplicity different than ExactlyOne on the source side can be applied by rewriting
the constraints:

Proposition 3 (Case B) Navigation edges that allow zero multiplicity (ZeroOrOne, or ZeroOr−
More) on the source side can be used in RelocationPath by encapsulating the original constraint
by a notEmpty expression that checks whether the original context is accessible from the new
one. If the original context cannot be reached from the new context, then the constraint results
true showing that the expression cannot be evaluated (it does not violate the invariant).

Example 4 Fig. 4 shows an example metamodel and model for the proposition. Let C be
defined as self.monitor.Price< 50. If this constraint is relocated, then it is transformed
to

if (self.computer->notEmpty()) self.Price < 50 else true
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Figure 4: Zero multiplicity - metamodel and model

expressing that monitors having at least one computer attached, has to have a price less then 50$.
The invariant is automatically automatically evaluated to true in Monitor1.

Proof. Let M be a model with O1, N1 and N2 defined (Fig. 4). Let N1 be isolated (or at least
not connected with O1). If the source class is presented, then the evaluation can be applied the
same way as in Case A. This is the case in N2. If the source class is not present, then the original
constraint does not check the destination class (as in N2), thus the class is not required to check
by the relocated constraints either. The encapsulating notEmpty expression ensures that only
those nodes are checked, where the source class is presented. Thus, the relocation is always
correct.

Proposition 4 (Case C) If the multiplicity is ZeroOrMore, or OneOrMore on the source side,
then the basic idea is to collect the original context nodes in a set, and iterate on this set to check
the relocated constraint in each old contexts node. Therefore, the constraint expression is relo-
cated by adding an encapsulating forall expression to the constraint (similarly to notEmpty
in Case B). The forall expression iterates on all of the original context nodes, where the iter-
ator values are the original context nodes (see example below). This also means that inside the
forall expression, this case is similar to Case A. If the relocated constraint does not contain
any attribute reference to the original context node, or navigation through it, then the forall
expression can be avoided.

Example 5 Let O contain a simple constraint referring to one of its attributes, named Abstract.
After the relocation, the constraint is located in N and the reference self.Abstract is trans-
formed to

self.O->forall(O | O.Abstract).

This forall expression is true only if the condition holds for every elements in the set.

Example 6 The example model has been changed to meet the requirements of the proposition
(Fig. 5). Let C be defined as self.Price < display.Price. If this constraint is relocated,
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then it is transformed to

self.computer->forall(computer| computer.Price > self.Price)

expressing that each computer attached to the monitor has to accomplish the condition. Note
that the navigation from O to N in display.Price was reduced to a single self reference.

Figure 5: MoreT hanOne → ExactlyOne multiplicity - metamodel and model

Proof. The presented method ensures that each model item on the original source side is pro-
cessed, and the constraint is checked for all of them. If the multiplicity on the source side is
ZeroOrMore, then it is necessary to check first whether a node with the original context is reach-
able (using the constructs of Case B), and apply the forall expression only if it is reachable.
This method ensures that the navigation back to the original node is always possible. Therefore,
inside the iteration, it is able to use the constructs of Case A, since in each iteration step there
is exactly one node examined from the original context. Inside the forall loop, the name of
the destination node is the iterator value to make rewriting simpler. Thus, the relocated and the
original version are always equivalent.

Multiplicity, other than ExactlyOne on the destination side is harder to handle, than on the
source side. The following propositions describe when and how the relocation is possible in
these cases:

Proposition 5 (Case D) Navigation edges that allow zero multiplicity (ZeroOrOne, or ZeroOr−
More) on the destination side cannot be used in RelocationPath.

Proof. Since the metamodell allows zero multiplicity on the destination side, therefore, it is
possible to construct a model, where the constraint disappears during relocation: Let M0 allow
zero multiplicity between O and N (on the destination side). This means that a model M —
which contains the instantiations of O only — is a valid model. If the the constraints of O are
relocated to N, then the constraint is completely eliminated in case of M. Since it is always
possible to construct a counterexample, relocation cannot be used in this case.
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Partial relocation means that some of the expressions are executed in the new context, while
others are executed in the original context. We use the term semi-relocated for expression exe-
cuted in the original context, and fully relocated for expressions executed in the new context.

Proposition 6 (Semi-relocation) If the constraint contains more than one attribute reference
expressions , then partial relocation is always feasible. The original context is reached using
navigation. Partial relocation cannot be applied if zero multiplicity is allowed on the destination
side.

Proof. Since the proposition is true only for relations not allowing zero multiplicity on the des-
tination side, the navigation between the original and the new context is always possible. This
means that all relations can be traversed according to the constructs presented earlier. Therefore,
it is always possible to navigate back to the original context and evaluate the constraint there. In
this way, the relocated and the original functionality is the same.

Partial relocation is useful, when the limitations of the relocation algorithm do not always
allow executing the whole constraint in the new context as in the following cases.

Proposition 7 (Case E) If the multiplicity is OneOrMore on the destination side, then only
those constraint expressions can be fully relocated, where the original expression uses forall,
or not exists to obtain the referenced model items of the new context. This means that only
those expressions can be used here, which selects all of the model items, or none of them (no
partial selection, or another set operation is allowed).

Example 7 The expression self.N->count() or self.N->select(N.IsUnique)
cannot be relocated, but the expression self.N->forall(N.IsUnique) can.

Example 8 The example model shows the requirements of the proposition (Fig. 6).

Figure 6: ExactlyOne → OneOrMore multiplicity - metamodel and model

Note that due to the preconditions of the proposition, the references to Monitor are always set
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operations in Computer. For example, the expression self.display.Price> 300 cannot
be used, because display is a set, not a single value.

Let M0 contain three constraints: C1, C2 and C3 using the following definitions:

inv c1: self.Price > 650
inv c2: self.display->count() > 5
inv c3: self.display->forall(m:Monitor| m.Price<300)

The proposition requires the constraints to use forall operation to query the attributes of
the new context, or the navigation paths through the new context. The proposition does not
restrict other type of operations, which do not navigate to the new context (for example a local
attribute queries, such as in c1). In this case the rules of Case A can be used, thus, C′

1 becomes
the following:

inv c1: self.computer.Price > 650.

Complex set operations (e.g. C2) cannot be fully relocated according to the proposition. This
limitation does not apply to C3:

inv c3: self.Price<300.

Although the original and the relocated version of the constraint seems to differ, they have the
same meaning: all monitors must be cheaper than 300 USD.

Proof. Firstly, the limitation to set operations is proven. In case of the general selection oper-
ations, such as exists, the selection criterion is true for some of the items and false for the
others. This can lead to two problems with the constraint rewriting: (i) the constraint validation
can generate false results where the selection criteria in the original expression is true/ false, and
(ii) the partial results arising in N cannot be processed (for example summarized) in O. Neither
of these problems can be solved, thus, an universal relocation in this case is not possible.

Secondly, it needs to be proven that relocation is possible along forall, or not exists
operations. Note that not exists can be expressed using forall by negating the condition.
The main difference between the previous (erroneous) subcase and this one is that here — if the
model is valid — the condition in the select operation is true (or false) for each model item. Thus,
the relocated constraint fails only, when the original constraint also fails. The relocation algo-
rithm transforms forall expressions to single references. The relocated constraint is checked
for each node of the new context, thus, the constraints are functionally equivalent.

Proposition 8 (Case F) If the multiplicity is the combination of Cases A to E, then the combi-
nation of the previous propositions must be used:

Rule 1 If the destination side allows zero multiplicity, then no relocation is possible, in any other
cases relocation can be applied.

Rule 2 If the destination side allows MoreT hanOne multiplicity, but the expression uses not a
forall or a not exists operation to navigate to the new context, then the expression
is semi-relocatable only. Rule 2 can be used only to cases not violating Rule 1.

Rule 3 In other cases full relocation is always possible:
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Figure 7: OneOrMore multiplicities - metamodel and model

3/a If the source side allows zero multiplicity, then the expression must be encapsulated
by a if (notEmpty) check.

3/b If the source side allows multiple multiplicity, then the expression must be encapsu-
lated by a forAll operation.

3/c If the destination side allows multiple multiplicity and full relocation is possible, then
the encapsulating forall / (not exists) operation must be avoided.

3/d The rules of Case A must be used to rewrite the expression, modified by the previous
steps.

Rule 3 can be used only to cases not violating Rule 1 or 2.

Example 9 The example (Fig. 7) shows a possible combination of the previous cases. Comput-
ers can have multiple monitors, and monitors can be attached to any number of computers. The
proposition states that relocation is able in this concrete case by combining Case C and Case E
and use Case A in rewriting indirectly.

Proof. (i) If the multiplicity on the source side, or on the destination side is ExactlyOne, then
one of the Case A - Case E can directly be used. Case F is useful if it is not this case.

(ii) Rule 1, which is based on Case D ensures that the constraint will not disappear during
relocation. Since the multiplicity on the source side does not restrict the scope of relocation
(according to Case A - Case C), thus, partial relocation is always possible and all expressions
can be at least semi-relocated (Prop. of Semi-relocation).

(iii) Rule 2 separates the semi-relocatable and fully-relocatable expressions according to Case
E. ExactlyOne multiplicity on the destination side cannot occur because of (i).

(iv) Rule 3 describes how the constraint rewriting must be applied. First the encapsulating
expressions are used (Case B - Case C). These encapsulating expressions simulate ExactlyOne
multiplicity on the source side, which means that the constraint expressions can be handled
inside the encapsulating expressions as if the multiplicity where ExactlyOne. This also means
that afterwards, the constructs of Case E can be used to rewrite the constraint.
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Corollary 2 The task of finding possible destinations of relocation can be reduced to a simple
path-finding problem from the original context to the new one, where relations allowing zero
multiplicity on the destination side cannot be the part of the path. Note that this path, if exists, is
the RelocationPath mentioned earlier.

One of the main difference between the RelocateConstraint and the AnalyzeClauses algorithm
is that the first one modifies the constraint only by relocating it, but the algorithm does not
need special support from the validation framework. In contrast, the second algorithm does
not really modify the text of the constraint, but it requires support for clause-handling during
validation. Therefore, AnalyzeClauses relies more on the framework, but depends less from the
constraint text. Note that AnalyzeClauses is useful mainly in a special case of partial relocation,
where different parts of the constraints have different optimal context and the semi-relocatable
and fully-relocatable are independent. Independent expressions in this context means that the
result of either expression cannot affect the other. This independency between the two kinds of
expressions allows to create clauses from the original constraint as described in Algorithm 2.

Proposition 9 The original version (Algorithm 2) of the constraint decomposition algorithm
(AnalyzeClauses) is always correct if the external functions used in the algorithm are correct.

Proof. The algorithm AnalyzeClauses consists of a multi level condition (Line 2, 8) and several
external function calls in the condition branches (Line 2-5, 8, 11-13, 16). The conditions ensures
that the correct execution branch is selected in all cases according to the type of the current ex-
pression. In the branches of the conditions clauses are created from the original expression (Line
3, 12), or the RelocateConstrain is used (Line 16). Creating clauses means to split the original
expression in smaller or equal parts. RelocateConstraint is proved to be correct according to
the previous propositions. This means that the only part of AnalyzeClauses that can cause erro-
neous results is the clause-handling (validating the expressions in the clauses and summarizing
the results), which is an external function. If this external function is implemented well, the
decomposition is always correct.

3.2 Efficiency

RelocateConstraint can reduce the number of navigation steps in the constraint, but since the
optimization is allowed to used the metamodel only, without the models, it does not know exactly
how many model items are affected by a single navigation step. If the model uses ExactlyOne
multiplicities only, then the performance gained from the optimization is predictable, but the cost
of navigation is not predictable in any other cases. For example, if the number of model items on
the destination side can vary, then the algorithm cannot decide between two paths different only
in relation with OneOrMore multiplicities. This problem can be handled using heuristics, but a
globally optimal method cannot be constructed.

The situation is completely different in case of AnalyzeClauses. Here the performance gained
from the optimization depends on how efficient the construction of the clauses is. The basic idea
behind the algorithm is that the result of the Boolean operations sometimes requires the evalua-
tion of one of the operands only. For example in an AND expression, such as self.Size>50
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and self.display.Size>80 it is enough to check the value of the first operand if it eval-
uates to false. This is why the boolean operators are special, why the AnalyzeClauses algorithm
is based on them instead of other types of operations.

Since the operands cannot affect each other, they can be evaluated separately according to
[MLCOPT06]. In case of AND, OR and IMPLIES operations the value of one operand can
affect the results of the whole operation:

• If either operand is false, then the AND operation is always false.

• If either operand is true, then the OR operation is always true.

• If the first operand is false, then the IMPLIES operation is always true.

• If the presented condition for the given operand is not satisfied, then both operands is
evaluated.

Similar simplification is not available for XOR operations, because in this case both operands
need to be evaluated.

4 The new algorithms

The new RelocateConstraint is shown in Algorithm 3. It consists of two major parts: (i) search-
ing for the optimal node (and RelocationPath) (Algorithm 4) and (ii) relocating the constraint if
necessary (Algorithm 6).

Algorithm 3 The new RELOCATECONSTRAINT algorithm
1: RELOCATECONSTRAINT(Constraint, OriginalContext)
2: OptimalPath = SEARCHOPTIMALNODE(Constraint, OriginalContext, NULL)
3: if OptimalPath 6= OriginalContext then
4: UPDATE(Constraint,OriginalContext, OptimalPath)

The first part of the RelocateConstraint algorithm is based on the SearchOptimalNode func-
tion. This function checks the relocation requirements while searching (StepIsValid, Algorithm
5), thus invalidRelocationPath candidates are dropped as soon as possible. SearchOptimalNode
uses a recursive breadth-first-search strategy to find every possible candidates. The external func-
tion CalculateSteps calculates the number of model queries in the case when the new context is
located in N.

The algorithm StepIsValid is based on the propositions presented in the paper. It checks the
multiplicity on the destination side and decides whether the relocation step is possible. The
external function CheckForAllExpr checks whether the outermost expression is a forall, or a
not exists expression.

The result of SearchOptimalNode is the RelocationPath. If the new context and the old context
are not the same, then the constraint is relocated and updated by the algorithm Update. The
relocation is based on path steps, thus, the algorithm updates the context declaration step-by-
step. The the constraint updating mechanisms are based on the presented propositions, they are
implemented in external functions to improve the readability of the algorithm.
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Algorithm 4 The SEARCHOPTIMALNODE algorithm
1: SEARCHOPTIMALNODE(Constraint C, Node N, PathP)
2: minSteps = CALCULATESTEPS(C,N)
3: optimumCandidate = APPEND(P, N)
4: for all CN in CONNECTIONS(N) do
5: if STEPISVALID(C, CN) then
6: LocalOptimum = SEARCHOPTIMALNODE(UPDATE(C, N, CN), APPEND(P, CN))
7: LocalSteps = CALCULATESTEPS(C,LocalOptimum.LastElement)
8: if LocalSteps < minSteps then
9: minSteps = LocalSteps

10: optimumCandidate = LocalOptimum
11: return optimumCandidate

Algorithm 5 The STEPISVALID algorithm
1: STEPISVALID(Constraint C, Step Step)
2: if DESTMULTIPLICITY(Step)= ExactlyOne then
3: return true
4: else
5: if DESTMULTIPLICITY(Step)= ZeroOrOne or

DESTMULTIPLICITY(Step)= ZeroOrMore then
6: return f alse
7: else
8: return CHECKFORALLEXPR()

Algorithm 6 The UPDATE algorithm
1: UPDATE(Constraint C, Node O, Path P)
2: for all Step in P do
3: if SOURCEMULTIPLICITY(Step)= ExactlyOne) then
4: CHANGECONTEXTSIMPLE(C,Step)
5: else
6: if SOURCEMULTIPLICITY(Step)= ZeroOrOne or

SOURCEMULTIPLICITY(Step)= ZeroOrMore) then
7: ADDISEMPTYCHECK(C,Step)
8: if SOURCEMULTIPLICITY(Step)= OneOrMore or

SOURCEMULTIPLICITY(Step)= ZeroOrMore) then
9: ADDFORALL(C,Step)

10: if DESTMULTIPLICITY(Step) 6= ExactlyOne then
11: REDUCEORIGINALFORALL(C,Step)
12: return C

In the case of AnalyzeClauses there is only one new limitation: XOR operations are excluded
when creating the clauses. Thus, the algorithm — presented in Algorithm 7 — is similar to the
original one.
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Algorithm 7 ANALYZECLAUSES algorithm
1: ANALYZECLAUSES(Model Exp)
2: if (Exp is ANDEXPRESSION) or (Exp is OREXPRESSION) or

(Exp is IMPLIESEXPRESSION) then
3: Clause = CREATECLAUSE(Exp.RelationType)
4: Clause.ADDEXPRESSION(ANALYZECLAUSES(Exp.Operand1))
5: Clause.ADDEXPRESSION(ANALYZECLAUSES(Exp.Operand2))
6: return Clause
7: else
8: if Exp is EXPRESSIONINPARENTHESES then
9: return ANALYZECLAUSES(Exp.InnerExpression)

10: else
11: if Exp is ONLYEXPRESSIONINCONSTRAINT then
12: Clause = CREATECLAUSE(SpecialClause)
13: Clause.ADDEXPRESSION(RELOCATECONSTRAINT(Exp))
14: return Clause
15: else
16: return RELOCATECONSTRAINT(Exp)

4.1 A case study

To show the applicability and the practical relevance of the results, a case study is provided. The
case study contains a metamodel (Fig. 8/a) defining a DSL about processors. There are three
main types defined besides processors: data buses, coprocessors and computing units. Each
helper unit can be connected with the processor, additionally, the processor can communicate
with optional number of computing units. Fig. 8/b shows an example instantiation of the meta-
model.

Figure 8: Case study Metamodel and Model

In the metamodel, there is a constraint defined in DataBus model item:
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context DataBus::CheckCacheSize() : Boolean
self.processor.coprocessor.Cache>1024 or
( self.processor.compunit->forall(CU | CU.PrimaryCache +

CU.SecondaryCache > 512 )
and self.processor.compunit->count()>2 )

The constraint evaluates to true, if there is at least 1024 byte cache available. The constraint
is useful to check for example before memory operations. The original version of the con-
straint uses 22 model queries: (i) four queries to obtain the Cache attribute of the CoProces-
sor, (ii) two queries to navigate to Processor and another four queries for every Computin-
gUnit attached to the Processor, (iii) four queries to get the number of ComputingUnits. If
the RelocateConstraint algorithm is used as optimization, then the constraint is relocated to
context Processor, thus, the number of queries is reduced to 3+1+3*4+3 = 19. If both the
AnalyzeConstraint and the RelocateConstraint algorithms are used, then two clauses are cre-
ated from the constraint along the two boolean operands. The first part of the first clause
coprocessor.Cache>1024 is then relocated to CoProcessor, the first part of the second
clause CU.PrimaryCache+ CU.SecondaryCache > 512 to ComputingUnit items, but
the second part of the second clause (compunit->count()>2) cannot be relocated from Pro-
cessor, because of the count function. This optimized version requires 2+3*4+3= 17 queries,
which means that the number of applied queries is reduced by 23%.

The optimizing compiler do not only modify the clauses, but adds the ability to cache the
queries [MLCOPT06]. In this case it is efficient in the second clause only, where each Com-
putingUnit is retrieved twice. Another clauses do not reuse the values retrieved from the model.
The number of queries in this case is 2+3*2+3=11. The number of model queries is reduced in
this case by 50%. This ratio is rather high, because the primary aim of the case study was to show
how the optimization works. We have found that in general, real life examples the optimization
can accelerate the validation process by approximately 10-15%.

5 Conclusions

Due to the importance of constraints in modeling and model transformation, efficient validation
methods are required. Previous work has presented three algorithms, which can accelerate the
validation. This paper has examined the algorithms, especially the relocation algorithm Relo-
cateConstraint. Based on the results, several improvements have been introduced to the original
algorithms. The statements have been illustrated by small examples and their correctness has
also been proved. More complex examples — focusing on the acceleration gained from the op-
timization — can be downloaded from [VMTS]. According to the novel results, the algorithms
have been updated.

As this paper has shown, proving the correctness of the algorithms precisely is hard to manage.
A mathematical formalism could help, but the current formalism of OCL is based on set theory,
which is hard to use in examination of dynamic behavior. Abstract State Machines offer a tech-
nique that has successfully been used in many similar domains as formalism. Such a formalism
could prove the correctness of the algorithms applying formal semantics. Therefore, our future
work focuses on the formalism of the algorithms either using and extending the old formalism,
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or creating a new, ASM-based formalism.
Although the steps of the three optimization algorithms have been made more rigorous, pro-

cessing the OCL constraints is not optimal. The decomposition and the normalization of atomic
expressions have reduced the navigation steps to the minimum, and the caching algorithm has
reduced the number of queries, but further research is required to extend the scope of the op-
timization algorithms and accelerate the process. The validation process can be optimized by
rewriting the constraints and avoiding time consuming expressions, such as AllInstances.
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