
Electronic Communications of the EASST
Volume 32 (2010)

Proceedings of the
Fourth International Workshop on

Graph-Based Tools
(GraBaTs 2010)

Neighbourhood Abstraction in GROOVE

Arend Rensink and Eduardo Zambon

13 pages

Guest Editors: Juan de Lara, Daniel Varro
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Neighbourhood Abstraction in GROOVE

Arend Rensink and Eduardo Zambon∗

rensink@cs.utwente.nl, zambon@cs.utwente.nl
Formal Methods and Tools Group
Department of Computer Science

University of Twente, The Netherlands

Abstract: Important classes of graph grammars have infinite state spaces and there-
fore cannot be verified with traditional model checking techniques. One way to
address this problem is to perform graph abstraction, which allows us to generate a
finite abstract state space that over-approximates the original one. In previous work
we developed the theory of neighbourhood abstraction. In this paper, we present the
implementation of this theory in GROOVE and illustrate its use with a small grammar
that models operations on a single-linked list.

Keywords: Graph Abstraction, Graph Transformation, Model Checking, GROOVE

1 Introduction

Many verification methods rely on the exploration of the state space of systems. However, even
for small systems the state space size tends to blow up exponentially. Moreover, one would like
to be able to analyse systems independently of their instantiated size. An approach that can in
principle solve both these problems is state abstraction. The idea behind this abstraction is that
“similar” states are grouped together, and these groups are modelled in a manner such that the
distinction between the grouped states is no longer visible. The behaviour of the abstract state is
the collection of possible behaviours of the original states.

This principle has been long known and studied, e.g., in abstract interpretation [CC77] and
shape analysis [SRW98, SRW02]. In the context of graph transformation we have seen several
theoretical studies on suitable abstractions [Ren04, RD06, BBKR08, RN08, BKK03, KK06].
However, to the best of our knowledge, only the last of these is backed up by an available
implementation, namely AUGUR2 [KK08].

In this paper we report an extension of GROOVE that implements the neighbourhood abstrac-
tion principle of [BBKR08], showing its application on a small example. This gives us a basis
for experimenting with different, more expressive notions of abstraction.

The rest of this paper is organised as follows. First, we present key concepts of the theory of
neighbourhood abstraction in Section 2, and we introduce our running example. In Section 3, we
discuss important points of the implementation, along with some design decisions. In Section 4,
we present and analyse the results obtained for the example. Conclusions and future work are
given in Section 5.

∗ The work reported herein is being carried out as part of the GRAIL project, funded by NWO (Grant 612.000.632).

1 / 13 Volume 32 (2010)

mailto:rensink@cs.utwente.nl
mailto:zambon@cs.utwente.nl

Neighbourhood Abstraction in GROOVE

2 Preliminaries

This section presents the main concepts that are necessary for understanding the implementation
discussion given in Section 3.

2.1 GROOVE

GROOVE is a graph transformation tool set whose main purpose is the state space exploration of
graph transformation systems (also referred to as graph production systems or graph grammars).
A grammar is composed by a set of graph transformation rules and an initial host graph. Rule
application follows the Single-Pushout (SPO) approach, with rules composed by left-hand side
(LHS) and right-hand side (RHS) graphs. In the setting of this paper we restrict rule application
to injective morphisms. Exploration amounts to applying the rules to a host graph in all possible
manners, starting with the initial graph and continuing with the graphs produced by the transfor-
mations. This process yields the grammar state space, which is stored as a Labelled Transition
System (LTS), where states are graphs and transitions are labelled by rule applications. The tool
can then model check CTL and LTL formulae on the generated LTS1.

A problem arises when exploring graph grammars that have an infinite state space, since the
corresponding LTS cannot be fully generated. The goal of the work here presented is to imple-
ment an abstraction technique in GROOVE that allows the generation of finite abstract LTS’s for
such grammars. To guarantee the soundness of the verification, the abstract LTS is required to
be an over-approximation of the concrete one; the approximation should allow the verification
of safety and liveness properties on the abstract LTS, i.e., if a property holds in the abstract level
then we can conclude that it also holds in the concrete state space.

2.2 Running example

As an example throughout the paper we use a graph transformation system that models a single-
linked list. The list is formed by cells, representing the elements in the list, which are connected
by a next pointer. Additionally, a list has a root object that indicates the first and last elements, by
way of pointers called head and tail. We consider two list operations: one that puts a new element
to the tail of the list, and another that gets the head element from the list. These operations are
modelled in our graph transformation system by two rules, shown in Figures 1(a) and 1(b).
Simple abbreviations are used for conciseness. The corresponding morphisms between LHS and
RHS of the rules are identified by dotted lines. Figure 1(c) shows the start graph. For simplicity,
we assume that our lists always have at least one element2.

It is clear that the concrete state space of the grammar in Figure 1 is infinite: the put rule is
always enabled, and successive applications of this rule keep producing longer and longer lists.

2.3 Neighbourhood abstraction

We work with directed edge-labelled graphs, where the labels are taken from a finite set Lab.
Formally, a graph is a tuple G = 〈N,E〉 of nodes and edges, where the edges are triples 〈v,a,w〉
1 More information about GROOVE can be found at the project website: http://groove.cs.utwente.nl.
2 Otherwise, two more rules are necessary to insert an element to an empty list and to remove the last element.

Proc. GraBaTs 2010 2 / 13

http://groove.cs.utwente.nl

ECEASST

LHS

RHS

L Ct

L C Cn

t

(a) rule put

LHS

RHS

L Ch

L C

C

h

n

(b) rule get

L Ch
t

(c) start graph

Figure 1: A graph transformation system modelling a single-linked list.

L C Cn

t

Ch n

n

Figure 2: A shape representing lists with four or more elements.

of source node, label, and target node; such that v,w ∈ N and a ∈ Lab. Node labels are simulated
with self-edges; in fact we assume that Lab is partitioned into two sub-sets: unary (node) labels,
and binary (edge) labels.

Our notion of abstraction is based on neighbourhood similarity: two nodes are considered
indistinguishable if they have the same incoming and outgoing edges, and the opposite ends of
those edges are also comparable. Graphs are abstracted by folding all indistinguishable nodes
into one, while keeping count of their original number up to some bound of precision. The
incident edges are also combined.

Counting up to some bound is done using multiplicities. We use Mk = {0, . . . ,k,ω} with k ∈N
consisting of exact numbers up to k (which is typically a low value such as 1 or 2) and the value
ω standing for “many”.

The abstractions are called shapes. They are 5-tuples S = 〈G,∼,multn,multo,multi〉 in which

• G is the underlying graph structure of the shape;
• ∼ ⊆ N×N is a neighbourhood similarity relation;
• multn : N→Mν is a node multiplicity function, which records how many concrete nodes

were folded into a given abstract node, up to bound ν ;
• multo,multi : (N×Lab×N/∼)→Mµ are outgoing and incoming edge multiplicity func-

tions, which record how many concrete edges with a certain label were folded into an
abstract edge, up to a bound µ and a group of ∼-similar opposite nodes.

Nodes and edges of a shape with multiplicity one are called concrete, otherwise they are called
collectors.

Figure 2 shows an example of a shape. The graph structure of the shape is drawn as usual.
The equivalence relation ∼ is indicated with dashed boxes. Node multiplicities are represented
by line thickness: fat nodes have multiplicity ω , thin nodes have multiplicity one. All edge
multiplicities are equal to one and are not shown explicitly. Gray arcs “joining” incoming and
outgoing edges indicate that the multiplicities apply to a bundle of edges, rather than a single
edge.

3 / 13 Volume 32 (2010)

Neighbourhood Abstraction in GROOVE

3 Implementation

In this section we discuss the most important aspects of implementing the neighbourhood ab-
straction theory in GROOVE.

The following is pseudo-code for generating the abstract state space. Q is the set of all shapes
and F the set of fresh, yet to be explored shapes; P is the set of rules and G the start graph.

let S := abstracti(G), Q := /0, F := {S}
while F 6= /0
do choose S ∈ F (which S is selected depends on the exploration strategy)

let F := F \{S}
for p ∈ P, m ∈ prematch(p,S), S′ ∈ materialise(m,S)
do let R := normalise(apply(p,m,S′))

if R /∈ Q
then let Q := Q∪{R}, F := F ∪{R}
fi

od
od

The important phases in this algorithm are

• abstract computes the shape of a graph. This is controlled by a parameter i expressing the
radius of the neighbourhood to be considered in the neighbourhood similarity relation.
• prematch computes non-injective morphisms of a rule p into a shape S. Such a morphism

is not yet a match, because the images of p’s LHS may be elements with multiplicity
greater than one; in this case they have to be materialised.
• materialise creates concrete nodes and edges for the image of p in S. This is a non-

deterministic step, as there may be options involved in choosing multiplicities for the in-
stantiated nodes and edges.
• apply is rule application, which can be carried out as usual because the rule now acts upon

a concrete subgraph of S′. At this step, the match of the rule is injective.
• normalise merges the transformed graph back into the rest of the shape; it is thus similar

to abstract except that it acts upon a (partially materialised) shape rather than a graph.

The following subsections present each of these phases in more detail.

3.1 Operation abstract

The abstraction uses the concept of neighbourhood equivalence over elements of a graph, de-
noted ≡i. It relates nodes with similar neighbourhoods, up to some positive “radius” i, which is
a parameter of the abstraction. For a given i > 0 and graph G, operation abstract computes the
relation ≡i over NG recursively. For any v,w ∈ NG, we have that

• v≡0 w, if v and w have the same node labels;
• v ≡i w, if v ≡i−1 w, and v and w have the same number of outgoing and incoming edges

for every edge label.

After the relation ≡i is computed, we can build a shape S, where

Proc. GraBaTs 2010 4 / 13

ECEASST

L C C

t

Ch n Cn n

(a) equivalence relation ≡0

L C C

t

Ch n Cn n

(b) equivalence relation ≡1

Figure 3: Iterations on the neighbourhood equivalence relation over a graph representing a list
with four elements.

• NS = NG/≡i, i.e., nodes of the shape are the equivalence classes of ≡i;
• ∼ = ≡i−1, i.e., the shape equivalence relation is taken from the previous iteration of the

neighbourhood equivalence;
• multn is the multiplicity of each equivalence class in ≡i, bounded by ν ;
• multo and multi are the multiplicities of the set of edges between each node and equiva-

lence class, bounded by µ .

An application of the abstract operation for our running example is shown in Figure 3. We
assume as input a graph representing a list of four elements, and also that the abstraction radius
i = 1. Iteration ≡0 distinguish nodes based only on their labels, as can be seen in Figure 3(a).
Subsequent iterations refine the equivalence classes by looking at incoming and outgoing edges.
This is shown in Figure 3(b), where the first and last cells of the list are distinguished by the head
and tail edges. The resulting shape built by operation abstract in this example corresponds to the
one depicted in Figure 2.

3.2 Operations prematch, apply and normalise

A pre-match m of the LHS of a rule p = 〈L,R〉 into a shape S, is a non-injective morphism
m : L→ GS, such that node and edge multiplicities are satisfied by the mapping. Operation
prematch uses the normal rule matching implemented in GROOVE and then removes the invalid
matches by checking the conditions on multiplicities.

A pre-match m has to be massaged into a concrete match m′, such that: (i) m′ is injective; (ii)
all nodes in the image of m′ are concrete and belong to a singleton equivalence class; and (iii) all
edges in the image of m′ are concrete. This adjustment from pre-match m to concrete match m′

is done by the materialise operation, explained in the next section.
Given a concrete match m′ into a materialised shape S′, rule application is performed as usual.

Operation apply simply uses the normal transformation code from GROOVE.
After transformation, a shape needs to be normalised, i.e., the concrete parts need to be merged

back into the shape. This entails the computation of the ≡i relation on shapes, which is similar
to the one described in operation abstract.

3.3 Operation materialise

The materialisation phase is the most complex one from the abstraction algorithm. This is due
to the fact that this phase resolves all non-determinism of the algorithm; the materialised shapes
returned by materialise are ready to be transformed by conventional rule application.

5 / 13 Volume 32 (2010)

Neighbourhood Abstraction in GROOVE

Op. Prio. Parameters Creates

matNode 0
nc ∈ S collector node, from which the new nodes will be

materialised
Np ⊆ NL set of rule nodes mapped to nc by the pre-match

singNode

matEdge 1
ec ∈ S collector edge, from which the new edges will be

materialised
Ep ⊆ EL set of rule edges mapped to ec by the pre-match

pullNode

pullNode 2
e ∈ S edge that is pulling a new node from nc

nc ∈ S collector node that is being pulled by e
u ∈Mν multiplicity for the new node that will be created

–

singNode 3 ns ∈ S the node to be singularised –

Table 1: Summary of the sub-operations of the materialisation phase. All operations are per-
formed on a given shape S, guided by the pre-match of the LHS L of a rule p.

Given a pre-match m of a rule p = 〈L,R〉 into shape S, materialise finds all shapes S′ such
that f : S′ → S is a shape morphism and m′ : L→ S′ is a concrete match. The challenge in
implementing this step lies in transforming the descriptive solution just given into a constructive
algorithm that produces the set of all possible materialisations, based on the given shape S and
pre-match m.

The materialisation algorithm iteratively changes the original shape in order to search for
valid sub-shapes. The changes to be performed are divided into four materialisation operations.
A summary of these operations is given in Table 1. The second column of Table 1 lists the
operation priority, with zero being the highest priority. All materialisation operations are non-
deterministic. This implies that each operation may produce zero or more new materialisation
objects. If the execution of the operation yields zero results, then it is said that the operation
failed, i.e., performing the operation on the materialisation object does not produce a valid shape.

Materialisation operations are put into a priority queue and traversed in a breadth-like fashion.
When a materialisation is completed, it is moved to the result set of materialise. Not all opera-
tions can be determined when the materialisation process starts, so the execution of an operation
can create other ones. The relation between creation of operations is given by the fourth column
of Table 1.

The main reason for splitting the materialisation phase in sub-operations is understandability.
The rationale for splitting operations is that each materialisation operation must introduce only
one level of non-determinism. We proceed to explain each operation of Table 1 in detail.

3.3.1 Equation systems

An equation system is a device used for searching valid shape configurations during the material-
isation phase. Operations matEdge and singNode use equation systems. We present the common
points here and discuss the particularities in the sub-sections describing the operations.

The variables in these systems hold multiplicity values, and thus are called multiplicity vari-
ables. In the following, let x and y be such variables. Equation systems are composed of three
parts

Proc. GraBaTs 2010 6 / 13

ECEASST

• set constraints, in the form x ∈U , where U is a set of arbitrary multiplicities. Variables
occurring in this part of the system are called constrained.
• equations, in the form y = u− x, where u is a constant multiplicity and x is a constrained

variable. Variables occurring in the left-hand side of equations are called derived because
their sets of values are obtained when the values of the constrained variables are fixed.
• admissibility constraints, which restrict the overall admissibility of a shape configuration.

Such constraints are of the form ∑t∈O t ≈ ∑t∈I t, where O and I are sets of outgoing and
incoming terms, respectively. A term is of the form u ·x, where u is a constant multiplicity
value and x is a multiplicity variable. An admissibility constraint is satisfied if the resulting
multiplicities produced by both sums are overlapping, i.e., have a non-empty intersection.

It is important to note that usual arithmetic symbols (e.g., + and −) occurring in an equation
system actually stand for operations on multiplicities. In particular, an equation y = u− x may
admit multiple solutions for a fixed x, namely the multiplicity values that when summed with x
equal u. More formally, given a value ux ∈U for the constrained variable x, the possible values
of the derived variable y are given by y ∈ {uy ∈Mk | ux +uy = u}, for a certain bound k.

Overlapping of multiplicities in the admissibility constraints is defined in terms of the intersec-
tion of multiplicity intervals. The intuition goes as follows. Two multiplicities are overlapping
if: (i) their values are equal, e.g., 1 ≈ 1, 1 6≈ 0, and ω ≈ ω; or (ii) one multiplicity is ω and the
other is a concrete value greater than the multiplicity bound, e.g., ω ≈ 2, and 1 6≈ ω (assuming
multiplicity bound k = 1).

Solving an equation system is done with a simple search algorithm that goes over all possible
values for the constrained variables; calculates the values for the derived variables using the
equations; and checks if all admissibility constraints are satisfied. Each valid solution produces
a corresponding shape, obtained from the values of the variables.

3.3.2 Materialise Node

This operation materialises (creates) one or more nodes from a collector node nc, i.e., a node
with multiplicity greater than one. As shown in the third column of Table 1, the other parameter
of matNode is Np, the sub-set of nodes in the LHS of the rule that were mapped to nc by the pre-
match. The number of new copies of the collector node is determined by the cardinality of set Np.
All new materialised nodes are created with multiplicity one and the mapping of the pre-match is
adjusted to the new nodes. In addition, all edges adjacent to nc are duplicated on the new nodes.
The non-determinism of this operation comes from the choice on the remaining multiplicity of
nc, once the new nodes are materialised. This operation creates a singNode operation for each of
the newly materialised nodes.

Figure 4 shows an example execution of matNode. On the left side of Figure 4 we see shape
S0 with a pre-match of the LHS L of rule get. Since the image of rule node r2 is the collector
node n2, it is necessary to materialise a concrete copy of n2. This leads to the application of
matNode with parameters nc = n2 and Np = {r2}. The operation creates a new concrete node
n4 and duplicates all adjacent edges of n2, as can be seen on the right side of Figure 4. The
matNode operation in this example produces two new shapes, S1 and S2, which differ only in
the remaining multiplicity of the collector node. We consider the node multiplicity bound ν = 1,

7 / 13 Volume 32 (2010)

Neighbourhood Abstraction in GROOVE

S
0 n

L

L C Cn

t

Ch n

L Ch Cn

r
0

r
1

r
2

n
0

n
1

n
2

n
3

matNode

n
c
 = n

2
N

p
 = { r

2
}

S
1
,S

2

n

L

C

C

n

t

Ch
n

C

n

n n

n
n

0
n

1
n

3

n
2

n
4

Figure 4: Example of an execution of the matNode operation. Shapes S1 and S2 differ only on
the multiplicity of node n2: multnS1

(n2) = 1, multnS2
(n2) = ω .

thus, n2 (which has multiplicity ω) originally represents two or more nodes. When materialising
n4 from n2, the remaining multiplicity of n2 can be either one or ω . Node n4 will later be made
singular by a singNode operation.

3.3.3 Materialise Edge

In the same vein of matNode, operation matEdge materialises (creates) one or more edges from
a collector edge ec, i.e., an edge with outgoing or incoming multiplicities greater than one, or
an edge that is part of an edge multiplicity bundle (shared edge multiplicity). The additional
parameter of matEdge is Ep, the sub-set of edges in the LHS of the rule that were mapped to
ec by the pre-match (see Table 1). Similarly, the number of new copies of the collector edge
is determined by the cardinality of set Ep. The non-determinism of this operation comes from
the choice on the remaining incoming and outgoing multiplicities of ec, once the new edges are
materialised. This operation may create new pullNode operations.

Performing this operation involves constructing and solving an equation system. We create a
pair of multiplicity variables for each edge bundle that is affected by the operation. One of the
variables of the pair is taken as a constrained variable and the other as a derived one. In this
equation system the set constraints are always formed by singletons sets3, with the value taken
from |Ep|, i.e., the constrained variables stand for the number of concrete edges that will be
extracted from the collector edge. The derived variables in the equations represent the remainder
multiplicities of the collector edge or edge bundles. The admissibility constraints ensure that no
invalid values are assigned to the derived variables, e.g., it is not possible to assign a multiplicity
zero to an edge bundle that has one or more edges.

Figure 5 gives an example of application for matEdge. The input shape is S2, one of the results
of the matNode operation in Figure 4. After matNode materialises n4 and adjusts the match,
we see that the image of rule edge 〈r1,n,r2〉 is an edge with shared outgoing and incoming
multiplicities. This leads to the execution of the matEdge operation. In this execution, the

3 This of course implies that the values for the constrained variables are already known. The reason for creating the
equation system for matEdge in this format is just to comply to the overall format of equation systems described in
Section 3.3.1. This allows for re-use of common functionalities (code).

Proc. GraBaTs 2010 8 / 13

ECEASST

matEdge

e
c
 = (n

1
,n,n

4
)

E
p
 = {(r

1
,n,r

2
)}

S
2

x
2
,x

3

x
0
,x

1

n

L

C

C
n

t

Ch
n

C

n

n n

n
n

0
n

1
n

3

n
2

n
4

S
3

n

C

C

n
1

n
3

n
2

n
4

L

C

t

C

n
0

h n
n

n

n

Figure 5: Example of an execution of the matEdge operation. This operation creates an equation
system. The association of the equation system variables with edge multiplicities is shown in
shape S2. Variables x0 and x2 are constrained, and variables x1 and x3 are derived. This particular
execution of matEdge is deterministic.

operation creates the following equation system

set constraints x0, x2 ∈ {1}
equations x1 = 1− x0 x3 = 1− x2

admissibility constraints x1 +ω ≈ x3 +ω

where the association of the multiplicity variables with edge bundles is shown in shape S2 of
Figure 5. The solution of this equation system is trivial, with x0 = x2 = 1 and x1 = x3 = 0. The
resulting shape S3 is depicted on the right side of Figure 5. It is important to note that in this
particular example, the operation produces only one result shape. However, in the general case,
matEdge returns a set of results.

3.3.4 Pull Node

The theory of neighbourhood abstraction requires that all elements up to radius i in the image of
the match have to be concrete. After performing matNode and matEdge operations, we obtain a
rule match on which the elements of the image are concrete, but it is still possible to have abstract
elements in the neighbourhood of the image. Operation pullNode transforms the neighbourhood,
by further materialising nodes when needed.

This operation is very similar to matNode, with the exception that only one new node is cre-
ated, which can have an arbitrary positive multiplicity, defined by parameter u. Note that, as in
operation matNode, all adjacent edges of the collector node are duplicated. The source of non-
determinism of pullNode is the same as in matNode, i.e., the choices on the remaining multiplicity
of the collector node. The newly created node will not be singularised later; this operation does
not create any new operations.

3.3.5 Singularise Node

This is the operation with the lowest priority, being executed after all others. When performing
a singNode operation, we assume that the rule match is final and that the number of nodes in the

9 / 13 Volume 32 (2010)

Neighbourhood Abstraction in GROOVE

S
6

CC

n
1

n
3

n
2

n
4

L

C

C

n
0

C
n n

n

n n

h

n

t

n
5

S
5

x
0
,x

1

n

L

C

C

n

t

Ch

n

C

n

n n

n

n
0

n
4

n
3

n
2

n
5

C

n
1

n

x
4
,x

5

x
2
,x

3

S
7

CC

n
1

n
5

n
2

n
4

L

C

C

n
0

C
n nh

n

t

n
3

n

n

Figure 6: Example of an execution of the singNode operation with parameter ns = n4. This
operation also creates an equation system. The association of the equation system variables with
edge multiplicity bundles is shown in shape S5. Variables x0, x2 and x4 are constrained, and
variables x1, x3 and x5 are derived.

shape will no longer change. What is left to decide are the outgoing and incoming multiplicities
of the edge bundles that will be affected by the operation.

In order to put a node ns in a singleton equivalence class, singNode creates another equation
system, where the variables represent the multiplicities of affected edge bundles. For each such
bundles, we create a pair of variables. One variable of the pair, x, represents the multiplicity
associated with the singular equivalence class that will be created; the other variable, y, stands
for the multiplicity related to the remainder equivalence class after the split. Variable x is put in a
set constraint, ranging on the set {0,1}, and variable y goes in an equation, i.e., x is a constrained
variable and y is a derived one. The admissibility constraints care for the sanity of the shape
configuration after the split, such that valid solutions of the system produce valid final shapes.

Figure 6 shows a singNode application with parameter ns = n4. The input shape S5 is an inter-
mediate candidate shape produced during the materialisation. This singNode execution creates
the following equation system

set constraints x0, x2, x4 ∈ {0,1}
equations x1 = 1− x0 x3 = 1− x2 x5 = 1− x4

admissibility constraints 1≈ ω · x0 + x2 + x4 ω ≈ ω · x1 + x3 + x5

where the association of the multiplicity variables with edge bundles is shown in shape S5 of
Figure 6. This equation system has two solutions, namely: (i) x0 = x2 = x5 = 0 and x1 = x3 =
x4 = 1; and (ii) x0 = x3 = x4 = 0 and x1 = x2 = x5 = 1. These solutions produce shapes S6 and
S7, presented on the right side of Figure 6.

Proc. GraBaTs 2010 10 / 13

ECEASST

get put get put

put get getput

get

s
7

L CCt
h

ns
6

L CCt
h

n

s
5

L CC

t

Ch n

ns
4

L CC

t

Ch n

n

s
2

L C Cn

t

Ch n

s
0

L Ct
h

s
1

L C

t

Ch n

put

s
3

L C Cn

t

Ch n

n

get put get put

get

put

Figure 7: The abstract LTS of our running example, for the parameters i = 1 and ν = µ = 1.

4 Results

When applying the implemented abstraction to our running example, we obtain the abstract
state space depicted in Figure 7. For an abstraction radius of one, the LTS has 8 states and 16
transitions. Each rounded box represents a state, with its numbering on the upper left corner, and
the corresponding shape. The transitions between states are shown by arrows, labelled with the
rule applied.

There are many interesting points to note in the state space of Figure 7. First, as long as node
and edge multiplicities stay within their bounds, the abstract graph transformation corresponds
to the concrete one. This is seen on states s0, s1, and s2, where the shapes are concrete.

Second, an abstract state may represent an unbounded number of concrete ones. State s3, for
example, is an abstract representative for lists with four or more elements. This is illustrated by
the put and get transitions from s3 to itself.

Third, the non-determinism of the materialisation algorithm can be seen from the four get
transitions from state s3. Although there is only one pre-matching of the rule, when materialising
this pre-match several distinct shapes are produced.

Fourth, we can see that the abstract state space has spurious configurations. For example,
states s4 to s7 represent lists with unconnected elements, which do not occur in the concrete state

11 / 13 Volume 32 (2010)

Neighbourhood Abstraction in GROOVE

ν = 1 ν = 2 ν = 3
states trans. states trans. states trans.

i = 1 8 16 11 22 14 28
i = 2 16 33 22 45 28 57

Table 2: State space sizes for a small variation of abstraction parameters (µ = 1).

space. This spurious shapes arise from the fact that the neighbourhood abstraction mechanism
does not keep information regarding connectivity. This is a point where we plan to improve the
current theory.

After the abstract LTS is generated we can proceed to model check the properties of interest.
For the LTS in Figure 7, we can check, for example, that the following properties hold: (i) the
head cell has no predecessors; (ii) the cells are not shared; and (iii) rule get is applied infinitely
often. Properties (i) and (ii) talk about safety and (iii) is a liveness property. They are informally
described in English but can be easily translated into temporal logic formulae. Since these prop-
erties hold in the abstract LTS, we can then conclude that they also hold in the infinite concrete
state space.

5 Conclusions and future work

The results reported above are the very first steps toward the capability for GROOVE to incorpo-
rate abstraction. We look upon this as a key factor in the eventual success of the tool. Though
currently we have merely implemented the theory described in [BBKR08], we know from expe-
rience that having the ability to actually experiment with smaller and larger cases provides a lot
of additional motivation and can be a source of new ideas and developments.

For instance, only a working implementation makes it possible to obtain figures about actual
abstract state space sizes, which is an important factor in the feasibility of any abstraction-based
methods. Some very first figures about the effect of increasing node multiplicity bounds ν and
radii i are collected in Table 2; the edge multiplicity bound µ was kept equal to one. Clearly,
the radius has greater effect on the state space size than the node multiplicity. All tests took
just a few seconds to run. As an additional example we looked at the circular buffer grammar
presented in [RD06]. In that paper the abstract state space was generated by hand, now we can
mechanically reproduce it with the tool.

Current implementation efforts are aimed towards integration of the abstraction mechanism
with the GUI of the Simulator in GROOVE. Experience shows that an interactive graphical in-
terface can be of great assistance when modelling. On the theory side we are investigating
different abstractions that are more adequate to handle structural properties such as connectivity
and cyclicity. A key insight is that the radius used in neighbourhood abstraction is too coarse.
Usually we are not interested in the whole neighbourhood of a node but instead we want to look
at different radii for different types of edges. For the moment, we are aiming at a more property
driven abstraction, which will allow the abstraction mechanism to be more precise, since it will
retain the information that is relevant for the verification of a given property.

Proc. GraBaTs 2010 12 / 13

ECEASST

Bibliography

[BBKR08] J. Bauer, I. B. Boneva, M. E. Kurban, A. Rensink. A Modal-Logic Based Graph Abstraction.
Pp. 321–335 in [EHRT08].

[BKK03] P. Baldan, B. König, B. König. A Logic for Analyzing Abstractions of Graph Transforma-
tion Systems. In Cousot (ed.), Static Analysis Symposium (SAS). LNCS 2694, pp. 255–272.
Springer, 2003.

[CC77] P. Cousot, R. Cousot. Abstract Interpretation: A Unified Lattice Model for Static Analysis of
Programs by Construction or Approximation of Fixpoints. In POPL. Pp. 238–252. 1977.

[EHRT08] H. Ehrig, R. Heckel, G. Rozenberg, G. Taentzer (eds.). International Conference on Graph
Transformations (ICGT). LNCS 5214. Springer, 2008.

[KK06] B. König, V. Kozioura. Counterexample-Guided Abstraction Refinement for the Analysis of
Graph Transformation Systems. In TACAS. LNCS 3920, pp. 197–211. Springer, 2006.

[KK08] B. König, V. Kozioura. AUGUR2— A New Version of a Tool for the Analysis of Graph Trans-
formation Systems. ENTCS 211:201–210, 2008.

[RD06] A. Rensink, D. Distefano. Abstract Graph Transformation. In Mukhopadhyay et al. (eds.),
Software Verification and Validation. ENTCS 157, pp. 39–59. May 2006.

[Ren04] A. Rensink. Canonical Graph Shapes. In Schmidt (ed.), Programming Languages and Sys-
tems (ESOP). LNCS 2986, pp. 401–415. Springer, 2004.

[RN08] S. Rieger, T. Noll. Abstracting Complex Data Structures by Hyperedge Replacement. Pp. 69–
83 in [EHRT08].

[SRW98] S. Sagiv, T. W. Reps, R. Wilhelm. Solving Shape-Analysis Problems in Languages with De-
structive Updating. ACM ToPLaS 20(1):1–50, 1998.

[SRW02] S. Sagiv, T. W. Reps, R. Wilhelm. Parametric shape analysis via 3-valued logic. ACM ToPLaS
24(3):217–298, 2002.

13 / 13 Volume 32 (2010)

	Introduction
	Preliminaries
	GROOVE
	Running example
	Neighbourhood abstraction

	Implementation
	Operation abstract
	Operations prematch, apply and normalise
	Operation materialise
	Equation systems
	Materialise Node
	Materialise Edge
	Pull Node
	Singularise Node

	Results
	Conclusions and future work

