
Electronic Communications of the EASST
Volume 32 (2010)

Proceedings of the
Fourth International Workshop on

Graph-Based Tools
(GraBaTs 2010)

Reachability Analysis on Timed Graph Transformation Systems

Christian Heinzemann, Julian Suck, Tobias Eckardt

12 pages

Guest Editors: Juan de Lara, Daniel Varro
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Reachability Analysis on Timed Graph Transformation Systems

Christian Heinzemann, Julian Suck, Tobias Eckardt ∗

Software Engineering Group
Heinz Nixdorf Institute
University of Paderborn
Warburger Strasse 100

D-33098 Paderborn, Germany
c.heinzemann|jsuck|tobie@uni-paderborn.de

Abstract: In recent years, software increasingly exhibits self-* properties like self-
optimization or self-healing. Such properties require reconfiguration at runtime in
order to react to changing environments or detected defects. A reconfiguration might
add or delete components as well as it might change the communication topology of
the system. Considering communication protocols between an arbitrary number of
participants, reconfiguration and state-based protocol behavior are no longer inde-
pendent from each other and need to be verified based on a common formalism. Ad-
ditionally, such protocols often contain timing constraints to model real-time proper-
ties. These are of integral importance for the safety of the modeled system and thus
need to be considered during the verification of the protocol. In current approaches
either reconfigurations or timing constraints are not considered. Existing approaches
for the verification of timed graph transformation systems lack important constructs
needed for the verification of state-based real-time protocol behaviors. As a first
step towards a solution to this problem, we introduced Timed Story Driven Mod-
eling [HHH10] as a common formalism integrating state-based real-time protocol
behaviors and system reconfigurations based on graph transformations.

In this paper, we introduce a framework allowing to perform reachability analysis
based on Timed Story Driven Modeling. The framework allows to compute the
reachable timed graph transition system based on an initial graph and a set of timed
transformation and invariant rules.

Keywords: Verification, Real-time Systems, Graph Transformation Systems, Reach-
ability Analysis

∗ This work was developed in the course of the Special Research Initiative 614 – Self-optimizing Concepts and
Structures in Mechanical Engineering – University of Paderborn, and was published on its behalf and funded by the
Deutsche Forschungsgemeinschaft.
This work was developed in the project ”ENTIME: Entwurfstechnik Intelligente Mechatronik” (Design Methods for
Intelligent Systems). The project ENTIME is funded by the state of North Rhine-Westphalia (NRW), Germany and
the EUROPEAN UNION, European Regional Development Fund, ”Investing in your future”.

1 / 12 Volume 32 (2010)

mailto:c.heinzemann$|$jsuck$|$tobie@uni-paderborn.de

Reachability Analysis on Timed Graph Transformation Systems

1 Introduction

In recent years, software increasingly exhibits self-* properties like self-optimization or self-
healing. Such properties require reconfiguration at runtime in order to react to changing environ-
ments or detected defects. This causes a significant increase in the complexity of the software as
also the reconfiguration process has to be controlled by the software. As software often operates
in safety critical environments, it has to meet highest quality standards. Formal verification of
safety and liveness constraints as well as verification of joint structural and behavioral constraints
[KG07] address these requirements.

For embedded or real-time systems timing constraints for the software have to be taken into
account during verification. Model Checkers like Uppaal1 address these issues as they allow to
check timed temporal logic formulas based on timed automata [Alu99]. Standard model check-
ers for real-time systems, however, are not able to consider changing system topologies resulting
from system reconfigurations (cf. Section 6). Graph based model checkers like Groove [Ren08]
support dynamic topologies, but are not capable of verifying timing constraints. Unfolding the
state-space described by the graph transformation rules and using model checkers to verify the re-
sult does not work for constraints referencing both, structural and behavioral parts of the system.
Existing approaches combining graph transformations and real-time constructs (cf. Section 6)
come with restrictions that do not allow to model timed behavior to the extent that is needed
for our systems. As a solution, we realize state-based real-time behavior using graph transfor-
mation systems extended with timing constraints derived from timed automata. This enables us
to integrate dynamic reconfiguration of the communication structure and to reuse the existing
implementation for time computations from Uppaal.

In this paper, we introduce a framework for timed reachability analysis based on Timed Story
Driven Modeling [HHH10]. In [HHPS10], reconfiguration and state-based behavior are analyzed
independently. There, only pairs of automata were checked and an induction over the reconfig-
urations of a regular architecture was used to show that no forbidden communication structures
can arise. This ensures, that only such communication pairs can arise, that have been verified
before. In this paper, we use Timed Story Charts [HHH10] as an explicit common formalism for
the verification. This enables us to specify and verify arbitrary constraints that affect both, state-
based protocol behavior and structural system state at the same time, e.g. that a reconfiguration
may only take place if a certain communication protocol is in a specific state.

Example Scenario Our example scenario stems from the RailCab2 project. The RailCab sys-
tem consists of autonomous RailCabs that are fully controlled by software. RailCabs can form
contactless convoys to reduce energy consumption. A convoy of RailCabs always needs one co-
ordinating RailCab in order to prevent oscillation of the shuttle distances. A component instance
model of a convoy with three RailCabs is shown in Figure 1 where RailCab rc1 coordinates the
convoy.

1 http://www.uppaal.com/
2 http://www.railcab.de

Proc. GraBaTs 2010 2 / 12

http://www.uppaal.com/
http://www.railcab.de

ECEASST

rc1:RailCab rc2:RailCab rc3:RailCab

coordinatorRole
1

coordinatorRole
2

memberRole memberRole

Figure 1: Component instances for the RailCab example.

Outline The remainder of this paper is structured as follows. First, we give a brief overview
of Mechatronic UML. In Section 3, we explain how a reachability analysis is performed using
Timed Story Driven Modeling while Section 4 provides a description of the framework. We
present the results of our evaluation in Section 5 and related work in Section 6. Section 7 con-
cludes the paper.

2 Mechatronic UML

In this section, we briefly introduce MechatronicUML, an adaptation of the UML for modeling
mechatronic systems. It provides extensions for modeling and verifying real-time systems and
hybrid systems integrating continuous control components. Section 2.1 describes the system ar-
chitecture of the system and Section 2.2 gives a short overview of Timed Story Driven Modeling
with respect to MechatronicUML.

2.1 System architecture

We use a component-based system architecture based on MechatronicUML components. The
communication between components is modeled with parameterized coordination patterns as
introduced in [HHPS10]. Parameterized coordination patterns are used to specify 1 to n com-
munication protocols between communication partners, called roles for cardinality 1 or multi
roles for cardinality n, respectively. Roles are instantiated at the ports of a component in order to
provide the corresponding protocol.

The behavior of roles is specified by real-time statecharts [GB03]. In case of a multi role,
a parameterized real-time statechart [HHPS10] is used to define the behavior of all sub-roles.
Figure 2 shows an example of a parameterized pattern including the real-time statecharts defining
the role behaviors.

The coordinator role sends an update event to the member role which answers with an ac-
knowledgement. The internal synchronization channel next is used to synchronize the different
sub-roles of the coordinatorRole as they are not independent in this scenario. The channel is
parameterized with a parameter k referencing to the kth instance of the statechart. Thus, one
sub-role triggers the next one in the example. Additionally, a property AG¬deadlock is specified
for the pattern. Such properties may be verified for the pattern using the reachability analysis
introduced in Section 3.

Following [HHPS10], we use an additional adaptation statechart to synchronize the roles and
to manage creation and deletion of roles. An excerpt of an adaptation statechart for the example
is shown in Figure 3 on the left. The adaptation statechart is initially in state noConvoy. The
decision which RailCab coordinates the convoy is made in another statechart which is omitted

3 / 12 Volume 32 (2010)

Reachability Analysis on Timed Graph Transformation Systems

coordinatormember n

ConvoyCoordination

{ordered}

waitUpdate sendAck

update /

/ ack

{c2}

[c2 ≤ 150]

[1;1]

[c2 ≤ 1]
[1;1]

rtsc : memberRole | Clocks: c2

idle

sendUpdate awaitAck

nextk?

/ update

ack /
nextk+1!

{c1}

[c1 ≤ 10] [10;10] [c1 ≤ 29]

[1;1]

rtsc : coordinatorRole | Clocks: c1

Role behavior Role behavior

AG ¬ deadlock

Property

Figure 2: Definition of a Parameterized Coordination Pattern

here. If the RailCab is chosen to coordinate, it changes its state to addMember, thereby perform-
ing the side effect createPort(1) of the transition. The side effect is a method of the component
being specified by the story diagram [FNTZ00] on the right in Figure 3. The side effect in this
example simply creates a new port. The deadline [10;10] of the transition denotes that this recon-
figuration takes at least 10 time units and at most 10 time units. After reaching the state convoy,
the invariant forces the statechart to switch to state sendUpdates every 150 time units, thereby
triggering the first coordinatorRole to send the update.

a

noConvoy convoy

coordinate?
createPort(1)

createPort(n + 1)

sendUpdatesnext1!
c3 ≤ 150

{c3}
c3 == 150 c3 ≤ 149

nextn+1?

addMember

c3 ≤ 149[10;10]

[10;10]
[1;1]

rtsc : adaptSC | Clocks: c3

this cr : coordRolehas
<<++>>

RailCab::createPort(int num)

n := n + 1

<<++>>

k := num

createStatechart(num)

ad : RailCab::createPort(int num)

newFollower?

c3 ≤ 139

Figure 3: Adaptation Statechart for a Multi Port

2.2 Timed Story Driven Modeling

The Timed Story Driven Modeling [HHH10] approach is based on Timed Story Patterns and
Timed Story Diagrams. Timed Story Patterns are a short-hand notation for timed graph transfor-
mations [HHPS10, HHH10] that depict the left hand side and the right hand side in one graph.
Elements being created (or deleted) by the transformation are labeled with <<++>> (or <<-->>).

Timed graph transformations operate on timed graphs which contain clocks like timed au-
tomata [Alu99], each being associated with a subgraph of the graph. The same clock can occur
multiple times, once for each occurrence of the associated subgraph. Therefore, we use the term
clock instance to denote the instances of a clock. The number of clock instances to be added to
the graph, however, has to be finite, but it may vary during run-time. The representation of clock
values is realized using clock zones [Alu99, BY03], as in timed automata.

In Timed Story Patterns, three kinds of rules are used: transformation rules, invariant rules,

Proc. GraBaTs 2010 4 / 12

ECEASST

and clock instance rules. A clock instance rule adds clock instances to the graph which are used
by the transformation rules and the invariant rules to specify timed behavior. Transformation
rules change the graph while invariant rules put a condition on the values of the clock instances
of the timed graph. Due to space limitations, we only show how these rules are implemented in
our framework in Section 4.2.

Story diagrams [FNTZ00] extend UML Activity Diagrams by embedding graph transforma-
tions specified by story pattern into the activities. We obtain Timed Story Diagrams by embed-
ding Timed Story Patterns into the activities. To allow the execution of real-time statecharts
using Timed Story Diagrams while preserving their semantics, we define Timed Story Charts
[HHH10] on the basis of Timed Story Diagrams. The core idea is to represent the statecharts
and their states as nodes of a graph and to provide graph transformation rules (Timed Story Di-
agrams) specifying the state changes resulting from transitions. The currently active state of the
statechart is represented by an ActiveState-node. The transformation of real-time statecharts to
Timed Story Charts has been partially automated [HSJZ10].

3 Reachability Analysis

The reachability analysis computes the Timed Graph Transition System (TTS) based on the given
transformation rules and invariants. It represents the complete reachable behavior. In general, the
TTS may be infinite. Thus, it cannot be guaranteed that the algorithm will eventually terminate
for a given set of rules. This is a general problem when computing graph transition systems. The
TTS can be defined as follows:

Definition 1 (Timed Graph Transition System (TTS)) Let G be the set of all possible timed
graphs, R a set of transformation rules, I a set of invariant rules. The Timed Graph Transition
System (TTS) is a triple (S,s0,T) where S represents the set of states of the TTS, s0 ∈ S is the
initial state and T represents the transitions. A state s ∈ S is a tuple s = (g,z) with g ∈ G and z a
non-empty clock zone over the clock instances contained in g. In s0, all clock instances are 0.

There exists a transition t from s1 to s2, s1
t−→ s2, iff there exists a transformation rule r ∈R

such that s2 is a successor state of s1.

The states are tuples consisting of a timed graph and the current clock interpretations rep-
resented by a clock zone [Alu99]. The clock zone contains intervals for all clock instances
representing the possible values as well as the differences between those values. The definition
of the TTS is analogous to the definition of zone graphs [Alu99, BY03], the only difference is
that the states contain a timed graph instead of an automaton location.

The computation starts with the initial graph and all clocks being 0. Then, possible successors
are computed (see Definition 2). The TTS contains transitions from a state to all its successors.

Definition 2 (Successor State) Let s1 = (g1,z1),s2 = (g2,z2) states of a TTS. s2 is a successor
state of s1 iff
• there exists a transformation rule r ∈R such that r transforms g1 into a graph isomorphic

to g2 and
• z2 = (((z1∧ I(g1)) ⇑)∧ I(g1)∧guard(r))[reset(r)] and z2 non-empty.

5 / 12 Volume 32 (2010)

Reachability Analysis on Timed Graph Transformation Systems

The definition of a successor state is analogous to the one of timed automata [Alu99]. The
only difference is that the change in the TTS results from the application of a transformation rule
instead of an automaton transition. The computation of the successor clock zone remains the
same. First, the clock zone is intersected against all constraints of invariant rules applicable to g1
denoted by I(g1). Then, time passes (⇑), which is implemented by removing the upper bounds of
all clock instances (cf. [BY03]). Afterwards, the intersection against the invariants is repeated.
Then, the resulting clock zone is intersected with the time guards of the applied transformation
rule and the rules’ clock resets are executed. We restrict ourselves to guards of the form c ∼ n
where c is a clock instance, ∼∈ {<,≤,=,≥,>}, and n ∈ N, i.e., comparing the value of a clock
instance with an integer. Invariants are further restricted to comparisons < and ≤. Please note
that there may exist more than one possible successor state for the same transformation rule as
multiple matchings can be found.

In order to obtain a finite TTS, isomorphic states of the TTS are merged into one state. Two
states are isomorphic, iff their graphs are isomorphic to each other and their clock zones are
identical.

4 Verification Framework

We implemented the reachability analysis introduced in Section 3 into our framework. In the
following subsections, we introduce the general architecture of our framework at first. Second,
we give an introduction how rules can be modeled, third, we explain how the TTS is computed,
and finally, we give a brief idea of properties that can be checked using the framework. Part of
the framework, not including the timing capabilities, has been shown in [HSJZ10].

4.1 Architecture

An implementation of a reachability analysis as specified in Section 3 requires additional rules
which compute the TTS. Specifying concrete rules for the TTS generation for each example by
hand is a tedious, error-prone task. Therefore, we provide a framework which requires the user
to specify an initial graph and a set of rules, only. The remaining tasks, e.g. the application of
rules, are integrated within the framework. Figure 4 shows the class diagram of the framework.

The abstract class ReachabilityComputation encapsulates the whole functionality for comput-
ing the timed graph transition system. It contains two abstract methods createInitialGraph() and
createRules(). Both have to be implemented by the user, whereas the former defines the initial
graph and the latter specifies which graph transformation rules are to be used for the reachability
computation and which time constraints these rules have.

Graphs are represented by objects of the class StepGraph. They contain objects of the class
Node. To represent different types of nodes in a graph, subclasses of Node can be created. Edges
between nodes are represented by associations.

As already mentioned in Section 2.2, there exist three different kinds of rules in a timed graph
transformation system, namely timed graph transformation rules, invariant rules and clock in-
stance rules. The first two are represented by the classes TransformationRule and InvariantRule,
respectively, whereas the third is represented by the method addClockInstances(). The next sec-

Proc. GraBaTs 2010 6 / 12

ECEASST

«JavaBean»
Node
tt H hC h

ClockInstance
type: String
valid: Boolean = true
ClockInstance ():constructor
toString ():String
ClockInstance (id:String , type:String):constructor

InvariantRule

getCIsOfInvariants (step:StepGraph, clockInstances:HashSet<ClockInstance>)

ReachabilityComputation
DEBUG: Boolean = false

getApplicableInvariants (step:StepGraph, invariants:HashSet<ClockConstraint>)
computeNormalizationVectorPerRule (nv:HashMap<String, Integer> , rule:Rule)
computeNormalizationVector ()
initialize ():StepGraph
expand(step:StepGraph)
addAllClockInstances (step:StepGraph):HashSet<ClockInstance>
createRules ()
unifyGraphs (succ:StepGraph)
computeNormalizationVectorForStep (step:StepGraph):HashMap<Clock,Integer>
createInitialGraph ():StepGraph
processGraph(step:StepGraph, scc:HashSet<ClockConstraint> ,
 resets:HashSet<Clock> , invariants:HashSet<ClockConstraint>)
computeReachableGraphs ()

Rule

addClockInstances (step:StepGraph, clockInstances:HashSet<ClockInstance>)

StepGraph
name: String
toString ():String

TransformationRule

apply (step:StepGraph, graphsAndCIs:HashMap<StepGraph, HashSet<ClockInstance>>)

Clock
id: String = ""
name: String = ""

SimpleClockConstraint

clone ():Object

String

cd Framework

ciType

*

«usage»
hasNode

* 0..1

contains

0..1

«usage»
has

*

hasInvariantRule

*

hasTransformationRule

*

graphs

*

todo

0..1
has

*has

1

0..n
uses

Figure 4: Class Diagram of the Verification Framework

tion contains more detailed information on how to implement transformation and invariant rules.

4.2 Modeling Rules

Timed graph transformation rules are represented by the abstract class TransformationRule. It
contains an abstract method apply() which has to be implemented by subclasses to specify a
concrete timed graph transformation rule. As parameters, this method receives a graph on which
it is to be applied and a reference to a mapping. After the termination of the method, the mapping
contains all reached successor graphs together with their respective clock instances used for the
application of the rule.

create and deliver sent event

1: enqueue(ackEvent)

«create»
ackEvent: Event

name := "ack()"

conn: Connectorsc_succ
succ

shPort: ShuttlePort

coPort: CoordPorttgtQueue: EventQueue

Match the precondition and create the copy

sc: RailCab_RailCab_shuttlePort

source: State
name == "sendAck"

as: ActiveState

step
«create»

succ: StepGraph := (StepGraph) step.copy()

Execute transition
«create»

cis: HashSet<ClockInstance>

1: put(succ, cis)

succ

as_succ: ActiveState

sc_succ: RailCab_RailCab_shuttlePort

source_succ: State

graphsAndCIs
target_succ: State

name == "waitUpdate"

Trans_sendAck_waitUpdate_1::apply(step: StepGraph, graphsAndCIs: HashMap<StepGraph, HashSet<ClockInstance>>): Void

adTrans_sendAck_waitUpdate_1::apply()

«create»
contains source

targethasSC

hasQueue

in

contains

in

active

«create»
succ

[each time]

[end]

index[as]index[source]

index[sc]

«create»
active«destroy»

active

in

Figure 5: Story Diagram of the Transformation Rule, Modeling the Transition from sendAck to
waitUpdate

7 / 12 Volume 32 (2010)

Reachability Analysis on Timed Graph Transformation Systems

Figure 5 shows an implementation of the method apply() modeling the transition from the state
sendAck to the state waitUpdate of the member role statechart (cf. Figure 2). The story diagram
consists of three activities. The first activity checks whether the rule is applicable, which is
the case if the sendAck-state is the active state in the given statechart. If the rule is applicable,
the second activity sets the active state from sendAck to waitUpdate. Finally, the third activity
enqueues the ack()-Event into the event queue of the statechart of the coordinator port.

Invariant rules are specified by subclasses of InvariantRule. Subclasses implement the method
getCIsOfInvariant() which receives a graph on which the rule is to be applied and a set as param-
eters. After the termination of the method, the set contains all clock instances of the graph for
which the time invariant specified by the rule is applicable.

convoy_1::getCIsOfInvariants(step: StepGraph, clockInstances: HashSet<ClockInstance>): Void

Match the invariant structure
state: State

name == "convoy"

step

sc: Statechart_for_RailCab_AdaptationStatechart

1: add(ci)

as: ActiveState

ci: ClockInstance
type == "c3"

clockInstances

{ ci <= 150 }

adconvoy_1::getCIsOfInvariants()

in

hasNode

active

clockInstances

hasNode

in

hasNode

[end]

Figure 6: Story Diagram of the Invariant Rule, Modeling the Invariant of State convoy

Figure 6 shows a concrete example of a story diagram implementing the method getCIsOfIn-
variant(). The rule represents the invariant c3 ≤ 150 of the state convoy of the adaptation state-
chart (cf. Figure 2). The invariant has to hold whenever the adaptation statechart’s active state
is the convoy-state. The activity matches to all structures which model exactly this situation.
Whenever a matching structure is found, the corresponding clock instance is inserted into the
set.

4.3 Computing the TTS

The verification of properties requires to compute the TTS according to Definition 1 by applying
Algorithm 1 of our framework.

The algorithm maintains the TTS and a TODO list storing all states whose successors have
not yet been computed. For each of these states, first all clock instance rules are applied (Line 6).
Then, all currently applicable invariants are collected in Line 7. The loop starting in Line 8
applies all transformation rules to the current graph by calling the apply function. For each of
the resulting successors, the successor clock zone is computed according to Definition 2 by the
function processGraph (Line 11). Finally, unifyGraphs in Line 12 checks for isomorphisms and
adds the state to the TTS and the TODO list.

All time computations, i.e. operations on clock zones, are performed using the Uppaal DBM
(UDBM) library3. The C/C++-library, as originally implemented for the Model Checker Uppaal,
3 http://www.cs.aau.dk/∼adavid/UDBM/

Proc. GraBaTs 2010 8 / 12

http://www.cs.aau.dk/~adavid/UDBM/

ECEASST

Algorithm 1 Computation of the Timed Graph Transition System
1: function COMPUTETTS(Graph start, TransformationRules rules, InvariantRule inv)
2: TTS.add(start)
3: TODO.push(start)
4: while TODO 6= /0 do
5: curState := TODO.pop()
6: addAllClockInstances(curState.g)
7: appInv := getApplicableInvariants(curState.g, inv)
8: for all r ∈ rules do . compute successor graphs
9: successors := r.apply(curState.g)

10: for all s ∈ successors do
11: processGraph(s, r)
12: unifyGraphs(s)
13: end for
14: end for
15: end while
16: return TTS
17: end function

efficiently implements all necessary operations on clock zones (up or delay (⇑), intersection (∧),
clock resets ([reset(r)])). Technically, we access the UDBM library using the provided Ruby
binding in connection with a (local) client/server-communication between our Java implemen-
tation and the Ruby implementation. In Java, clocks, clock zones and clock constraints are
represented as classes providing the corresponding operations on those instances as methods.
This makes the binding to the UDBM library completely transparent for the developer and al-
lows insertion and removal of clock instances which is not directly supported by the UDBM. In
Java, clock instances can be created like normal objects. During runtime, a given clock zone
is then transformed into ruby code as well as the desired operation is transformed. This ruby
code is sent to the ruby server, which executes it and sends back the resulting clock zone as an
encoded string. This string is finally transformed back into a clock zone object representing the
result of the operation.

4.4 Verification of Properties

Currently, our framework only supports the verification of CTL (Computation Tree Logic) for-
mulae having the form EFϕ or AG¬ϕ where ϕ is a graph invariant. Thus, it is possible to check
whether a specific subgraph eventually occurs in the graph or to check whether a subgraph never
occurs. Such properties are modeled as invariant rules containing the respective graph ϕ . A
formula EFϕ is fulfilled if the rule can be matched eventually to the graph. A formula AG¬ϕ is
not satisfied when a state exists in which the graph cannot be matched. In the TTS, a path from
the initial state to the state in which the property does not hold serves as a counter-example.

Additionally, deadlock freedom, denoted by AG¬deadlock in Figure 2, may be verified. A
deadlock corresponds to a state in the TTS with no outgoing transitions. Again, a path in the
TTS from the initial state to the deadlock state serves as a counter-example.

Please note that the verification of properties is only decidable if the TTS is finite.

9 / 12 Volume 32 (2010)

Reachability Analysis on Timed Graph Transformation Systems

5 Evaluation

We implemented the convoy coordination example shown in Figures 2 and 3 using the pattern
and the statecharts. This resulted in 15 transformation rules and 13 invariant rules. In this case,
we only needed three clock instance rules, one for each statechart, because we can create a
statechart instance as a whole, along with all its clock instances.

The number of RailCabs in a convoy was restricted to a maximum number in order to obtain
a TTS for different maximum convoy sizes using our framework described in Section 4. The
results are summarized in Table 1.

Table 1: Evaluation results for different convoy sizes

max convoy size # graphs in TTS run-time (s) run-time (s) optimized max. graph size
2 17 2 1 37
3 52 21 2 52
4 112 125 6 67
5 203 545 16 82
6 329 1856 39 97

A convoy size of 2 corresponds to one leading RailCab and one convoy member RailCab, i.e.,
the leading RailCab has one coordinatorRole statechart instance. For each additional RailCab
in the convoy, an additional instance is added. We computed the TTS for our example with
a maximum convoy size of 6 RailCabs because the timing constraints in our example do not
support larger convoys. We recently found a major performance problem in our implementation
that yielded a significant improvement of our run-time as shown in Table 1. The results indicate
that the run-time grows exponentially in the number of reached graphs while the maximum
graph size grows constantly as expected. The growth in run-time results from the high number
of clock instances and the expensive timing computations which consume about 66% of the
runtime. Additionally, our isomorphism check on graphs turned out to be inefficient [HSJZ10].
The timing computations along with the definition of isomorphic states cause a certain blowup in
the number of reached states, as isomorphic graphs had to be expanded more than once because
of differences in the clock zones.

6 Related Work

In the field of timed graph transformation systems, there exist several other approaches. The
MOMENT2 framework [BÖ10] provides model transformations based on MOF meta models.
The approach supports one unresetable clock per object, timers, that trigger actions, and timed
values which can be increased or decreased at a certain, fixed rate. The real-time graph rewrite
model checker Real-Time Maude [ÖM07] provides object oriented graph transformations in a
textual syntax, but it does not support invariant rules requiring subgraph changes. The approach
by Rivera et al. [RDV09] provides only one global clock and durations for the execution of
rules but no guarding of rules by time constraints. In [RDV10] a mapping to Real-Time Maude
is defined which allows to simulate and model check the specification. De Lara et al. [LV10]
map their graph transformation rules to timed Petri nets. Time is not actually part of the model,

Proc. GraBaTs 2010 10 / 12

ECEASST

but annotated as an interval in which the transformation can be executed after a match has been
found. In [THRB10], stochastic graph transformations are introduced. The simulation of these
transformations incorporates a scheduling that is based on continuous time and executes a rule
at a randomly generated point in time. A drawback of all approaches is their lack of support for
flexible clock creation with resets and the specification of time guards at the same time. This,
however, is needed for the system models we employ.

There exist some approaches for checking graph transformations without the possibility to
consider timing constraints. Groove supports a reachability analysis on labeled graphs and
checking graph based CTL formulas on the graph transition system [Ren08]. König et. al.
[KK08] use an approximation technique that maps a possibly infinite graph transition system to
finite Petri graphs and verifies the specified formula on this Petri graph structure. The inductive
invariants introduced in [GS04] support infinite state spaces and only require a static analysis on
the set of rules showing that a forbidden graph cannot be produced. It is not possible, however,
to verify properties that cannot be depicted as a graph, like deadlock freedom, for example.

Bauer et. al. provide a verification approach for dynamic communication protocols [BSTW06]
using over- and underapproximation of the system in order to verify LTL (Linear-time Tempo-
ral Logic) formulas with first-order quantification on objects. The approach supports infinite
numbers of communicating objects and finite message queues.

The timed model checker Uppaal provides the ability to check timed systems, but not the evo-
lution of the system in terms of adding new statechart behaviors at run-time. The BIP framework
[BS10] also provides real-time components and connectors with extensive analysis approaches,
but does not support reconfigurations, either.

7 Conclusions

In this paper, we have shown a technique to perform a reachability analysis on Timed Story
Diagrams, a dialect of graph transformation systems extended by the notion of time. We use
Timed Story Charts as a common formalism to perform a reachability analysis for dynamic real-
time communication protocols whose structural evolution is specified by graph transformations.

As future work, we plan to extend our framework by the possibility to verify more complex
timing constraints, as introduced in [KG07]. We will also investigate the possibility of applying
existing abstraction and approximation techniques to the timed graph transformation systems in
order to be able to handle larger state spaces and to obtain a more efficient verification procedure.
Finally, we will try to fully automate the Timed Story Chart generation by adding generation of
synchronizations and message recipients.

Bibliography
[Alu99] R. Alur. Timed Automata. In Halbwachs and Peled (eds.), Proc. of the 11th Intern. Conf. on

Computer Aided Verification (CAV ’99), Trento, Italy. LNCS 1633, pp. 8–22. Springer, 1999.

[BÖ10] A. Boronat, P. C. Ölveczky. Formal Real-Time Model Transformations in MOMENT2. In
Proc. of the 13th Intern. Conf. on Fundamental Approaches to Software Engineering, FASE
2010. Pp. 29–43. 2010.

11 / 12 Volume 32 (2010)

Reachability Analysis on Timed Graph Transformation Systems

[BS10] S. Bliudze, J. Sifakis. Causal semantics for the algebra of connectors. In Formal Methods in
System Design. Volume 36(2), pp. 167–194. Springer, 2010.

[BSTW06] J. Bauer, I. Schaefer, T. Toben, B. Westphal. Specification and Verification of Dynamic Com-
munication Systems. In 6th Intern. Conf. on Application of Concurrency to System Design,
2006. ACSD 2006. IEEE Computer Society Press, 2006.

[BY03] J. Bengtsson, W. Yi. Timed Automata: Semantics, Algorithms and Tools. In Desel et al.
(eds.), Lectures on Concurrency and Petri Nets. LNCS 3098, pp. 87–124. Springer, 2003.

[FNTZ00] T. Fischer, J. Niere, L. Torunski, A. Zündorf. Story Diagrams: A New Graph Rewrite Lan-
guage Based on the Unified Modeling Language and Java. In Ehrig et al. (eds.), TAGT’98:
Selected papers. LNCS 1764, pp. 296–309. Springer, 2000.

[GB03] H. Giese, S. Burmester. Real-Time Statechart Semantics. Technical report tr-ri-03-239, Soft-
ware Engineering Group, University of Paderborn, Germany, June 2003.

[GS04] H. Giese, D. Schilling. Towards the Automatic Verification of Inductive Invariants for Infinite
State UML Models. Technical report tr-ri-04-252, Software Engineering Group, University
of Paderborn, Germany, December 2004.

[HHH10] C. Heinzemann, S. Henkler, M. Hirsch. Refinement Checking of Self-Adaptive Embedded
Component Architectures. Technical report tr-ri-10-313, Software Engineering Group, Uni-
versity of Paderborn, Mar. 2010.

[HHPS10] S. Henkler, M. Hirsch, C. Priesterjahn, W. Schäfer. Modeling and Verifying Dynamic Com-
munication Structures based on Graph Transformations. In Proc. of the Software Engineering
2010 Conf., Paderborn, Germany. 2010.

[HSJZ10] C. Heinzemann, J. Suck, R. Jubeh, A. Zündorf. Topology Analysis of Car Platoons Merge
with FujabaRT & TimedStoryCharts - a Case Study. In Gorp et al. (eds.), Transformation
Tool Contest. Malaga, 2010.

[KG07] F. Klein, H. Giese. Joint Structural and Temporal Property Specification Using Timed Story
Scenario Diagrams. In Formal Approaches to Software Engineering. LNCS 4422, pp. 185–
199. Springer, 2007.

[KK08] B. König, V. Kozioura. Towards the Verification of Attributed Graph Transformation Sys-
tems. In ICGT ’08: Proc. of the 4th Intern. Confe. on Graph Transformations. Pp. 305–320.
Springer, Berlin, Heidelberg, 2008.

[LV10] J. de Lara, H. Vangheluwe. Automating the transformation-based analysis of visual lan-
guages. In Formal Aspects of Computing. Volume 22(3), pp. 297–326. Springer, 2010.

[ÖM07] P. C. Ölveczky, J. Meseguer. Semantics and Pragmatics of Real-Time Maude. Higher-Order
and Symbolic Computation 20(1-2):161–196, 2007.

[RDV09] J. E. Rivera, F. Duran, A. Vallecillo. A graphical approach for modeling time-dependent
behavior of DSLs. Visual Languages - Human Centric Computing 0:51–55, 2009.

[RDV10] J. Rivera, F. Duran, A. Vallecillo. On the Behavioral Semantics of Real-Time Domain Spe-
cific Visual Languages. In lveczky (ed.), Rewriting Logic and Its Applications. LNCS 6381,
pp. 174–190. Springer, 2010.

[Ren08] A. Rensink. Explicit State Model Checking for Graph Grammars. In Concurrency, Graphs
and Models. LNCS 5065, pp. 114–132. Springer, 2008.

[THRB10] P. Torrini, R. Heckel, I. Ráth, G. Bergmann. Stochastic Graph Transformation with Regions.
In GM-VMT’10. Electronic Communications of the EASST 29. 2010.

Proc. GraBaTs 2010 12 / 12

	Introduction
	Mechatronic UML
	System architecture
	Timed Story Driven Modeling

	Reachability Analysis
	Verification Framework
	Architecture
	Modeling Rules
	Computing the TTS
	Verification of Properties

	Evaluation
	Related Work
	Conclusions

