
Electronic Communications of the EASST
Volume 32 (2010)

Proceedings of the
Fourth International Workshop on

Graph-Based Tools
(GraBaTs 2010)

Sketch-based Diagram Editors with User Assistance based on Graph
Transformation and Graph Drawing Techniques

Steffen Mazanek, Christian Rutetzki, and Mark Minas

14 pages

Guest Editors: Juan de Lara, Daniel Varro
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Sketch-based Diagram Editors with User Assistance based on
Graph Transformation and Graph Drawing Techniques

Steffen Mazanek, Christian Rutetzki, and Mark Minas

(Steffen.Mazanek, Christian.Rutetzki, Mark.Minas)@unibw.de
Universität der Bundeswehr München, Germany

Abstract: In the last years, tools have emerged that recognize sketched diagrams
of a particular visual language. That way, the user can draw diagrams with a pen
in a natural way and still has available most processing capabilities. But also in
the domain of conventional diagram editors, considerable improvements have been
achieved. Among other features, powerful user assistance like auto-completion has
been developed, which guides the user in the construction of correct diagrams. The
combination of these two developments, sketching and guidance, is the main contri-
bution of this paper. It not only shows feasibility and usefulness of the integration of
user assistance into sketching editors, but also that novel user strategies for identi-
fying and dealing with recognition errors are made possible that way. The proposed
approach heavily exploits graph transformation and drawing techniques. It was in-
tegrated into a meta-tool, which has been used to generate an editor for business
process models that comprises the features described in this paper.

Keywords: sketching, meta-tools, user assistance, graph transformation, graph draw-
ing, process models

1 Introduction

An important benefit of sketch-based diagram editors is that diagrams can be drawn with maxi-
mal freedom in a very natural way. With the appearance of powerful and permissive approaches
to their subsequent recognition – among others [HD05, CMP05, CDR05] – many advantages
of traditional WIMP interfaces (Window, Icon, Menu, Pointer) can be carried over. Most im-
portantly, diagrams, once recognized, can be further processed. However, one feature of state-
of-the-art conventional diagram editors, namely user assistance, has not yet been integrated into
sketch tools. The user assistance we aim at guides the user in the construction of correct dia-
grams. Indeed, the only existing attempt in this direction we are aware of is the work on symbol
completion by Costagliola et al. [CDR07]. This approach helps the user in completing individual
symbols (lexical level), but the overall diagram structure (syntactical level) is not at all consid-
ered – not even to mention language semantics or pragmatics. Moreover, this approach has not
been integrated into a visual environment yet. In this paper we fill this gap by integrating a user
assistance component into a sketching meta-tool, i.e., a framework for generating sketch editors
from a language specification. We report on the challenges that had to be addressed and how
graph transformation and graph drawing techniques have been used for solving them.

Fig. 1 shows a bird’s eye view of the proposed approach, i.e., the overall architecture of
sketching editors with assistance. The user, who is represented by the stickman in the mid-

1 / 14 Volume 32 (2010)

mailto:(Steffen.Mazanek, Christian.Rutetzki, Mark.Minas)@unibw.de

Sketch-based Diagram Editors with User Assistance

dle, draws strokes, which are the basic input of most sketch recognition tools. The recognizer
transforms these strokes either on-line or on user’s request into a set of diagram components.
Next, a language-specific analysis of the diagram is performed, e.g., a syntax check. For the
diagram given in Fig. 1, it might be checked that there are no arrows without proper source and
target components or that processing components (rectangles) are connected to data structures
(ellipses) only. The result of this analysis step is passed back to the user as visual feedback.

The novel aspects of this work are surrounded

Figure 1: Proposed editor architecture

by a dashed line. For the proposed approach, the
analysis additionally has to return a set of sug-
gestions for the user, e.g., how the diagram can
be completed. The user can choose among these
suggestions, e.g., by using a preview of the cor-
responding diagram changes. The selected sug-
gestion then is integrated into the sketch. There-
fore, a translator component generates the set
of corresponding strokes and adds them to the
user’s sketch. That way, the next analysis cycle
will directly consider the applied suggestion.

This paper covers the following assistance fea-
tures, which are all based on syntax:

• auto-completion: the computation of missing diagram components that transform the in-
complete diagram into a proper member of the underlying visual language,

• auto-link: the derivation of missing edges in graph-like languages according to node ar-
rangement and other kinds of editing accelerators,

• example generation: the generation of correct example diagrams that can be explored by
the user for the sake of language learning.

Suggestions that remove parts of a sketch are not considered.
Sketch tools with powerful recognizers [HD05, CMP05, CDR05] as well as tools for the com-

putation or specification of suggestions [AHHG09, MMM08b, SBV08] already exist. Therefore,
this paper focuses on the following three aspects:

• User interaction: how can the user invoke and control assistance,

• Stroke generation: how and where should the translator generate strokes from the sugges-
tion (this actually is a graph drawing problem),

• Dealing with recognition errors: indeed, syntactical assistance not only provides clues for
syntactical problems, but also simplifies the identification of recognition errors.

This paper is structured as follows: Sect. 2 introduces the running example language, namely
business process models (BPMs). Our implementation relies on existing frameworks for sketch
recognition and user assistance; Sect. 3 recapitulates their concepts. How these two approaches
actually have been combined and integrated is described in Sect. 4. A discussion is provided in
Sect. 5. Finally, related work is reviewed and the paper is concluded (Sect. 6 and 7).

Proc. GraBaTs 2010 2 / 14

ECEASST

2 Business Process Models

BPMs are used to represent the workflows within an enterprise and, thus, are a highly relevant di-
agrammatic language today. In recent years a standardized visual notation, the Business Process
Modeling Notation BPMN [Obj09], has been developed. Since BPMs are frequently developed
in creative team meetings, this language ideally should be supported by sketch editors. Fig. 2
shows a small sales process, which has been drawn and recognized by the sketching editor de-
scribed in this paper. The magnified (assistance) toolbar will be described later.

BPMs basically are graphs, where the connecting arrows represent sequence flow. The ex-
ample process starts with the receipt of an order, which is expressed by a start event (circle).
Thereafter, the sequence flow is split by an exclusive gateway (diamond shape). If the ordered
product is available, it is prepared and shipped, which is expressed by activities (rectangles).
Otherwise, a notification is sent to the customer. Thereafter, the sequence flow is joined again by
another gateway, and the process terminates as indicated by the end event (circle).

In the following, only well-structured BPMs are treated, i.e., we require splits and joins to be
properly nested. This restriction improves the understandability of process models in the same
way as structured programming improves the understandability of program code [MRA09]. For
well-structured BPMs, moreover, powerful syntactical user assistance is available [MM09].

3 The Frameworks PerSUADE and DSketch

The general approach proposed in this paper (Fig. 1) is generic as it is not restricted to a particular
visual language. Hence, an implementation requires frameworks for sketch recognition as well
as syntax analysis and user assistance that are generic as well, i.e., they must be adaptable to
different visual languages. Concretely, we have chosen the DiaGen approach [Min02] as a base,
where hypergraphs are used as a model for diagrams and hypergraph grammars as a means for
syntax definition. Accordingly, this formalism is introduced at first. Thereafter, the PerSUADE
approach, an extension of DiaGen by syntax-based user assistance, is introduced. Finally, the
sketching approach DSketch, which is also based on DiaGen, is recapitulated.

3.1 Hypergraphs and Hypergraph Grammars

Hypergraphs are generalized graphs whose edges can connect an arbitrary number of nodes.
This notion of graphs allows a uniform representation of all kinds of diagrams. The key idea
is that diagram components are represented by hyperedges and their attachment areas by nodes.
Fig. 2 also shows the chosen hypergraph representation of the example BPM. The hyperedges
are drawn as rectangular boxes and the nodes as black dots. If a hyperedge and a node are
incident, they are connected by a line called tentacle. Activities and events have two attachment
areas, i.e., incident nodes: one for incoming and one for outgoing sequence flow. Gateways
have four attachment areas (namely their corners). Note that sequence arrows do not explicitly
occur in this hypergraph representation. They are rather represented implicitly by the fact that
connected components visit the same node: the source component via its outgoing tentacle, the
target component via its incoming tentacle, respectively. The hypergraph shown in Fig. 2 actually
is the result of a lexical analysis step, which performs such simplifications.

3 / 14 Volume 32 (2010)

Sketch-based Diagram Editors with User Assistance

event event

activity

gate-

way

gate-

way

activity activity

Process ::= event Flow event

Flow FlowFlElem::=
n1 n2 n1 n2

FlElem
n1 n2

FlElem
n1 n2

activity
n1 n2

gateway
n1

gateway
n2

Flow

Flow

::=

P1:

P2|3:

P4|5:

Process event Flow event

gateway gateway

Flow

Flow

P1

P3

 event FlElem event
P5

event event

2*(P3,P4)

 gateway gateway

activity

activity

event event

Figure 2: A sketched BPM fragment and its hypergraph representation

event event

activity

gateway gateway

activity activity

Process ::= event Flow event

Flow FlowFlElem::=
n1 n2 n1 n2

FlElem
n1 n2

FlElem
n1 n2

activity
n1 n2

gateway
n1

gateway
n2

Flow

Flow

::=

P1:

P2|3:

P4|5:

Figure 3: Hypergraph grammar for BPMs

In DiaGen, hypergraph grammars are used for language definition. For this paper, only
context-free ones are considered [DHK97]. Such hypergraph grammars consist of two finite
sets of terminal and nonterminal hyperedge labels and a starting hypergraph that contains only
a single nonterminal hyperedge. Syntax is described by a set of productions. The hypergraph
language generated by a grammar is defined by the set of terminally labeled hypergraphs that
can be derived from the starting hypergraph.

Fig. 3 shows the productions of a hypergraph grammar GBPM for very simple process models.
A more comprehensive version that includes pools (process containers), different kinds of inter-
mediate events, and embedded messages has been shown in [MM09]. The types event, activity,
and gateway are the terminal hyperedge labels. The set of nonterminal labels consists of Process,
Flow, and FlElem. The starting hypergraph consists of just a single Process edge. The appli-
cation of a context-free production removes an occurrence e of the hyperedge on the left-hand
side of the production from the host graph and replaces it by the hypergraph Hr on the right-hand
side. Matching node labels of both sides of a production determine how Hr has to fit in after
removing e. Fig. 4 shows an example derivation.

3.2 User Assistance with PerSUADE

For visual languages defined by hypergraph grammars, hypergraph patches have been proposed
as a means for the realization of Syntax-based User Assistance in Diagram Editors (PerSUADE)
[MMM08b]. A patch basically describes a modification of a given hypergraph H that transforms

Proc. GraBaTs 2010 4 / 14

ECEASST

event event

activity

gateway gateway

activity activity

Process ::= event Flow event

Flow FlowFlElem::=
n1 n2 n1 n2

FlElem
n1 n2

FlElem
n1 n2

activity
n1 n2

gateway
n1

gateway
n2

Flow

Flow

::=

P1:

P2|3:

P4|5:

Process event Flow event

gateway gateway

Flow

Flow

P1

P3

 event FlElem event
P5

event event

2*(P3,P4)

 gateway gateway

activity

activity

event event

Figure 4: Example derivation starting from Process

H:

merge nodes add edges

n4 n1
activity event event

n2 n3 n5

n3~n4 n1
activity event event

n2 n5 n3
activity

n1
activity event

n2 n4
event

n5

Figure 5: Hypergraph patches by example

H into a valid member of the language defined by a given grammar G. Two different kinds
of atomic modifications are considered: merging nodes and adding edges. The application of a
patch for a hypergraph H then corresponds to the construction of a so-called quotient hypergraph
H/∼ whose nodes are equivalence classes of the original nodes of H. Correcting patches indeed
can be computed while parsing hypergraphs [MMM08a]. Consider the hypergraph H given in
Fig. 5 as an example. Hypergraph H does not belong to the language of GBPM, but it can be
corrected by merging the nodes n3 and n4. It can also be corrected by inserting an activity
hyperedge at the proper position. Note that there usually is an infinite number of correcting
patches. Actually, according to GBPM, an arbitrary number of activities could be inserted between
the activity and the event hyperedge at the right. So, the size of desired patches, i.e., the number
of additional hyperedges, must be restricted by the user. A special case of patches is the empty
input hypergraph. Its patches can be used for exhaustive example generation.

Assistance based on hypergraph patches has been integrated into DiaGen editors as follows:
The editor automatically maintains the hypergraph representation of the diagram. On user’s
request, the patch-computing parser [MMM08a] is applied to this hypergraph representation
with the desired size of patches as a parameter. It computes all possible correcting hypergraph
patches of this size. From those, the user has to choose via a preview functionality. The selected
patch is translated to diagram modifications by a language-specific update translator. Finally, the
diagram is beautified by a layout component. That way, powerful syntax-based user assistance
for BPMs has been realized already [MM09] – however, only in the context of a conventional
WIMP editor. A screencast is available at www.unibw.de/inf2/DiaGen/assistance/bpm.

For the computation of patches, PerSUADE can only consider the context-free part of a hyper-
graph [MM09]. This limitation naturally also applies to the sketch editors with guidance to be
discussed in Section 4.

5 / 14 Volume 32 (2010)

www.unibw.de/inf2/DiaGen/assistance/bpm

Sketch-based Diagram Editors with User Assistance

Editor

Specification

Hypergraph

model
Modeler

Reduced

hypergraph

model

Reducer
Diagram

Components

Drawing

tool

Editor user

uses

Semantic

represen-

tation

Attribute

evaluation

Parser
Derivation

structure

Strokes

Recognizer

highlights correct

diagram

generates

event

activity

sequence

activity event
event

sequence

at at at
activity event

sequence

at
event

sequence

event

Process

event event
Flow

ship
order

BPEL:

<invoke name="ship order"/>

FlElem

activity

Figure 6: Architecture of DSketch (figure based on [BM08c])

3.3 Diagram Recognition à la DSketch

DSketch is an extension of DiaGen that complements the conventional WIMP-based GUI of di-
agram editors by a drawing canvas, which readily accepts all kinds of user strokes freely entered
with a stylus. The integrated recognizer allows diagrams to be analyzed and further processed
[BM08c]. The main characteristics of this approach are: (i) Little restrictions to drawing compo-
nents, e.g., a rectangle can be drawn clockwise, counterclockwise, or even interleaved with other
components. (ii) Syntactic and semantic information is used to resolve ambiguities that occur
in the recognition process. For instance, if a sloppily drawn BPM component could be both an
activity or an event, the actual decision is postponed to the analysis stage where the interpreta-
tion of the respective strokes might get clear from the context. And finally (iii), the approach is
generic, i.e., editors for a wide range of languages can be specified.

Fig. 6 shows the overall architecture of this sketching approach. The first processing step is
the recognizer, which analyzes the sketch’s strokes and creates a corresponding set of diagram
components. Actually, several primitive recognizers (called transformers in [BM08b]) for lines,
arcs, circles, etc. search for corresponding primitives in the sketch. The main recognizer queries
these primitive recognizers and – directed by the language specification – assembles the diagram
components from those primitives. Generally, the recognition is very tolerant to avoid false neg-
atives. The inevitably resulting false positives are resolved not until parsing. The actual analysis
of the diagram now works in several steps similar to the analysis in conventional DiaGen editors:
First, a hypergraph model is created from all components. Then the reducer is applied (lexical
analysis) and yields the reduced hypergraph model as shown in Fig. 2. The parser syntactically
analyzes this hypergraph and builds up a derivation structure that is similar to a derivation tree,
but that also reflects non-context-free aspects of the diagram. The parser ensures that no two
possible interpretations of the same stroke are integrated into the same derivation structure. That
way, ambiguities are effectively resolved. Each derivation structure then represents a correct
diagram and is rated according to its quality. Finally, a semantic representation of the best-rated

Proc. GraBaTs 2010 6 / 14

ECEASST

AnalysisAssistance

Strokes /

Text
Recognizer

Modeler

Reducer

Conv. parser

Components

Hypergraph

patches

Update

Translator

Layout

Stroke

Generator

Reduced

hypergraph

model

Components

with positions

Hypergraph

model

Feedback

gets preview

accepts

chooses

creates

receives

PerSUADE

Hypergraph

model

Figure 7: Novel architecture of sketch editors

derivation is computed via attribute evaluation. If this is not possible, the next best derivation is
tried and so on. Details about this process can be found in [BM08a].

The DSketch approach is efficient and fully functional, but it cannot recognize dashed lines
nor distinguish different line widths. BPM messages, which are usually drawn as dashed lines,
and BPM end events, which are drawn as bold circles, thus, must be represented with another
notation. Moreover, text recognition is not integrated into DSketch. Textual labels, hence, must
be entered via keyboard or an extra text recognizer.

4 Integration of User Assistance into DSketch

In this section we describe how the assistance provided by PerSUADE has been integrated into
DSketch. The overall architecture of the editors generated by the realized system is shown in
Fig. 7, which basically refines Fig. 1. The right-hand side of Fig. 7 comprises the analysis steps
of DSketch. The analysis performed by the PerSUADE parser belongs to this side, too. The
left-hand side comprises the novel part of the system where the results of PerSUADE are further
processed for the sake of assistance.

The processing steps up to the parser remain almost unchanged. Just the recognizer needed
to be slightly adapted. Recall that in DSketch the recognizer is very error-tolerant. So, often the
same stroke is accepted by several different primitive recognizers. This results in double findings
that are resolved in DSketch during syntax analysis. The PerSUADE framework cannot deal with
such ambiguities yet. Therefore, we have enforced the recognizer to make the decision if one
of the assistance functions is invoked. Basically, the recognizer now selects the interpretation
with the highest rating from the double findings. This rating depends on how precisely a prim-
itive is drawn, how close the connections at the junctions are, and how well the corresponding
constraints are met.

7 / 14 Volume 32 (2010)

Sketch-based Diagram Editors with User Assistance

Update Translator

Reducer

Modeler

Recognizer

atat
activityevent

sequence

event

activityevent event~

atat
activityevent

sequence

event
atat

sequence

event activitysequence event

Parser
Hypergraph

patch

Strokes

Components

Hypergraph

model

Reduced

hypergraph

model

Strokes

Layout
Comp. with pos.

Hypergraph

model

Figure 8: Processing steps by example

The next adapted component is the parser, i.e., the process of syntactically analyzing the dia-
gram. Actually, the DSketch parser has remained unchanged, but an additional parser component
from the PerSUADE framework now complements it. All kinds of assistance are supported by
this parser instead of the normal DSketch parser. On user’s request, this parser computes hyper-
graph patches for (the recognized parts of) the diagram’s reduced hypergraph model. The user
can explore these patches and choose one of them using a preview functionality.

Let us assume that the user has selected one of the patches. Consider the example traced in
Fig. 8. There, the smallest existing patch just merges the outgoing node of the activity and the
incoming node of the right-most event. The update translator translates this patch into changes
of the hypergraph model. For our example, an arrow needs to be introduced that is attached to
the activity and the event (indicated by the spatial relationship edges “at”). Thereafter, it is up
to the layouter to find an appropriate position for the newly introduced components. For the
example of Fig. 8, this is an easy task because the source and target components of the sequence
arrow already exist. The more complex completion examples given in Fig. 9 and the generated
example diagrams given in Fig. 10, however, show that this step is not always that simple. The
used layout approach and the actual user interface are discussed in the following subsections. The
last processing step, i.e., the stroke generator, is rather simple. It just draws perfect components
with the optimal sample rate, thus maximizing the recognition rate.

Proc. GraBaTs 2010 8 / 14

ECEASST

Figure 9: Auto-completion examples. Suggested completions are drawn in red.

Figure 10: Example generation

4.1 Placement of New Components by the Use of Graph Drawing Techniques

A basic assumption of our implementation is that user strokes remain unchanged (in contrast
to conventional PerSUADE editors, where the existing components can be adapted during as-
sistance). That way, surprises are prevented and the special flavor of sketching is preserved.
So, we need a flexible layout engine for graph-like languages (other languages would require
some adaptations) that only integrates the new components and leaves the remaining diagram
unchanged. These requirements can be satisfied by layout algorithms based on physical analo-
gies [Bra01]. Concretely, we have adapted a spring embedder, which interprets edges as springs
with their particular attraction forces. Furthermore, special repulsive forces take effect between
the node components. During layout, the node components move in increments according to
the respective sum of forces until an equilibrium state has been reached. However, in our con-
text not all nodes can be moved around freely, but only the new ones introduced by the update
translator. The existing nodes, in contrast, are locked into their positions. An important benefit
of spring embedders besides their simplicity is that they can also be used for static layout in a
straightforward way. Static layout is required here, e.g., for example generation (cf. Fig. 10).

There are two problems with spring embedders in our context: The top diagram of Fig. 9
would look much better if the new activity were positioned further to the top. However, spring
forces pull the new activity to the presented position, i.e., springs prevent bent arcs that way.
This behavior can only be avoided by introducing invisible components in a context-sensitive
way. Another problem is that new components, if positioned randomly at the beginning, cannot
“pass” existing components due to the repulsive forces. This may result in strange layouts.
We have prevented this problem by introducing an additional processing step that guesses more
appropriate initial coordinates for new node components to be refined afterwards.

Other layout algorithms might yield more common looking process models; actually, most
professional business modeling tools apply Sugiyama-style layout algorithms. However, such

9 / 14 Volume 32 (2010)

Sketch-based Diagram Editors with User Assistance

algorithms are less suited in the context of this paper where the (usually user-chosen) position of
existing nodes must be preserved when new nodes or edges have been introduced.

4.2 User Interface

The actual user interface is quite simple and easy to use — the complete editor window is shown
in Fig. 2. There is a button for starting the computation of patches (see the magnified part
of Fig. 2). After pressing this button, the first solution is shown immediately. Arrow buttons
can be used for browsing through the other solutions. In particular the generation of examples
usually results in a large number of solutions. A check button has to be pressed in order to
accept the currently previewed solution. Strokes are then generated from the previewed diagram
components. The resulting diagram looks like the preview, but the new components are not
highlighted anymore, but drawn as normal, although perfect, strokes. Note that the user does
not need to accept the previewed solution, but can use it as a kind of template for drawing the
suggested components with his own strokes. That way, he will get a diagram that looks more
homogeneous than the one with the generated perfect strokes. To continue with the UI, the
preview also can be canceled, of course. Finally, the patch size can be set via the plus and
minus buttons. This parameter basically indicates how many new diagram components (or more
precisely, terminal hyperedges) are to be introduced. In the figure this parameter is set to its
default value 1.

5 Discussion

Although an elaborate user study still remains to be done, the results so far are promising. As
before, the user can freely sketch diagrams. He is not restricted in any way in the creative process
of sketching. This actually is the reason why we have not realized a more pervasive assistance,
e.g., on-line after every single stroke. In many conventional sketch editors, the user is in trouble
if his sketch cannot be recognized. With the developed editor, he can ask for syntactical guidance
instead. But this is not the only help he can get as we describe next.

5.1 Location of Recognition Errors

An important benefit of our approach is that it helps identifying recognition errors (besides syn-
tax errors). Consider Fig. 11 as an example. A human can easily see that the sketched diagram
is a structured business process. Still the diagram is not correctly recognized by DSketch. Nor-
mally, the user would have no clue what is wrong here. Has the start event mistakenly been
recognized as an activity? Or has the end event been drawn too sloppily? Invoking assistance
yields the answer. The red arrow between the activity and the end event clearly points out the
problem: either the existing arrow has not been correctly recognized, or the gap between its head
and the end event is too large. In either case, the user now can correct this problem without the
need to redraw the whole diagram. It would even be possible to automatically mask or remove
those strokes that do not contribute to the solution.

This problem, however, mainly arises for quite restricted visual languages where either the
whole diagram is correct or nothing. Indeed, a single misrecognized arrow affects the correctness

Proc. GraBaTs 2010 10 / 14

ECEASST

Figure 11: Identification of recognition errors

of the whole BPM. It simply is not well-structured anymore as we have required by the grammar.
With a more relaxed syntax definition at least sub-diagrams would be recognized correctly so
that the visual feedback given by the DiaGen parser might indicate what is wrong. Actually,
languages, where either the whole diagram or nothing is recognized as correct, have been very
critical for sketching systems so far, because the recognition rate exponentially drops down with
the size of the diagram. This problem is solved with our approach (although it would be even
better to re-feed the analysis result in the recognizer, so that it can try harder at the weak points).

5.2 Stroke Interference

A problem of integrating PerSUADE into a sketching system is that it may happen that a sketch
is not recognized as correct after a suggested patch has been accepted by the user. When using
PerSUADE in conventional WIMP editors, this cannot happen: diagrams resulting from the
application of assistance are always correct. In the context of sketching, newly generated strokes
may interfere with existing strokes that, e.g., had been ignored by stroke recognition before.

6 Related Work

Of course, there are also other sketch editors for BPMs such as [MS09]. Moreover, due to the
practical relevance of this language, various kinds of guidance have been developed for con-
ventional WIMP-based BPM environments (an example is [BBM+09]). However, to our best
knowledge such guidance has not been integrated into sketch editors yet.

As already noted in the introduction, the most closely related work is [CDR07] by Costagliola
et al. Here, an LR parser as known from textual languages is used for syntax analysis with respect
to a so-called sketch grammar. Thereby, syntactic information is exploited to resolve ambiguities
similar to the DSketch approach [CDR08]. The symbol table of the parser then can be exploited
to realize symbol completion in sketch editors (and so-called symbol prompting in conventional
diagram editors). The strong points of this approach are that it is generic, that direct feedback
is provided (the approach is actually incremental), that the user’s own drawing style is used for
completion (a stroke repository is filled by the different symbol recognizers to this end), and
that the recognition of complex symbols can generally be improved that way. But, like with our
approach, explicit user interaction is still required. In contrast to [CDR07], our approach does
not stop at the lexical level, but also considers the overall diagram structure. Even other kinds of
assistance not necessarily based on syntax could be integrated.

11 / 14 Volume 32 (2010)

Sketch-based Diagram Editors with User Assistance

Another meta-tool where it should be possible to combine assistance with sketching is the
Marama toolkit. For Marama, both a critic authoring tool [AHHG09] for the specification of user
feedback and a sketching framework [GH07] are available. Here, however, critics would have to
be specified manually whereas we gain the feedback automatically from the parser. The strong
points of [GH07] are that only very little extra specification effort is needed for complementing a
normal diagram editor with a sketching editor and that the user can easily overrule the recognizer
when it makes a mistake.

7 Conclusion

In this paper we have shown that user assistance functionality can be provided by sketch editors
and that this actually is useful. The presented approach allows to generate sketching editors with
user assistance from a language specification based on the existing sketching editor generator
DSketch and the user assistance library PerSUADE. As a representative example, we have created
a sketch editor for business process models with assistance features such as auto-completion or
example generation.

But we have noticed yet another benefit of this approach besides helping the user with the
language. The very same assistance features actually can be put to a good use in locating recog-
nition errors. Those often directly result in syntax errors, whose potential corrections then point
the user precisely to the recognition error. If a new component is suggested as a correction where
already a component exists, the user can conclude that the existing component had been drawn
too sloppily and needs to be redrawn.

The developed sketch editor for business process models is demonstrated in several screencasts
and can be downloaded from www.unibw.de/inf2/DiaGen/assistance/sketching.

Future Work

In the future we want to experiment with relaxations of the assumption that the existing user
strokes must not be changed. It is certainly imaginable that sketched components are moved
around or even resized similar to the assistance in conventional DiaGen editors [MM09]. In
this context it should also be possible to integrate existing component fragments into the newly
introduced components in order to reuse as many strokes of the user as possible.

It would be also important to integrate the suggestions into the diagram closely following
the user’s drawing style. Perfect components mixed with sloppily drawn components make the
diagram look inhomogeneous. Costagliola et al. have proposed a stroke repository to this end,
which is used already for their symbol completion [CDR07]. Alternatively, the user strokes could
be beautified to close this gap.

Finally, DSketch and PerSUADE need to be more deeply intertwined. While DSketch origi-
nally postpones final decision of stroke recognition until syntax analysis in order to improve the
recognition rate and to make ambiguity resolution possible, we had to enforce early recognition
decisions in order to integrate PerSUADE into DSketch.

Proc. GraBaTs 2010 12 / 14

www.unibw.de/inf2/DiaGen/assistance/sketching

ECEASST

Bibliography

[AHHG09] N. M. Ali, J. Hosking, J. Huh, J. Grundy. Critic Authoring Templates for Specifying
Domain-Specific Visual Language Tool Critics. In Proc. 2009 Australian Software
Engineering Conf. Pp. 81–90. IEEE, 2009.

[BBM+09] M. Born, C. Brelage, I. Markovic, D. Pfeiffer, I. Weber. Auto-completion for Ex-
ecutable Business Process Models. In Business Process Management Workshops.
LNBIP 17, pp. 510–515. Springer, 2009.

[BM08a] F. Brieler, M. Minas. Ambiguity Resolution for Sketched Diagrams by Syntax
Analysis Based on Graph Grammars. In Proc. Seventh Int. Workshop on Graph
Transformation and Visual Modeling Techniques. Electronic Communications of
the EASST 10. EASST, 2008.

[BM08b] F. Brieler, M. Minas. A Model-Based Recognition Engine for Sketched Diagrams.
In Proc. VL/HCC Workshop on Sketch Tools for Diagramming. Pp. 19–28. 2008.

[BM08c] F. Brieler, M. Minas. Recognition and processing of hand-drawn diagrams using
syntactic and semantic analysis. In Proc. Working Conf. on Advanced Visual Inter-
faces. Pp. 181–188. ACM, 2008.

[Bra01] U. Brandes. Drawing on Physical Analogies. In Drawing Graphs: Methods and
Models. LNCS 2025, pp. 71–86. Springer, 2001.

[CDR05] G. Costagliola, V. Deufemia, M. Risi. Sketch Grammars: A Formalism for Describ-
ing and Recognizing Diagrammatic Sketch Languages. In Proc. Eighth Int. Conf.
on Document Analysis and Recognition. Pp. 1226–1231. IEEE, 2005.

[CDR07] G. Costagliola, V. Deufemia, M. Risi. Using Grammar-Based Recognizers for Sym-
bol Completion in Diagrammatic Sketches. In Proc. Ninth Int. Conf. on Document
Analysis and Recognition. Pp. 1078–1082. IEEE, 2007.

[CDR08] G. Costagliola, V. Deufemia, M. Risi. Using Error Recovery Techniques to Improve
Sketch Recognition Accuracy. In Proc. 7th Int. Workshop on Graphics Recognition.
LNCS 5046, pp. 157–168. Springer, 2008.

[CMP05] R. Chung, P. Mirica, B. Plimmer. InkKit: A generic design tool for the tablet PC.
In Proc. 6th ACM SIGCHI NZ chapter’s Int. Conf. on Comp.-Human Interaction.
Pp. 29–30. ACM, 2005.

[DHK97] F. Drewes, A. Habel, H.-J. Kreowski. Hyperedge Replacement Graph Grammars.
In Handbook of Graph Grammars and Computing by Graph Transformation. Vol.
I: Foundations. Pp. 95–162. World Scientific, 1997.

[GH07] J. Grundy, J. Hosking. Supporting Generic Sketching-Based Input of Diagrams in a
Domain-Specific Visual Language Meta-Tool. In Proc. 29th Int. Conf. on Software
Engineering. Pp. 282–291. IEEE, 2007.

13 / 14 Volume 32 (2010)

Sketch-based Diagram Editors with User Assistance

[HD05] T. Hammond, R. Davis. LADDER, a sketching language for user interface devel-
opers. Computers & Graphics 29(4):518–532, 2005.

[Min02] M. Minas. Concepts and Realization of a Diagram Editor Generator Based on
Hypergraph Transformation. Science of Computer Programming 44(2):157–180,
2002.

[MM09] S. Mazanek, M. Minas. Business Process Models as a Showcase for Syntax-based
Assistance in Diagram Editors. In Proc. 12th Int. Conf. on Model Driven Eng. Lang.
and Sys. LNCS 5795, pp. 322–336. Springer, 2009.

[MMM08a] S. Mazanek, S. Maier, M. Minas. An Algorithm for Hypergraph Completion Ac-
cording to Hyperedge Replacement Grammars. In Proc. 4th Int. Conf. on Graph
Transformations. LNCS 5214, pp. 39–53. Springer, 2008.

[MMM08b] S. Mazanek, S. Maier, M. Minas. Auto-completion for Diagram Editors based on
Graph Grammars. In 2008 IEEE Symposium on Visual Languages and Human-
Centric Comp. Pp. 242–245. IEEE, 2008.

[MRA09] J. Mendling, H. Reijers, W. van der Aalst. Seven Process Modeling Guidelines
(7PMG). Information and Software Technology, 2009.

[MS09] N. Mangano, N. Sukaviriya. Liberating Expression: A Freehand Approach to Busi-
ness Process Modeling. In Proc. 12th IFIP TC 13 Int. Conf. on Human-Comp. In-
teraction. LNCS 5727, pp. 834–835. Springer, 2009.

[Obj09] Object Management Group. Business Process Modeling Notation (BPMN). 2009.
http://www.omg.org/docs/formal/09-01-03.pdf.

[SBV08] S. Sen, B. Baudry, H. Vangheluwe. Domain-Specific Model Editors with Model
Completion. In Models in SE. LNCS 5002, pp. 259–270. Springer, 2008.

Proc. GraBaTs 2010 14 / 14

http://www.omg.org/docs/formal/09-01-03.pdf

	Introduction
	Business Process Models
	The Frameworks PerSUADE and DSketch
	Hypergraphs and Hypergraph Grammars
	User Assistance with PerSUADE
	Diagram Recognition à la DSketch

	Integration of User Assistance into DSketch
	Placement of New Components by the Use of Graph Drawing Techniques
	User Interface

	Discussion
	Location of Recognition Errors
	Stroke Interference

	Related Work
	Conclusion

