
Electronic Communications of the EASST
Volume 32 (2010)

Proceedings of the
Fourth International Workshop on

Graph-Based Tools
(GraBaTs 2010)

Visualization of Traceability Models
with Domain-specific Layouting

Ábel Hegedüs, Zoltán Ujhelyi, István Ráth and Ákos Horváth

14 pages

Guest Editors: Juan de Lara, Daniel Varro
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

Visualization of Traceability Models
with Domain-specific Layouting

Ábel Hegedüs, Zoltán Ujhelyi, István Ráth and Ákos Horváth ∗

(hegedusa,ujhelyiz,rath,ahorvath)@mit.bme.hu, http://www.inf.mit.bme.hu/en
Department of Measurement and Information Systems (MIT)

Budapest University of Technology and Economics (BME), Budapest, Hungary

Abstract: Traceability models are often used to describe the correspondence between
source and target models of model transformations. Although the visual representa-
tion of such models are important for transformation development and application,
mostly ad-hoc solutions are present in industrial environments. In this paper we
present a user interface component for visualizing traceability models inside trans-
formation frameworks. As generic graph visualization methods fail to emphasize
the underlying logical structure of our model, we used domain-specific layouts by
customizing generic graph layout algorithms with data from the metamodels used
during the transformation. This approach was evaluated, among others, with the
traceability models generated by a BPEL verification transformation, which serves
as our running example.

Keywords: traceability, graph visualization, domain-specific layout algorithms

1 Introduction

Model transformations are applied increasingly in various fields of software engineering, from
business process modeling to formal verification to code generation. The models acting as
source and target for the transformations often represent different domains, thus the identification
of correspondence between them is non-trivial. Although in the field of critical systems and
services the precise recording of traceability information is a strict requirement, in many industrial
applications only ad-hoc solutions are used for handling this information.

Throughout the lifecycle of a system or product, traceability information is generated and used
for various tasks. The correspondence information is most often created at the time when the
target model is produced using the source model during the execution of the transformation. This
information can be later used for validation, verification, change management, maintenance or
back-annotation. Traceability information itself can be accessed with model transformations thus
model-based traceability solutions are advantageous [DKPF09].

A development environment that supports both the generation and visualization of traceability
information can enhance both automatic verification and human reviews during certification. We
argue that instead of viewing this information textually or as structured data, it should be stored
as traceability models and visualized graphically. After examining the most common generic

∗ This work was partially supported by the SecureChange (ICT-FET-231101) and the CERTIMOT (ERC HU 09)
projects.

1 / 14 Volume 32 (2010)

mailto:(hegedusa,ujhelyiz,rath,ahorvath)@mit.bme.hu
http://www.inf.mit.bme.hu/en


Visualization of Traceability Models with Domain-specific Layouting

graph visualization methods with traceability models, we concluded that they fail to emphasize
the underlying logical structure and mental map, thus a different approach is required.

In this paper we present a domain-specific visualization method for traceability models by
customizing generic layout algorithms. Our approach results in a comprehensive visualization
better suited for model transformation debugging purposes than existing approaches. We also
outline the general techniques used for constructing domain-specific layouts for traceability
models, and discuss various usage scenarios of the visualization during the transformation
development process.

Our concepts are presented on a complex running example (implemented during the SENSO-
RIA European project [SEN05]) that aims at providing automated support for the verification of
processes defined in the Business Process Execution Language (BPEL) [OAS07]. The example
includes a complex model transformation, which generates a formal transition system description
from the selected BPEL process together with a traceability model, which stores the correspon-
dence information between the source and target models. Apart from transformation development,
the traceability model is used for aiding the verification and for supporting back-annotation by
projecting the verification results from the transition system level to the business process level.

The rest of the paper is structured as follows. Section 2 summarizes our running example
for the model checking of BPEL business processes using the Symbolic Analysis Laboratory
(SAL) [Sha00] model checking framework. Section 3 presents the traceability aspects of the
example and the traceability model, including its generation and use. Then, Section 4 presents
how generic and domain-specific layout algorithms can be used to visualize traceability models,
and demonstrates them using an implementation in the VIATRA2 framework [V2]. Section 5
assesses the related work and finally, Section 6 concludes our paper by evaluating the presented
method and suggesting possible future research directions.

2 Case study: Formal Verification of BPEL Processes

Business processes implemented in BPEL are often used to create business-to-business collabora-
tions and complex web services. Their quality is critical to the organization and any malfunction
may have a significant negative impact on financial aspects. To minimize the possibility of failures,
designers and analysts need powerful tools to guarantee the correctness of business workflows.
As the running example of our paper we use such a tool (BPEL2SAL) implemented based on the
method presented in [GHV10].

In order to verify BPEL processes, first the input process description is transformed into a
formal model (i.e. state transition systems, see Figure 1b), thus defining precise formal semantics
for BPEL. In the second stage, this transition system is projected into the language of SAL by code
generation executed using the VIATRA2 framework. The actual verification is then carried out by
model checking techniques using the SAL framework. Model checking is a method using two
inputs: the analyzed model and the defined requirement. The algorithm of the model checker will
decide whether the structure and behavior of the model satisfies the defined requirement. Usually
the requirements are safety requirements, like the absence of deadlock or liveness requirements
(e.g. there is always a response to a request). Requirements against the business process are
captured as Linear Temporal Logic (LTL) expressions (defined automatically for generic and

Proc. GraBaTs 2010 2 / 14



ECEASST

manually for process-specific requirements), while model checking results in a counter-example
(sequence of transitions) if the requirement is violated by the model. Finally, the back-annotation
of the verification results is provided by another transformation using the traceability information
generated during the first transformation [HBRV10].

(a) Example BPEL process (b) BPEL Verification approach steps

Figure 1: Running Example

Example business process The input of the tool is a BPEL process therefore, for illustration
purposes, we will use the process shown in Figure 1a. The process represents a simple web
service responsible for checking the data format of the input and transforming it if required.
The Receive activity stores the incoming message from the requester in the input variable,
then the format check decides whether the data is well-formed. If it is valid, the Copy activity
copies the data into the output variable, otherwise the Transform activity executes some
manipulation before writing the result into the output variable. Finally the Reply activity
sends the data from the output variable to the requester and the process finishes.

It is important to note, that business processes are usually larger than our example, however
given that BPEL is an executable language, complex processes are implemented in BPEL by
orchestration and cooperation of smaller processes (using web-service invocations) instead of in
one large BPEL process.

Traceability aspects In the BPEL2SAL tool all steps including model generation, model
checking and back-annotation require adequate traceability information concerning the relation
between the source (BPEL) and target (SAL) models (see the dashed arrows in Figure 1b: (a)
to simplify the model transformation by providing pointers to target model elements in different
phases of the structural transformation (b) in order to capture the requirements properly in LTL
expressions where SAL variables have to be used instead of BPEL elements, (c) in back-annotation
to derive the BPEL process execution from the SAL counter-example. Furthermore, during the
development of the transformations it was used for debugging purposes.

Throughout the paper, we will use this traceability information as a domain-specific model for
which a graph layout is defined using the presented algorithm. Although presented in the context of
the BPEL2SAL tool, these aspects (a-c) can be identified in many other transformation problems
as general concerns [GLMD09]. The traceability information is (i) reused in the transformation,
(ii) examined for the verification or model-checking and (iii) used to drive back-annotation.

3 / 14 Volume 32 (2010)



Visualization of Traceability Models with Domain-specific Layouting

3 Static Traceability Models

The collected traceability information, which stores the correspondence between the structure of
models, is called a static traceability model. Such models are used for various purposes, some of
which are presented through our running example.

Traceability Metamodel In order to store traceability information a third model called the
traceability model is created during transformation execution (the BPEL, SAL and traceability
models are stored separately). The traceability metamodel (illustrated on Figure 2) used in the
BPEL2SAL approach has similarities to those presented e.g. in [RÖV09, DKPF09].

Figure 2: Traceability metamodel

The core of the traceability metamodel is
the traceability record (TR), which represents
a correspondence relation between source and
target model elements. The record stores rela-
tions, which either point to source model ele-
ments (ref source relation) or target model
elements (ref target relation). Note that
this basic metamodel allows multiple relations
between source, traceability and target model elements (e.g. a source element can connect to
several TRs and TRs may have multiple corresponding source or target elements).

Although the TR could be used directly for creating traceability model instances the definition
of subtypes (e.g. Receive2Identifier) provides a better solution for using the traceability
model (e.g. by simplifying pattern matching).

Note that while we use the simple traceability metamodel defined above throughout the paper
as an example, the approach itself does not depend explicitly on this specific metamodel. The
only characteristic exploited is the ability to classify relations based on which model elements
(source or target) they connect to. Therefore our approach is usable with arbitrary traceability
metamodels featuring this characteristic.

Traceability Use Cases: Reuse, Identification and Back-annotation The importance of
traceability can be illustrated on the running example (see Figure 1b) by pointing out three
scenarios in which the traceability model supports the execution of the different steps of the
BPEL2SAL method: (a) reuse, (b) identification and (c) back-annotation. These steps are found
in many transformation use cases, while visualization is highly convenient for these scenarios as
an assistance tool for transformation development and verification.

(a) Reuse The SAL transition system has separate parts, which are generated at different phases
of the transformation. Thus the traceability model is used repeatedly to find the corresponding
variables to the relevant BPEL elements (e.g. find the SAL element corresponding to the BPEL
variable input, which is written during the execution of the Receive activity). Note that
generally transformations can be separated to phases thus this scenario appears in many cases
(e.g. in Triple Graph Grammars [Sch95] the correspondence structure can be present in the
precondition of rules).

(b) Identification The requirements, which are validated against the business process, can be
best described using the source model (i.e. the BPEL process itself [XLW08]). However they have
to be specified as an LTL formula using the formalism of the target model (in this case, the SAL

Proc. GraBaTs 2010 4 / 14



ECEASST

transition system variables). The traceability model can be used to identify corresponding SAL and
BPEL elements (e.g. SAL variable to describe that Receive always finishes). Although general
requirements can be defined automatically, domain-specific requirements have to be created
manually where visualization of the traceability model can be considered a big improvement
compared to other approaches.

(c) Back-annotation The result of the model checking is a counter-example if the requirement
is violated by a sequence of transitions from the initial state leading to a violating state. However
the interpretation (or back-annotation) in the original BPEL process is far from trivial [HBRV10].
The traceability model is used to find corresponding source elements for the SAL variables in
order to derive the BPEL execution from the steps of the counter-example (e.g. the assignment
stating that the SAL variable corresponding to the Receive activity changed its value after a
given transition execution). Ideally, back-annotation itself may be automated, the visualization of
traceability models is still advantageous during its development.

4 Visualization of Traceability Models

Displaying generated traceability models gives an overview of the status of model transformation,
as ideally for every created target model element there should be one or more element in the
source model referenced by traceability records. However, not all the source model elements have
traceability records, therefore the visualization displays only nodes with records, as the subset
with traceability records is usually the significant part.

As the connections are their central element, traceability models can be meaningfully visualized
as a graph with the model elements as nodes and the traceability relations as arcs between them.
In this section our main contribution is to describe a domain-specific graph layout algorithm
created from generic and parameterizable algorithms to visualize such traceability models.

4.1 Visualization of Static Traceability Models

We examined various generic layout algorithms [KW01] to visualize static traceability models.
These algorithms evaluate aesthetic conditions to determine the layout of the graph, without any
specific information about the logical structure of the underlying model.

The simple grid layout displayed nodes in rows and columns, but without additional information
the node positions had no connection with the structure, and the arcs were crossing both nodes
and each other, similar to layout in Figure 4a.

The radial layout, developed for the drawing of trees by positioning the nodes in concentric
circles, displayed the traceability model in two concentric circles: in the middle the traceability
records were displayed, while the outer circle contained both the source and target model elements,
mixed together. Although the traceability records are clearly identifiable, the created graph does
not reflect the structure of the model very well.

Spring layout, which defines the layout as minimal energy-state of a similar spring-system,
displayed the graph as isolated tuples (in most cases triplets) of related model elements. Thus
the corresponding elements are placed close to each other in an easily understandable way, but
random positioning of isolated tuples makes it hard to find typical problems.

5 / 14 Volume 32 (2010)



Visualization of Traceability Models with Domain-specific Layouting

Visualization Requirements The empirical evaluation of the generic graph layout algorithms
lead us to identifying the following requirements for a graph layout algorithm to visualize static
traceability models:

R1. The displayed nodes should not overlap, as it makes identification of nodes difficult.

R2. The crossings of the displayed arcs should be minimized, as this simple aesthetic criteria is
shown to affect human understanding greatly [Pur97].

R3. The corresponding source, target and traceability model elements should be placed close to
each other for emphasizing the relations between the model elements. By putting the related
elements close, requirement R2 becomes easier to fulfill, as it reduces the arc lengths.

R4. The visualization should clearly separate the source, target and traceability models. As the
distinction of the three models forms the basis of the underlying structure, we consider this
requirement critical for an understandable visualization.

R5. In order to provide a meaningful visualization during the transformation execution, it is
important to handle changes of the input models. The layout should change fast enough,
and should keep unchanged parts similar (as in the mental map maintaining [ELMS91]).

Grid Radial Spring
R1
R2
R3
R4
R5

Yes Partial Partial

No Yes No

No Partial Yes

No No No

No Yes Partial

Figure 3: Layouts and
Requirements

All listed generic layouts clearly violate the R4 requirement. In
addition to that the grid and spring layouts violate the R2 crossing re-
quirement, the radial layout the R3 closeness requirement (as traceability
records get far from the connected source and target elements).

Requirements R1, R2 and R3 are simple aesthetic properties of the
created graph visualization, so they can be fulfilled using generic graph
layout algorithms.

On the other hand, as the source and target models are symmetrically
connected to the traceability record (as seen in the traceability meta-
model in Figure 2), the R4 separation requirement cannot be fulfilled without some (meta)model-
specific information. This information can be presented in the form of a categorization function,
that tells for every model element (or model element type) which model it belongs to.

For this reason we propose a domain-specific layout algorithm, that is created by adding
model-dependent customizations to existing generic layout algorithms.

4.2 Domain-specific Layout Algorithm for Static Traceability Models

In this paper we propose the use of domain-specific layouting by customizing generic and
parameterized algorithms: we give extra information based on the source, traceability and target
metamodels. The customization takes the following steps: (1) filtering the model, (2) creating a
custom ordering of the model elements and (3) adjusting the layout algorithm to satisfy further
visual constraints.

The different problems we addressed with the use of domain-specific layout algorithms for
traceability visualization are illustrated in Figure 4. In each figure we use a small subset of the
the traceability model: a receive, a process and an input node from the BPEL model,

Proc. GraBaTs 2010 6 / 14



ECEASST

r_s

r_t

receive:
tReceive

R2ID:
rec2id

recID:
identifier

process:
tProcess

S2ID:
scope2id

processID: 
identifier

S2ID:
scope2id

sFinished:
identifier

receive:
tReceive

R2ID:
rec2id

recID:
identifier

process:
tProcess

S2ID:
scope2id

processID: 
identifier

S2ID:
scope2id

receive:
tReceive

R2ID:
rec2id

recID:
identifier

process:
tProcess

S2ID:
scope2id

processID: 
identifier

S2ID:
scope2id

sFinished:
identifier

input:
tVariable

V2ID:
var2id

inputID:
identifier

input:
tVariable

V2ID:
var2id

input:
tVariable

V2ID:
var2id

inputID:
identifier

sFinished:
identifier

inputID:
identifier

receive:
tReceive

R2ID:
rec2id

recID:
identifier

process:
tProcess

S2ID:
scope2id

processID: 
identifier

S2ID:
scope2id

sFinished:
identifier

input:
tVariable

V2ID:
var2id

inputID:
identifier

Source model 
(BPEL)

Target model 
(SAL)

Traceability model

Legend

(a) Generic Grid

r_s

r_t

receive:
tReceive

R2ID:
rec2id

recID:
identifier

process:
tProcess

S2ID:
scope2id

processID: 
identifier

S2ID:
scope2id

sFinished:
identifier

receive:
tReceive

R2ID:
rec2id

recID:
identifier

process:
tProcess

S2ID:
scope2id

processID: 
identifier

S2ID:
scope2id

receive:
tReceive

R2ID:
rec2id

recID:
identifier

process:
tProcess

S2ID:
scope2id

processID: 
identifier

S2ID:
scope2id

sFinished:
identifier

input:
tVariable

V2ID:
var2id

inputID:
identifier

input:
tVariable

V2ID:
var2id

input:
tVariable

V2ID:
var2id

inputID:
identifier

sFinished:
identifier

inputID:
identifier

receive:
tReceive

R2ID:
rec2id

recID:
identifier

process:
tProcess

S2ID:
scope2id

processID: 
identifier

S2ID:
scope2id

sFinished:
identifier

input:
tVariable

V2ID:
var2id

inputID:
identifier

Source model 
(BPEL)

Target model 
(SAL)

Traceability model

Legend

(b) Ordered Grid

r_s

r_t

receive:
tReceive

R2ID:
rec2id

recID:
identifier

process:
tProcess

S2ID:
scope2id

processID: 
identifier

S2ID:
scope2id

sFinished:
identifier

receive:
tReceive

R2ID:
rec2id

recID:
identifier

process:
tProcess

S2ID:
scope2id

processID: 
identifier

S2ID:
scope2id

receive:
tReceive

R2ID:
rec2id

recID:
identifier

process:
tProcess

S2ID:
scope2id

processID: 
identifier

S2ID:
scope2id

sFinished:
identifier

input:
tVariable

V2ID:
var2id

inputID:
identifier

input:
tVariable

V2ID:
var2id

input:
tVariable

V2ID:
var2id

inputID:
identifier

sFinished:
identifier

inputID:
identifier

receive:
tReceive

R2ID:
rec2id

recID:
identifier

process:
tProcess

S2ID:
scope2id

processID: 
identifier

S2ID:
scope2id

sFinished:
identifier

input:
tVariable

V2ID:
var2id

inputID:
identifier

Source model 
(BPEL)

Target model 
(SAL)

Traceability model

Legend

r_s

r_t

receive:
tReceive

R2ID:
rec2id

recID:
identifier

process:
tProcess

S2ID:
scope2id

processID: 
identifier

S2ID:
scope2id

sFinished:
identifier

receive:
tReceive

R2ID:
rec2id

recID:
identifier

process:
tProcess

S2ID:
scope2id

processID: 
identifier

S2ID:
scope2id

receive:
tReceive

R2ID:
rec2id

recID:
identifier

process:
tProcess

S2ID:
scope2id

processID: 
identifier

S2ID:
scope2id

sFinished:
identifier

input:
tVariable

V2ID:
var2id

inputID:
identifier

input:
tVariable

V2ID:
var2id

input:
tVariable

V2ID:
var2id

inputID:
identifier

sFinished:
identifier

inputID:
identifier

receive:
tReceive

R2ID:
rec2id

recID:
identifier

process:
tProcess

S2ID:
scope2id

processID: 
identifier

S2ID:
scope2id

sFinished:
identifier

input:
tVariable

V2ID:
var2id

inputID:
identifier

Source model 
(BPEL)

Target model 
(SAL)

Traceability model

Legend

(c) Column Adjustments

r_s

r_t

receive:
tReceive

R2ID:
rec2id

recID:
identifier

process:
tProcess

S2ID:
scope2id

processID: 
identifier

S2ID:
scope2id

sFinished:
identifier

receive:
tReceive

R2ID:
rec2id

recID:
identifier

process:
tProcess

S2ID:
scope2id

processID: 
identifier

S2ID:
scope2id

receive:
tReceive

R2ID:
rec2id

recID:
identifier

process:
tProcess

S2ID:
scope2id

processID: 
identifier

S2ID:
scope2id

sFinished:
identifier

input:
tVariable

V2ID:
var2id

inputID:
identifier

input:
tVariable

V2ID:
var2id

input:
tVariable

V2ID:
var2id

inputID:
identifier

sFinished:
identifier

inputID:
identifier

receive:
tReceive

R2ID:
rec2id

recID:
identifier

process:
tProcess

S2ID:
scope2id

processID: 
identifier

S2ID:
scope2id

sFinished:
identifier

input:
tVariable

V2ID:
var2id

inputID:
identifier

Source model 
(BPEL)

Target model 
(SAL)

Traceability model

Legend

(d) Row Adjustments

r_s

r_t

receive:
tReceive

R2ID:
rec2id

recID:
identifier

process:
tProcess

S2ID:
scope2id

processID: 
identifier

S2ID:
scope2id

sFinished:
identifier

receive:
tReceive

R2ID:
rec2id

recID:
identifier

process:
tProcess

S2ID:
scope2id

processID: 
identifier

S2ID:
scope2id

receive:
tReceive

R2ID:
rec2id

recID:
identifier

process:
tProcess

S2ID:
scope2id

processID: 
identifier

S2ID:
scope2id

sFinished:
identifier

input:
tVariable

V2ID:
var2id

inputID:
identifier

input:
tVariable

V2ID:
var2id

input:
tVariable

V2ID:
var2id

inputID:
identifier

sFinished:
identifier

inputID:
identifier

receive:
tReceive

R2ID:
rec2id

recID:
identifier

process:
tProcess

S2ID:
scope2id

processID: 
identifier

S2ID:
scope2id

sFinished:
identifier

input:
tVariable

V2ID:
var2id

inputID:
identifier

Source model 
(BPEL)

Target model 
(SAL)

Traceability model

Legend

Figure 4: Visualizing the Traceability Model

their corresponding identifiers from the SAL model (SAL variables) and the traceability records
in-between. The different parts of the graph are colored differently, and the arc captions are
removed to maintain readability of the graphs.

Algorithm selection We have chosen a three-column grid layout algorithm, as columns could
provide a clean separation of the different parts (thus fulfilling requirement R4). Although the
generic grid layout gives the worst visualization results without further information, it is easier to
customize using incorporated domain-specific information.

The generic grid layout does not distinguish between different parts of the model, instead it
places the nodes in an unpredictable way similar to the layout in Figure 4a. It is important to note,
that the generic layout algorithm does not utilize domain-specific filtering, however for the sake
of readability we omitted some (from the traceability point of view) less relevant elements from
the figures, like the internal structure of the source or target models.

Filtering The use of (meta)model-dependent filters helps to provide more relevant domain-
specific layout algorithm: by removing unnecessary entities or relations the resulting visualization
becomes more focused.

When displaying the traceability model, the intra-model relations of source or target models
are often unimportant. By filtering out these relations the resulting visualization is more relevant.
Removing irrelevant nodes or relations also reduces the number of crossing arcs (requirement R2).

The removed intra-model relations can either be evaluated using the existing model space
editors or a less strict filter should be applied. When applying such a filter, in order to keep the
visualization readable, the source, target and traceability models should be filtered similarly. The
development of such filters are planned in the future.

In case of huge models a large number of nodes/connections may remain visible after the filter
application (e.g. about 300 nodes are displayed in the SENSORIA case study [AD07]), emphasizing
the need for user-defined filtering. This means, it should be possible to manually remove elements
from the visualized graph either one by one, or by applying additional type-filters.

7 / 14 Volume 32 (2010)



Visualization of Traceability Models with Domain-specific Layouting

Filters can also be defined in the user interface: the user can decide which elements are relevant,
and others can be filtered out. This can be used as a kind of search functionality inside the
traceability model: it is possible to list only a type from the source or target model, and display its
corresponding nodes.

The filtering can happen on both the model and metamodel level: in the first case it is possible
to filter out some model elements (typically initiated by the user on the user interface), or entire
types (typically built-in filters, provided by the framework).

Ordering Custom ordering can be used to force an algorithm to place the nodes in a predefined
order. It is important to note, that some layout algorithms, such as the grid layout are dependent
on the ordering of nodes, but others, typically force-based algorithms (e.g. radial, spring) are
ordering-insensitive.

The grid layout implementation used for traceability visualization places the nodes in the order
it receives them. Therefore by creating an ordering that puts the corresponding nodes next to each
other in source-traceability-target order, the layout will place them next to each other. Secondary
ordering can be used to order the tuples by their relations.

Our solution ordered the items by the name of the traceability records (source and target models
are ordered by the names of their corresponding traceability nodes). The ordering ensures that
corresponding elements are placed close to each other, and can often be connected without arc
crossings (requirement R3 and R2 respectively).

This simple ordering works very well if there is one-to-one correspondence between the
different source, traceability and target model elements, otherwise elements get misplaced between
columns. As both S2ID elements in the grayed area of Figure 4b are connected to the same
process node, they should be placed into the second column, but the ordering misplaced them.

Further Visualization Constraints Domain-specific knowledge (e.g. the type of the nodes)
makes the layout algorithm capable of more efficient visualization. Filtering and ordering cannot
utilize all this information, so slight alterations of the layout algorithm might be needed.

For our traceability visualization the grid layout has been altered in two ways: (1) the algo-
rithm decides which model the model elements belong to (simple categorization based on the
metamodel), and places it into its corresponding column (requirement R4), and (2) grid cells are
left empty to align the corresponding model elements together (requirement R3). The second
adjustment is needed, as the first one only ensures that every element appears in the intended
column, but an element can get into a wrong row (as the input element in Figure 4c). This issue
is addressed by ensuring that for every source, traceability and target tuple a new row is started in
the layout (see Figure 4d).

Change handling Changes in the underlying model could be handled by simply reapplying the
layout algorithm, because the grid layout is simple to calculate (if the nodes are ordered correctly,
the execution time is linear to the number of nodes), and results in a layout similar to the original.

If new elements are added, typically a new row has to be appended to the visualized graph. The
previously discussed ordering might put this new row into the middle of the layout, thus shifting
the rows under the insertion point, but this can be avoided by altering the ordering method to
always add new nodes to the end of the list. It is important, that only entire new rows should be
handled this way, otherwise unwanted arc crossing could be introduced. This approach works for

Proc. GraBaTs 2010 8 / 14



ECEASST

model manipulations by the BPEL2SAL transformation, while a change in the source (BPEL)
model requires the re-execution of the transformation.

The deletion of elements often results in the deletion of a row, also causing row shifting.
If instead of deleting the elements they would be marked dirty (i.e. a signal representing the
deletion), the layout could be altered to leave their places empty.

We consider that even the basic version of our approach fulfills the change handling require-
ment R5, as typically complete rows are shifted, so locally the mental map is maintained. By
applying the mentioned optimizations the changes can be emphasized.

4.3 Evaluation of the Approach

The visualization fulfills all requirements (R1–R5), and emphasizes the logical structure of the
transformation: the three models are clearly separated in columns, while the connected elements
are grouped in rows. A big drawback of our layout algorithm is the large space consumption,
especially vertically. This means, vertical scrolling is almost always needed, but that is easy to
understand, and does not affect the usability of our solution. It is also possible to enhance the
usability of the solution by more advanced filtering options (thus increasing readability), or some
kind of searching option (to make the model navigable).

The created visualization can handle large models, we used the SENSORIA Finance case
study [AD07] for evaluation, whose BPEL, traceability and SAL models contain 220,116,6647
elements, respectively. After applying the filters, the remaining elements are visualized resulting
in a graph about 300 nodes large. The visualization is initialized in less than a second, and could
be updated fast enough (approx. 50ms) to be usable in a changing environment as well.

Although our approach was only tested using traceability models, where a single traceability
record is connected to one source and one target element, we believe, the resulting visualization
could also be used with more complex traceability records with more source and/or target elements.
In this case it is possible, that arc crossings could not be avoided: therefore a better ordering shall
be used to place the related elements close to each other.

Traceability use cases defined in Section 3 take advantage of different aspects of our approach.
In the following we evaluate how our approach is used in these scenarios:

In the first use case, reuse, the visualization is mainly used for debugging the source-target
transformation. We found that the ability to dynamically update the layout with new elements
during the execution of the transformation helps pinpointing possible errors in the implementation.
Furthermore, the filtering capabilities of the visualization help the developer in finding the model
fragments which are required for further transformation rules.

In the identification use case, the manual construction of requirements against the business
process with LTL expressions includes looking up the corresponding target elements using the
filtering and searching abilities of the approach. By displaying only parts of the model that are
used for requirement definition (i.e. the SAL state variables in our case study), the difficulty of
finding a given element is reduced.

During the development of the automated back-annotation transformation, the developer
focuses on a set of specific elements at a time (e.g. when implementing the back-annotation of a
given process element type). Combined use of the advanced filtering options of the approach and
the ability to explore the corresponding part of the models is a great help for the developer.

9 / 14 Volume 32 (2010)



Visualization of Traceability Models with Domain-specific Layouting

4.4 Implementation and Usage Scenarios

VIATRA2 model space visualization The VIATRA2 framework organizes its models using a
model space [VP03] that allows a hierarchical modeling framework similar to the one provided
by the Eclipse Modeling Framework or ontologies.

The model elements can be either entities (graph nodes) or relations (graph edges). Entities rep-
resent the basic concepts of the modeling domain, while relations represent a general relationship
between model elements.

The VIATRA2 framework uses a containment-based editor to display and edit model spaces in
the user interface (similar to EMF tree editors), but in many cases this is not the most suitable
display for the user of the framework. For this reason we created a model space visualization
component for VIATRA2 based on the Zest [Bul08] visualization framework. Zest is built up on
general purpose graph visualization techniques which can be parameterized.

The visualization component is tightly integrated into the transformation development environ-
ment: it reacts to changes of the model space (occurring either during transformation execution or
model editing), and links back to the containment hierarchy based editor. This integrated approach
also helps to reduce the negative effects of the too strict filtering, as it is possible to see the same
element in both the containment hierarchy with all of its relations and the visualized traceability
model at the same time.

The implemented visualization component is depicted in Figure 5: next to the containment-
based display the graph viewer shows the traceability model using the proposed layout algorithm.

Figure 5: The Visualization of an Erroneous Traceability Record

Traceability Visualization in Transformation Debugging Our traceability visualization helps
the manual uses of traceability, such as the ones defined in Section 3, as the traceability links are
displayed explicitly. The fact that the visualization is integrated into the transformation IDE helps
debugging transformation programs by the easy detection of erroneous traceability links.

It is possible to detect missing (or maybe misplaced) traceability records by looking for model
elements without connections in the visualization: as the visualization of Figure 5 shows, the
highlighted BPEL model element is not connected to a traceability record. This shows that
no traceability record has been created for the source element and suggests an error in the
transformation program (alternatively, a target element with no corresponding source model part
suggests incorrect traceability handling as well).

Proc. GraBaTs 2010 10 / 14



ECEASST

The dynamic update mechanism also gives an overview of the transformation status: before
the transformation is executed, only the source model is displayed, then as the transformation is
executed, the trace records and the related target elements are displayed as they are created.

Our visualization layout (and component) can be used to visualize similar traceability models,
which may use different metamodels. A more detailed evaluation is available on our website1.

5 Related Work

In this section a brief overview of various initiatives in the graph visualization field is provided
with special focus on model-specific visualization techniques and their use on traceability models.

Visualization Graph drawing is a critical area of information visualization. The graph drawing
community researched layout algorithms [KW01], such as different tree layouts or algorithms
based on physical analogies such as springs or energy levels. All these algorithms can be used as
the base of domain-specific layouts.

The publication information visualizer tool SHriMPBib [All03] uses domain-specific layout
algorithms by customizing the Jambalaya ontology visualization tool. Its method is similar to our
approach, as filters were defined together with the settings of visual and layout parameters, but
the actual design decisions were not published.

The DiaMeta editor generator framework allows specifying metamodel-dependent layout
algorithms [MM08]. The visualization is a constraint-based enhancement process: in every step it
tries to enhance the existing layout, then checks whether some metamodel-based layout constraints
hold. The approach is general and flexible, especially in terms of mental map preservation after
modifications, although the evaluation of the constraints could be resource-intensive.

The KIELER tool [FH10] also defines automatic layouting for graphical editors. It defines
so-called meta-layouts, that allow the application of different layouts on different parts of the
diagram, and also provides a strong filtering mechanism.

Traceability Model Visualization We compare several traceability model visualization ap-
proaches in Figure 6. Both the Eclipse AM3 [JVB+10] and the ModeLink [MLi] projects ease the
manual editing of trace models by putting two or three EMF editors side by side, and making it
easy to add links between the editors. This approach works well for manual editing, but it is harder
to get an overview of the connection between the source and target models, as the connections are
not displayed graphically but by the values of attributes. As no arcs are used, requirement R2 is
not applicable, while the corresponding nodes are not grouped together (requirement R3).

The EMF Compare [BP08] project also displays the EMF editors side by side, but marks the
differences between them similarly to relations. Such a view can also be used for displaying
traceability relations. In this case the entire model structure is visible in both the source and target
models, but the complex structure makes it harder to get a quick overview of the traceability
relations: the nodes are not grouped together (requirement R3), and in case of different source
and target model structures it becomes hard to avoid arc crossing (requirement R2).

The TraceViz [MXP05] tool follows another approach: it displays a list of source and target
model elements, and displays the traceability links between the selected elements in a large central

1 https://viatra.inf.mit.bme.hu/publications/traceviz

11 / 14 Volume 32 (2010)

https://viatra.inf.mit.bme.hu/publications/traceviz


Visualization of Traceability Models with Domain-specific Layouting

Visualization R1 R2 R3 R4 R5 Pros/Cons

Eclipse AM3

ModeLink

EMF Compare

TraceViz

Transformation Chain 
Visualization with 
GEF3D

Domain-specific Graph 
Layout (this work)

Model editors placed 
next to each other

Yes N/A No Yes Yes + Easy editing

- Implicit traceability links (no arcs)

Model editors placed 
next to each other with 
traceability links

Yes Part No Yes Part + Visible internal model structure
+ Easy editing
- Handling different source and 
target model structures

Display of structured 
traceability links between 
selected source and 
target model elements

Yes N/A N/A Yes Part + Easy directed searches

- Traceability visualization is 
restricted to selected elements

Graphical model editors 
displayed and connected 
within a 3D space

Yes Part Part Yes Yes + Reuse of existing graphical editors
+ Visible traceability links
- No automatic 3D layouting

Displaying the 
traceability model with a 
modified grid layout 
algorithm

Yes Yes Yes Yes Yes + Visible traceability links
+ Transformation IDE integration
- Space consumption

Figure 6: Overview of the Traceability Visualization Solutions

area. This interface allows efficient, user-directed search, but is harder to visualize changes in
this way (as the changed elements might be hidden - partial support for requirement R5). As the
connections are not displayed, requirement R2 and R3 cannot be applied.

The transformation chain visualization of [PVSB08] also includes a three dimensional visual-
ization of traceability links. The main idea of the approach is to put the existing model editors in a
three dimensional space, and connect them with traceability links, on the other hand although the
layouting options of the existing editors are reused, the traceability links are simply connect the
corresponding nodes. This way requirement R2 and R3 are only partially solved, as they depend
on the positioning of the editors and the camera position.

Triple Graph Grammars (TGG) are introduced in [Sch95], which also define a basic layout
that separates the three models but lacks further placement guidelines. TGGs are also used for
defining transformations in [GLMD09] include traceability information inherently, while the
VizMODLE tool supports the visualization of correspondence structures. However these do not
include specific layouting for traceability models, therefore these approaches are not evaluated
against the requirements.

6 Conclusion and Future Work

In case of complex model transformations (e.g. for automatic model analysis) debugging and
back-annotation of the transformation necessitates the visualization of traceability connections
between the source and target models in an intuitive, easy to understand way. Unfortunately
generic purpose graph layout algorithms frequently fail to properly display the underlying logical
structure of traceability models. To solve this problem we proposed a semi-automatic technique
with domain-specific layouting by customizing generic and parameterized layout algorithms, and
introduced our techniques on the BPEL2SAL case study.

The use of domain-specific layout algorithms seems a promising direction for visualizing
traceability models, although further research on automating possibilities is required. In the future

Proc. GraBaTs 2010 12 / 14



ECEASST

we plan to investigate how to identify the structure of the source and target models, and use this
information to make the visualization more intuitive.

Another extension of our proposed layout is the visualization of traceability chains: by putting
the further model elements into new columns, it is possible to visualize entire traces. The main
challenge using this approach is to reduce the number of arc crossings (requirement R2), for that
an enhanced ordering method is required.

Bibliography

[AD07] M. Alessandrini, D. Dost. SENSORIA Deliverable D8.3.a: Finance Case Study: Re-
quirements modelling and analysis of selected scenarios. Technical report, S&N AG,
August 2007.

[All03] M. M. Allen. Empirical Evaluation of a Visualization Tool for Knowledge Engineering.
Master’s thesis, University of Victoria, 2003.

[BP08] C. Brun, A. Pierantonio. Model differences in the eclipse modelling framework. UP-
GRADE, The European J. for the Informatics Professional IX(2):29–34, Apr. 2008.

[Bul08] I. Bull. Model Driven Visualization: Towards A Model Driven Engineering Approach
For Information Visualization. Ph.D. thesis, University of Victoria, BC, Canada, 2008.

[DKPF09] N. Drivalos, D. Kolovos, R. Paige, K. Fernandes. Engineering a DSL for Software
Traceability. In Software Language Engineering. Pp. 151–167. Springer Berlin / Hei-
delberg, 2009.

[ELMS91] P. Eades, W. Lai, K. Misue, K. Sugiyama. Preserving the mental map of a diagram.
In Proceedings of COMPUGRAPHICS. Volume 91, p. 2433. 1991.

[FH10] H. Fuhrmann, R. von Hanxleden. Taming Graphical Modeling. In Petriu et al. (eds.),
Model Driven Engineering Languages and Systems. Lecture Notes in Computer Sci-
ence 6394, pp. 196–210. Springer Berlin / Heidelberg, 2010.

[GHV10] L. Gönczy, Á. Hegedüs, D. Varró. Methodologies for Model-Driven Development
and Deployment: an Overview. In Wirsing (ed.), Rigorous Software Engineering for
Service-Oriented Systems: Results of the SENSORIA project on Software Engineering
for Service-Oriented Computing. Springer-Verlag, 2010. To appear.

[GLMD09] E. Guerra, J. de Lara, A. Malizia, P. Dı́az. Supporting user-oriented analysis for
multi-view domain-specific visual languages. Information & Software Technology
51(4):769–784, 2009.

[HBRV10] Á. Hegedüs, G. Bergmann, I. Ráth, D. Varró. Back-annotation of Simulation Traces
with Change-Driven Model Transformations. In Proceedings of the Eigth International
Conference on Software Engineering and Formal Methods. 2010.

13 / 14 Volume 32 (2010)



Visualization of Traceability Models with Domain-specific Layouting

[JVB+10] F. Jouault, B. Vanhooff, H. Bruneliere, G. Doux, Y. Berbers, J. Bezivin. Inter-DSL
coordination support by combining megamodeling and model weaving. In Proc. of the
2010 ACM Symposium on Applied Computing. Pp. 2011–2018. 2010.

[KW01] M. Kaufmann, D. Wagner. Drawing Graphs. Lecture Notes in Computer Science Vol-
ume 2025/2001. Springer Berlin / Heidelberg, 2001.

[MLi] The ModeLink Project. http://www.eclipse.org/gmt/epsilon/doc/modelink/.

[MM08] S. Maier, M. Minas. A Generic Layout Algorithm for Meta-model Based Editors. In
Applications of Graph Transformations with Industrial Relevance. Volume Volume
5088/2008, pp. 66–81. Springer Berlin / Heidelberg, Oct. 2008.

[MXP05] A. Marcus, X. Xie, D. Poshyvanyk. When and how to visualize traceability links? In
Proceedings of the 3rd international workshop on Traceability in emerging forms of
software engineering. Pp. 56–61. ACM, Long Beach, California, 2005.

[OAS07] OASIS. Web Services Business Process Execution Language Version 2.0 (OASIS
Standard). 2007. ”http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html”.

[Pur97] H. Purchase. Which aesthetic has the greatest effect on human understanding? In
Graph Drawing. Lecture Notes in Computer Science, pp. 248–261. Springer Berlin /
Heidelberg, 1997.

[PVSB08] J. von Pilgrim, B. Vanhooff, I. Schulz-Gerlach, Y. Berbers. Constructing and Vi-
sualizing Transformation Chains. In Model Driven Architecture Foundations and
Applications. Pp. 17–32. 2008.

[RÖV09] I. Ráth, A. Ökrös, D. Varró. Synchronization of Abstract and Concrete Syntax in
Domain-specific Modeling Languages. Journal of Software and Systems Modeling,
2009.

[Sch95] A. Schürr. Specification of Graph Translators with Triple Graph Grammars. In WG
’94: Proceedings of the 20th International Workshop on Graph-Theoretic Concepts in
Computer Science. Pp. 151–163. Springer-Verlag, London, UK, 1995.

[SEN05] SENSORIA (Software Engineering in Service-Oriented Overlay Computers) EU FP6
Project. 2005. http://sensoria-ist.eu.

[Sha00] N. Shankar. Symbolic Analysis of Transition Systems. In Gurevich et al. (eds.), ASM
2000. LNCS 1912, pp. 287–302. Springer-Verlag, Monte Verità, Switzerland, 2000.

[V2] VIATRA2 Model Transformation Framework. http://www.eclipse.org/gmt/VIATRA2/.

[VP03] D. Varró, A. Pataricza. VPM: A visual, precise and multilevel metamodeling framework
for describing mathematical domains and UML. Journal of Software and Systems
Modeling 2(3):187–210, October 2003.

[XLW08] K. Xu, Y. Liu, C. Wu. BPSL Modeler – Visual Notation Language for Intuitive Business
Property Reasoning. Electron. Notes Theor. Comput. Sci. 211, 2008.

Proc. GraBaTs 2010 14 / 14

http://www.eclipse.org/gmt/epsilon/doc/modelink/
"http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html"
http://sensoria-ist.eu
http://www.eclipse.org/gmt/VIATRA2/

	Introduction
	Case study: Formal Verification of BPEL Processes
	Static Traceability Models
	Visualization of Traceability Models
	Visualization of Static Traceability Models
	Domain-specific Layout Algorithm for Static Traceability Models
	Evaluation of the Approach
	Implementation and Usage Scenarios

	Related Work
	Conclusion and Future Work

