
Electronic Communications of the EASST
Volume 32 (2010)

Guest Editors: Juan de Lara, Daniel Varro
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

Proceedings of the
Fourth International Workshop on

Graph-Based Tools
(GraBaTs 2010)

Attribute Computations in the DPoPb
Graph Transformation Engine

Hanh Nhi Tran, Christian Percebois, Ali Abou Dib, Louis Féraud, Sergei Soloviev

IRIT, University of Toulouse
118 Route de Narbonne, F-31062 TOULOUSE CEDEX 9

{tran, percebois, aboudib, feraud, soloviev}@irit.fr

14 pages

 ECEASST

2 / 14 Volume 32 (2010)

Attribute Computations in the DPoPb Graph Transformation Engine

Hanh Nhi Tran, Christian Percebois, Ali Abou Dib, Louis Féraud, Sergei Soloviev

IRIT, University of Toulouse
118 Route de Narbonne, F-31062 TOULOUSE CEDEX 9

{tran, percebois, aboudib, feraud, soloviev}@irit.fr

Abstract: One of the challenges of attributed graph rewriting systems concerns the
implementation of attribute computations. Most of the existing systems adopt the standard
algebraic approach where graphs are attributed using sigma-algebras. However, for the
sake of efficiency considerations and convenient uses, these systems do not generally
implement the whole attribute computations but rely on programs written in a
host language. In previous works we introduced the Double Pushout Pullback (DPoPb)
framework which integrates attributed graph rewriting and computation on attributes in a
unified categorical approach. This paper discusses the DPoPb’s theoretical and practical
advantages when using inductive types and lambda-calculus. We also present an
implementation of the DPoPb system in the Haskell language which thoroughly covers the
semantics of this graph rewriting system.

Keywords: attributed graph rewriting, attribute computation, algebraic graph
transformation, Haskell language.

1 Introduction
The last decade shows a great interest in graph rewriting in MDE [15] as a model
transformation technique. For these applications, it is important to use attributed graphs. There
are several works on attributed graph transformations (see e.g. [11][12][13][3][8]) mostly
based on the algebraic data types to implement attribute computations. In the algebraic
approach, attributes are given as values within some ∑-algebras. Therefore, information is
directly integrated in the graph structure by creating a new “attribute node” for each value of an
algebraic sort. This approach is theoretically sound but shows some limits on the expressiveness of
attribute computation and is especially difficult to be completely implemented. Thus most of the
existing systems resting on the standard algebraic approach hardly respect the theoretical
foundation. Consequently, the attributed graphs rewriting in these systems is validated
theoretically but not practically.

In [5] and [6] we introduced DPoPb, a unified categorical model of attributed graph
transformations using inductive types for attribute values and lambda-terms for computations.
Keeping the same conceptual scheme as in the DPO constructions, the goal of DPoPb is to put
the attribute computation to work in a more uniform way by staying within the same theory for
implementing computations. We argue in this paper that the inductive types and lambda-
calculus make attribute computations in DPoPb more expressive than in the DPO-standard
model [1] and facilitate the implementation of attributed graph rewriting system. This claim is
justified by an implementation of DPoPb engine in Haskell [2] which conforms entirely the
theoretical model hence allows validating theoretically and practically the DPoPb attributed
graphs rewriting.

Attribute computations

Proc. GraBaTs 2010 3 / 14

The paper is organized as follows. In Section 2 we analyse the differences between the
theoretical solutions for attribute computations in the DPoPb and the standard algebraic
approach represented by the HLR framework [3]. Section 3 discusses the implementation of
HLR and DPoPb graph rewriting systems. In Section 4, we sketch out the development of the
DPoPb prototype in Haskell to validate the theoretical foundation. Finally, in the last section
we discuss some current and future works to improve the DPoPb approach.

2 Attribute computations in the DPO and DPoPb approaches
In this section we compare the solutions for attribute computations in the HLR approach [3] with
the DPoPb’s one. We first outline attribution computations in each approach, and then we use
an example to show their differences.

2.1 Attribute Computation in HLR framework
HLR framework [3] is representative for the algebraic approach attributed graph rewriting. This
work is now very well-known so we just give an outline of the approach for attribute computation.

In order to model attributed graphs with attributes for nodes and edges, HLR extend the
classical notion of graphs to E-graphs. An E-graph G has two different kinds of nodes,
implementing the graph and data nodes, and three kinds of edges, the usual graph edges and
special edges used for the node and edge attribution. An E-graph morphism fG is defined then as
a classical graph morphism. Let DSIG = (SD,OPD) be a data signature with attribute value sorts S’D
∈ SD. An attributed graph AG = (G,D) consists of an E-graph G together with a DSIG-algebra D
such that s∈S’D Ds = VD where VD is the set of data nodes of graph G. For two attributed graphs
AG1 = (G1,D1) and AG2 = (G2,D2), an attributed graph morphism f : AG1 → AG2 is a pair f = (fG, fD)
with an E-graph morphism fG : G1 → G2 and an algebra homomorphism fD : D1 → D2 such that the
square in Fig. 1 commutes for all s ∈ S’D, where the vertical arrows are inclusions.

Fig. 1. The algebra homomorphism fD in the attributed graph morphism f: AG1 → AG2

Given a data signature DSIG as depicted, attributed graphs and attributed graph morphisms
form the category AGraphs and graph rewrites can be realized by constructing the pushout of the
category using the double pushout or simple pushout approach. In this section we consider the
double pushout approach in HLR. A transformation rule p: L ← K → R is given by three
attributed graphs (with variables) K, L, and R and two morphisms l: K → L and r: K → R which
have to be injective on the graph structure and isomorphic over the ∑-algebra. In order to
describe computations on the attributes, terms containing variables are to be used; e.g., in the
graph R, an attribute x + y can be found if in the graph K the variables x and y are present.

To show how to combine graph transformations with computations on attributes in the HLR
framework, we rest on an example for computing the value of n!. In this example, we use the
signature Nat which defines the operators zero, succ, add and mul on the sort Nat. We can define
two algebras D1 and D2 associated to the signature Nat to give two different semantics for Nat.
For the illustration purpose, in this example, we use D1 and D2 which are different only on the
carrier sets as shown in Fig. 2b. We can define then the attributed graph type AG1 = (G,D1) to
represent the graphs which can be attributed by the values from 0 to 6 and the attributed graph
type AG2 = (G,D2) to represent the graphs attributed by the values from 0 to 720.

DG
1

VD
1

DG
2

VD
2 fG,VD

fD,s

 ECEASST

4 / 14 Volume 32 (2010)

Fig. 2. Calculating n! by graph rewriting and attribute computations in HLR

Given a value n ≤ 6, let us suppose we compute the value of n! by graph rewriting in the
system supporting the attributed graphs defined with the above Nat signature. We use the
graph G of type AG1 composed of one node having the attribute n∈ D1

Nat. The computation’s
result will be stored in the graph H of type AG2 having also one node attributed by n∈ D2

Nat.
Fig. 2b describes the needed transformation from G to H. However, with the signature Nat we
cannot realize such a transformation because the factorial operator ! is not defined.
Consequently, we must decompose the computation of n! into many transformation steps,
using the four rules represented in Fig. 3.

Fig. 3. Rules used for calculating n! in HLR

The first rule is applied once on the initial graph to prepare the list of number analyzing n!.
Rule 2 is for delegating the computation of n-1! to a new node. This rule is applied until
number 2 is reached. When the rule 2 is completed, a chain of nodes is created with the final
node in still self-referred. To stop the delegation, the rule 3 is applied once to obtain a simple
chain of number from n to 2. Rule 4 now is applicable: it takes the numbers of the last two
nodes and multiplies them, then stores the result in the first of these two nodes, and deletes the
very last one. Applying rule 4 as long as possible to obtain the result represented by only one
node left, containing the computed result for n!. We can see that the computation of n! in this
example with HLR system requires four transformation rules and 2n-3 steps.

For each application of a rule, the attributes of graph L must be updated to produce the
graph R. In the literature, two main different approaches have been defined in order to specify
attribute-value changes: relabeling attribute-nodes [11][26] and reconnecting attribute-value
nodes [12][8]. In the relabeling issue, no built-in data types on labels are encoded and
programs are in general based on rule scheme labelled with terms over algebras. On the
opposite, in the reconnecting mode, a new edge is added each time the graph must reference a
new attribute value. The example in Fig. 2b is illustrated with reconnecting scheme.

2.2 Attribute computation in the DPoPb approach
The DPoPb framework relies on the classical DPO approach for the structural part and uses
type theory with inductive types for attribute computations. The precise definition of attributed
graphs in the DPoPb approach can be found in [4][5][6]. Below we will give the essential

L K R

2 2 2

L K R

n n n n -1

L K R

n n n

x*y x*y x y

L K R

(1) Rule

(2) Rule

(3) Rule

(4) Rule

DSIG = Nat
sort : Nat
opns :

zero : → Nat
 succ : Nat → Nat
 add : Nat Nat → Nat
 mul : Nat Nat → Nat

DSIG-algebra D1

D1
Nat = {0,1, 2, 3, 4, 5, 6}

zero D1 = 0

succ D1 (0) = 1; succ D1 (1) = 2; …

add D1 =…//defined by an conventional addtion table

mul D1 =…//defined by an conventional multiplication table

G H n n !

1 2 3 4 5 6 … 720 1 2 4 5 6 0 3
D1 D2

(b) Request Transformation to compute n!

(a) Data signature and the algebra defining the semantics of the signature

Attribute computations

Proc. GraBaTs 2010 5 / 14

information necessary to explain how attributes are implemented and computed in the DPoPb
framework.

2.2.1 DPoPb Attributed Graphs and Attributed Graph Morphisms
In the DPoPb approach, an attributed graph is defined with two parts: a graph structure
composed of labeled nodes and edges and a set of attributes associated to edges or nodes.
DPoPb uses type theory to code attributed graphs: finite types to describe the structure of
graphs and general inductive types to define data types and computations.

A morphism between two attributed graphs G and H is a 3-level structure morphism
f: G → H defined by two components: the first component specifies the structural part of the
morphism and the second one represents the attribute part of the morphism.
− The structural part, denoted fS, a graph morphism from G to H, is the first level.
− The attribute part has two levels.

• A relational level, denoted fR. It includes the multirelation R between the attributes of H
and G. For each attribute b of type B of the vertex s of G, a partition of the set R{s,b} of the
H’s attributes necessary to compute b. Each element of the partition (a subset of R{s,b})
together with b defines a tree, and the set of all trees of fR is called the forest of the
morphism.

• To each tree described above is associated a computation function represented by a
lambda-term t in a way such that if the leaves of a tree are the attributes a1,…, an of the
types A1,…, An respectively and its root is the attribute b of type B, then the type of the
term is A1 → … → An → B. The conditions to be satisfied is that t(a1,…, an) = b.

Usually the equality is the ordinary reduction-based equality of lambda-terms. Two
morphisms f, g: G → H are considered as equal if all components on all levels are equal.

Fig. 4 shows an example of the DPoPb formalism representing attributed graph and
attributed graph morphisms. In this example, we have a forest R composed of three trees T1, T2
and T3 in which T1 = ({7,8}, 15, λx y . x + y), T2= ({“Good”}, 4, λs . length s) and
T3 = ({“Good”,”Luck”}, “GoodLuck”, λs1 s2 . s1 ++ s2).

Fig. 4 An attributed morphism having a computation forest composed of three trees

The above definition of morphisms in DPoPb requires some comments on the reverse
direction for the attribute relations and the role of partitions and associated trees in the attribute
part of the morphism.

In our framework which uses the double pushout approach to rewrite graphs, the arrows for
attribute parts are reversed with respect to the arrows of the structural parts. This reversal
permits us to have a pseudo-pullback (pushout in dual category) to organize the computations

“Luck”: String 7: Nat

“GoodLuck”: String

4: Nat

λ x y . x + y

H

G

“Good”: String

15: Nat

λ s . length s

λ s1 s2 . s1 ++ s2

: structural part morphism

: multirelation

lamda-term : computation function

gi : an attribute of G, i ∈[0..N]

hi : an attribute of H, j ∈[0..M]

R = {Ti}, i ∈[0..N]: a forest

Ti = ({h j}, gi, function): a tree of R.

8: Nat

 ECEASST

6 / 14 Volume 32 (2010)

with attributes. The main idea of changing the orientation of the arrows for the functions is to
allow that the attributes in graph L can be stored in the graph K and then the attributes in graph
R can easily “go and pick up” any value of attributes in the graph K. Because graph K is the
intersection of graphs L and R, it contains only the common attributes of L and R. To preserve
information, we may need several computation functions converging to the same target.
The use of multirelations follows naturally from the same assumptions. We assume that all
lambda-terms (containing, probably, free variables) are defined in the same context that
remains fixed (in principle, the context may be infinite). Thanks to this mechanism, several
attributes in graph L can be computed into one attribute in graph K, and several attributes in
graph R can share the same value of attributes in K.

2.2.2 Attributes computations in DPoPb
Now we take the same example presented in Section 2 on the computation of n! to illustrate the
attribute computation in DPoPb. InDPoPb to calculate n! we need only one rule shown in Fig.5.

Fig. 5. Calculating n! by graph rewriting and attribute computation in DPoPb

The number n for which n! will be computed is specified as an attribute of type Nat
associated to the unique structural node of the graph L. The computation of n! is realized by a
graph rewrite which preserves the structure graph. So we just discuss here the computation to
perform on attributes. The attribute part of the morphism l: K → L specified at two levels: a
relation connecting the attribute Nat in L to the attribute Nat in K and a lambda-term associated
to this relation to define the computation function realized during the graph rewriting. To
simplify programs of Fig. 5, we replaced the lambda-term by the definition of a function fact
which computes the factorial value for its parameter x. On the right-hand, the attribute part of
the morphism r: K → R specified with a relation connecting the attribute Nat in R to the
attribute Nat in K and an id function that allow copy the value of Nat in K to Nat in R. Given
an initial graph G with a concrete value of n, the lambda-term of l will be applied to n to
produce the result n!. This computation is performed by the β-reduction mechanism which
substitutes the effective value of n for the formal variable x in the term. So the computation of
n! in this example with DPoPb system requires only one transformation rule and one realizing
step.

As seen in the illustrating example of this section, in certain cases, the systems based on
∑-algebras cannot represent directly complex computations on attributes if the operators used
in the computation are not defined in the supporting ∑-algebras. In such cases, users have to
decompose the computation into several rules (e.g. as illustrated in Fig. 2).

In DPoPb, computations are based on lambda-calculus [25], a formal model for
computations. Let us recall that in this system, we can express computations with lambda-terms
which allow representing the terms (s), the function abstractions (λs . t) and the function
applications (t s). Lambda-terms then can be evaluated by the simple and powerful β-reduction
mechanism based on substitutions. This reduction mechanism is semantically defined and can be

n: Nat

fact x = if x== 0
then 1
 else

L

n: Nat n: Nat

id x = x K R

Attribute computations

Proc. GraBaTs 2010 7 / 14

easily implemented by a computer program. Thanks to this generic model of computation, the
DPoPb approach can allow a more natural and straightforward way to represent complex
computations defined only by abstraction and application of functions (e.g. as shown in Fig. 5).

3 Implementation of HLR and DPoPb
In this section, we compare the potential implementations of HLR and DPoPb with respect to
their computational models. First we analyse the requested effort to implement exactly the
foundation models of each approach. Then we discuss the solutions used by some significant
systems to implement the HLR framework, as well as our solution for implementing the
DPoPb framework. Discussions show the distance between the implementation and the formal
model in each approach and some important side-effects raised in the tools resting on HLR.

3.1 Underlying mechanism for the transformation engine
In the HLR approach [3], attribute values are defined by separate data nodes which are
elements of some algebras. When attributed graphs and graph morphisms are considered over
∑-algebras, operations and constants defining the algebra must be always present and thus
previously defined. Of course, this is practically impossible because it is very cumbersome to
implement large graphs and unattainable for infinite graphs. In a tool implementation this
problem could be solved by including the attribute values of the algebra graph that are directly
reachable from the structural part of the graph. Consequently, most of the systems based on the
approach HLR use an object-oriented programming language to implement attribute
computations. Concretely, pre-conditions, post-conditions and actions are mainly expressed in
an object-oriented programming language: Java for AGG [1] and Fujaba [21], C++ for GReAT
[20], and Python for AToM3 [10]. Besides this popular solution, actions changing the models
are sometimes coupled to the rule selection process as in VIATRA [17] which supports ASMs
or in VMTS [18][19] where UML-like models are manipulated owing to stereotyped activity
diagrams, XSLT and (Imperative) OCL.

Let’s consider a system using an external language to express actions as well as conditions
on attributes, for instance AGG tool. In AGG, graphs are attributed by Java objects which can
be instances of Java classes from libraries like JDK or from user-defined classes. The main
difference with the formal system is the use of Java classes and expressions instead of
algebraic specifications and terms. Thanks to some interoperability with the host language, the
obtained system is a general purpose graph transformation tool covering a large variety of
applications including graph transformation. However, classes of the underlying object-
oriented language whose semantics is not covered by the formal foundation belong to
applications as well.

A guiding principle of DPoPb is to propose a close relationship between the formal ground
and its underlying engine. The lambda-calculus which formalizes the algorithmic notion of a
function is proposed as a model of attribute computations. Existing graph nodes describing
attributes thus can be reused and updated thanks to lambda-terms implementing the attribute
computations. Lambda-terms can be easily expressed in a functional programming which is
based also on lambda-calculus. Such an implementation preserves the semantics of the formal
model, and provides static strong typing, polymorphism, higher-order functions and lazy
evaluation for the graph rewriting system. For implementing the DPoPb prototype, we chose
the Haskell language and benefit all of these advantages of the lambda-calculus paradigm.

 ECEASST

8 / 14 Volume 32 (2010)

3.2 Types declarations of attributed graphs
In HLR graph transformation tools, an attribute is often declared as a variable in a conventional
programming language. For instance, in AGG, an attribute is implemented by a Java variable
which can be assigned to any value conforming to its type. Because users can use any Java
acceptable expressions to compute attributes’ value, the Java type system defines the type system
of the graph rewriting. This issue is not specific to AGG; it exists also in other known graph
transformation systems such as Fujaba, GReAT, AToM3... A strongly typed language such as Java
is considered useful to reinforce the security of programs by preventing programmers from making
freely mistakes. In fact, this statement is not true in certain cases. For example, a class in Java is
perhaps a wrong subtype of its superclass. In order to be a subtype, the methods of the subclass
must satisfy the superclass' specifications. This relation cannot be checked at compile-time, so it is
possible to create a subclass that is not a subtype [22]. Hence the type system used by the graph
transformation scheme where each attribute has a name, a type and a value can be unsecure.

For instance, let us consider the two following classes Integer and MyInteger in Java.
MyInteger looks like an Integer by adding an attribute which specifies a name s for the value v:

public class Integer {
 private int v ;
 public Integer (int v) {…}
 public boolean equals (Integer i) {...}

}

public class MyInteger {
 private int v ;
 private String s ;
 public MyInteger (int v, String s) {…}
 public boolean equals (MyInteger i) {…}

}

MyInteger is not a subtype of Integer. To insure subtyping, we need that MyInteger must
have a stronger specification than Integer. This is not the case because the type of the
parameter of the equals method of MyInteger should be at most as strict as in the supertype.
Using the Java’s extends relation between an Integer and MyInteger is also not appropriate
with respect to subtyping. This is mainly because a C++ or Java class defines at the same time
attributes (state) and methods (behaviour). Subclasses are not subtypes. Consequently, an
Integer object cannot be dynamically substituted by a MyInteger one during the rewriting
process.

In contrast to these systems, the DPoPb can avoid such kinds of problem on the type
system. In Haskell, a safe polymorphic type system is supported by a powerful type inference
algorithm. A type specification is separated from its methods (functions). A class specifies the
operations that the types must support. It’s a template for types. A type is said to be an instance
of a class if it supports these operations. For instance, here is the (incomplete) Eq class from
the Standard Prelude defining the == (equals) and /= (different) functions.

class Eq a where -- a is an instance of Eq
 (==), (/=) :: a -> a -> Bool -- if a implements == and /=

x /= y = not (x == y)

data MyInteger = MyInteger {v :: Integer, s :: String}

instance Eq MyInteger where
 (MyInteger v1 s1) == (MyInteger v2 s2) = (v1 == v2) && (s1 == s2)

This code defines MyInteger as a data type which wraps an Integer presenting the value v
and a String s representing the name of the value. This type is then considered as an instance

Attribute computations

Proc. GraBaTs 2010 9 / 14

of Eq. The three definitions (class, data type and instance) are completely separated and there
is no rule about how they are grouped.

We think that this separation is more secure than actual attribute declarations in an object-
oriented host language because well-typed lambda-terms are always well-behaved with respect
to reduction. In addition, all the types associated with a function definition can be checked at
compile-time, and inferred automatically. To take a full advantage of the typed lambda-
calculus, an attractive perspective of DPoPb is to define type checking rules between the types
of the computation functions and the types of the attributes of the attributed graph.

3.3 Attributes computations

3.3.1 Loading compiled codes
As previously stated, several transformation systems rely upon an underlying language for the
specification of textual constraints and attribute updates. These definitions have to be compiled
and provided to the graph transformation machinery in the form of a dynamic library, which is
loaded at runtime. Within the transformation environment, it is quite easy to propose a special
attribute editor that pops up when a graph object is selected for attribution. However, the user
cannot directly access to the code of the function dealing with these attributes. As the function
is considered as a black box, round trips between the host language and the graph rewriting
tool are necessary to finalize the computation code. Each round trip is translated by a
compilation process in the host language.

In DPoPb, the use of a unified formalism based on type theory for manipulating attributes
enables a reliable environment so that both structural and attribute manipulations are handled
in the same framework. The β-reduction mechanism used to evaluate lambda-terms can be
easily implemented. Implementation which allows compiling and dynamically evaluating
attribute computations is then possible. In Section 4, we will show how this capability is
instantiated for the DPoPb’s implementation.

3.3.2 Lazy evaluation
Another relevant feature for attribute computations is about lazy evaluation. Using this
technique, no expression is evaluated until its value is needed and no shared expression is
evaluated more than once. Lazy functions, also called non-strict, only evaluate their arguments
when needed. On the opposite, C functions and Java methods are strict and evaluate their
arguments in an eager mode. Lazy evaluation makes it possible for functions to manipule
infinite data structures. This interesting feature enables us to describe an object without being
tied to one particular application of that object.

For comparison purposes, let us consider an infinite list of integers starting from a given
value. Such a lazy list can be represented in Java as a process [23] which returns objects either
forever, or until no more are left1:

public interface Process {
public Object nextElement () throws NoSuchElement;

}

1 Java codes are extracted from [23]

 ECEASST

10 / 14 Volume 32 (2010)

public class NumFromProcess implements Process {
private int upto;
public NumFromProcess (int n) {

this.upto = n;
}

public Object nextElement () {

return new Integer (this.upto ++);
}

}

In Haskell language, for the same construction, we simply define:
numFrom n = n : numFrom (n + 1)

Extracting a finite list from NumFromProcess implies to manage exception handlings
because we don’t have a method to explicitly test for the presence of the next element. This
test is assumed by throwing a NoSuchElement exception when the nextElement method is
invoked. For instance, the Java following class SingleProcess computes a Process producing
only one object:

public class SingleProcess implements Process {
private Object item;
public SingleProcess (Object item) {

this.item = item;
}
public Object nextElement () throws NoSuchElement {

if (item == null) throw new NoSuchElement ();
else {

Object temp = item;
item = null;
return temp;

}
}

}

In addition, the Process interface defines a lazy list that is consumed as fast as it is produced
and a shared expression is evaluated more than once. If previous elements need to be saved, then
the programmer must add classes to store computed values in a structured data type.

In comparison, this mechanism is intrinsically supported by Haskell thanks to lazy
evaluation. The following Haskell function f extract with take a list containing the successives
values of the factorial computations, starting from 1! until n!. This is done by first building the
infinite list nats and then applying the fact function to the obtained nats list. With the same
technique, we build the infinite list facts of factorials. In this code, the map function is a
higher-order function which goes through every element of a list and applies a function given
by its first argument: + in the case of nats and fact for the list of factorials.

f n = take n facts facts = 1 : map (fact) nats
nats = 1 : map (+1) nats fact 0 = 1

fact n = n * fact (n -1)

With respect to functional programming languages, Java lacks some conciseness. Some
libraries have been proposed to implement the lazy-evaluation mechanism for object-oriented
environments. For instance Lambda4J [24] provides lazy lists and associated operations. More
recently, LazyJ [23] extends Java's type system with lazy types. Besides expressiveness, a major
challenge with lazy evaluation concerns sharing computation results. In all relevant functional
language implementations, terms are represented as a graph. In the future, we would like to
establish mappings between rewriting such terms and rewriting terms in an attributed graph.

Attribute computations

Proc. GraBaTs 2010 11 / 14

4 The DPoPb prototype
To validate the theoretical model DPoPb, we have developed a prototype in Haskell language.
In the first time, the goal of this prototype is to construct the basic DPoPb categorical concepts
for attributed graphs rewriting when focusing on the implementation of attribute computation.
Fig. 6 displays the architecture of our prototype.

Fig. 6. Architecture of the DPoPb prototype

DPoPb prototype is a general purpose graph rewriting system composed of two modules
DPoPb-InOut and DPoPb-Engine. The module DPoPb-InOut provides an interface for the
prototype. It allows users to specify transformation rules and initial graphs (via the sub-module
GetInput) as well as visualize the result of the transformation (by the sub-module
PrintOutput). At the current stage of development, we base on the Haskell predefined modules
wxHaskell and graphviz (defined in the Hackage Database [16]) for the graphical user
interface and the graph visualization respectively.

The DPoPb-Engine module is the kernel of our prototype. It contains two sub-modules:
ConstructCatAttGraph and ComputeAttribute. The sub-module ConstructCatAttGraph
implements the main concepts of DPoPb including the colimits of the category of DPoPb
attributed graphs (CatAttGraph) as well as the graph rewriting based on the approach double
pushout. The sub-module ComputeAttribute supplies the utilities functions concerning attribute
computations during the rewriting (e.g. the composition the attribute part of attributed graph
morphims which is needed in the construction of CatAttGraph pushout; the dynamic
evaluation of lamda-expressions representing attribute computations). In
ConstructCatAttGraph, when constructing the structural part of the colimits we reused
CatGraph, the implementation of Schneider [7] defining the colimits of the category of graphs.
We also reuse some functions in the API of Glasslow Haskell Compiler to support the
dynamic specification and evaluation of attribute computations.

Our main contributions in the development of the prototype concern solutions for the
following theoretical and technical questions: how to implement the theoretical concepts of
DPoPb, how to evaluate users-defined attribute computations at runtime and how to update
graphs during the rewriting process.

4.1 Implementing the theoretical concepts of DPoPb
The mathematical model in [4] provided a formal framework for the category of attributed
graphs CatAttGraph but it is not straightforward to map those categorical concepts into
computational constructs. Thus, we had to define the constructive data structures and
algorithms for storing graphs and graphs morphisms; for constructing the coproduct,

DPoPb-InOut

GetInput PrintOutput Construct
CatAttGraph

ComputeAttribute

DPoPb-Engine

wxHaskell graphviz CatGraph ghc API

UserGraph

Transformation
Rule

AttGraph
Constructs

ResultGraph

Data used in the
system

DPoPb Module Reused Model in Haskell Reuse Relation Data Flow

 ECEASST

12 / 14 Volume 32 (2010)

coequalizer, pushout complement and pushout of the category CatAttGraph. The difficulty of
this task resides in defining the attribute part of the graphs and graphs morphisms in the
construction of each colimit such that its categorical properties are satisfied.

4.2 Evaluating users-defined attribute computations at runtime
We want to allow users to define their graphs together with attribute computations as non-
compiled functions (written in Haskell for example). The challenge here is that at runtime the
rewrite engine must enable the generation of Haskell codes of user-defined functions and
integrate these codes into the engine in order to evaluate them in the rewrite process. Thus we
need to support the meta-programming at runtime. To support this flexibility, we relied on the
Glasgow Haskell Compiler (GHC) which proposes the necessary API functions to compile and
evaluate Haskell functions. We used Haskell module hint 0.3.2 [16] wrapping those GHC
functions to invoke the GHC compiler at runtime.

4.3 Updating graphs during the rewriting
The double pushout rewriting process necessitates an update of the transformation rules when the
content of an initial graph is given. Using an imperative language, such an update is not difficult.
However, the update implemented in an imperative language is undefined semantically and then
out of control. Haskell is a pure functional language that does not allow side-effects. Hence we
must ensure that computations with side-effects for the update of attributes during the rewrite
process will be encapsulated to respect the functional style of the program. For this purpose, we
base on monads [14]. We defined a monad transformer (State transformer) that enables hiding
underlying machinery for updating graphs during the DPoPb process. The main interest here is
that we can allow the update operations during the rewrite term process without losing the
advantages of the functional paradigm and the Haskell type system.
We now show in Fig. 7 some screenshots of our prototype.

Fig. 7. DPoPb prototype’s screenshots

In the left-hand are the widgets used to receive inputs including the transformation rules and
the initial graph. Actually we do not implement an algorithm to find a match, so the initial graph
G is took as an instance of graph L defined with concrete attributes’ values. The frame Morphism
K → L shows how the attribute part of the morphism is specified with the attribute relations and
the computation functions. The input information will be encoded in the internal data structure
and manipulated by the DPoPb engine module to construct the pushout complement graph D and
the pushout graph H. To visualize DPoPb graphs, currently we rely on the GraphViz system

Attribute computations

Proc. GraBaTs 2010 13 / 14

[28]. The DPoPb internal data structures are thus translated to the graph descriptions in the DOT
language (by using the Haskell module graphviz [16]) which can be displayed with GraphViz as
shown in the right-hand of the figure. On the right side of this part, we display the graph
representing the rules L←K→R. The attributes n of L and p of R are connected to the attribute m
of K by the function factorial and the function identity respectively. The graph on the left side
shows the pushout complement D and the pushout H constructed by applying the rule L←K→R
on the concrete graph G. Since the value of G’s attribute is 3, the value of D’s attribute is 6 -
factorial of 3. The value of H’s attribute is the copy of D’s attribute, thus it is also 6.

5 Conclusion
In the HLR framework, attributed graph structures are given by algebras over a specific
signature where the structure part and the attribute part are separated from each other. If this
solution is theoretically acceptable, it is not very efficient and cannot be easily implemented
for a general purpose graph transformation system. Consequently, users have to program and
compile computation functions separately within a companion programming tool before
integrating their functions into transformation rules.

Contrary to HLR approach, our approach proposes a single formalism that integrates the
rewrite of structural parts of graphs with attribute computations. This solution rests on
category theory and type theory thus doesn’t entail a semantic gap between the theoretical
model and its implementation. This advantage has been validated by an ongoing–developed
prototype of the DPoPb system implemented in the Haskell language.

We have identified two directions for future researches. The first one concerns proving
properties of transformations. As we want keeping trace of evaluation or verification of the
correctness of attributes’ computations during the transformation, we plan to import
transformations supported by our DPoPb tool into the Isabelle/HOL proof assistant via
Haskabelle [26] in order to specify and prove relevant properties the transformations have to
satisfy. Another direction deals with reasoning on programs transformations. It relies on the
use of functional programming languages for programming applications based on rewriting
attributed graphs. As these languages promote a more abstract style of programming and
support higher-level constructions, we have in mind simplification of programs transformation
and to cope with them as functional programs.

References
[1] AGG Homepage, http://tfs.cs.tu-berlin.de/agg/
[2] Haskell Homepage, http://www.haskell.org/
[3] Hartmut Ehrig, Ulrike Prange, and Gabriele Taentzer. Fundamental theory for typed attributed graph

transformation. In Hartmut Ehrig, Gregor Engels, Francesco Parisi-Presicce, and Grzegorz
Rozenberg, editors, ICGT, volume 3256 of LNCS, pp. 161-177, Springer, 2004.

[4] Maxime Rebout. Une approche catégorique unifée pour la réecriture de graphes attribuées. PhD
thesis, Université Paul Sabatier, 2008.

[5] Maxime Rebout, Louis Féraud, and Sergei Soloviev. A unifed categorical approach for attributed
graph rewriting. In E.Hirsch, A.Razborov, A.Semenov, and A.Slissenko, editors, CSR, volume 5010
of LNCS, pp. 398-409, Springer, 2008.

[6] Maxime Rebout, Louis Féraud, Lionel Marie-Magdeleine, Sergei Soloviev. Computations in Graph
Rewriting: Inductive types and Pullbacks in DPO Approach. In IFIP TC2 Central and East European
Conference on Software Engineering Techniques (CEE-SET 2009), Krakow, Pologne, 2009.

 ECEASST

14 / 14 Volume 32 (2010)

[7] Hans Jurgen Schneider. Implementing the Categorical Approach to Graph Transformations with
Haskell. In An Introduction to the Categorical Approach, Draft March 7, 2007.

[8] Harmen Kastenberg. Towards Attributed Graphs in Groove: Work in Progress. Electr. Notes Theor.
Comput. Sci. 154(2), pp. 47-54, 2006.

[9] Schurr, A. Introduction to PROGRES, an Attribute Graph Grammar Based Specification Language.
Proc. WG89. LNCS 411, pp. 151-165, Springer, 1990.

[10] de Lara, J. and Vangheluwe, H. AToM3: A Tool for Multi-Formalism Modeling and Meta-
Modelling. Proc. FASE’02, LNCS 2306, pp. 174-188, Springer, 2002.

[11] Lowe, M., Korff, M., Wagner, A. An Algebraic Framework for the Transformation of Attributed
Graphs. In Term Graph Rewriting: Theory and Practice, John Wiley and Sons Ltd. (1993), pp. 181-
1993.

[12] Heckel, R., Küster, J., Taentzer, G. Confluence of Typed Attributed Graph Transformation with
Constraints. In Proc. ICGT 2002, Volume 2505 of LNCS, Springer (2002), pp. 161-176.

[13] Berthold, M., Fischer, I., Koch, M. Attributed Graph Transformation with Partial Attribution,
Technical Report 2000-2, 2000.

[14] P. Wadler. Monads for Functional Programming. In Advanced Functional Programming, Springer
Verlag, LNCS 925, 1995.

[15] Bézivin, J. On the Unification Power of Models. Software and System Modeling (SoSym) 4(2):171-
188, 2005.

[16] Hackage Database http://hackage.haskell.org/packages/hackage.html
[17] Varro, D., Pataricza, A. Generic and meta-transformations for model transformation engineering. In

Baar, T., Strohmeier, A., Moreira, A., Mellor, S., eds., Proc. UML 2004, 7th International Conference
on the Unified Modeling Language, Lisbon, Portugal, Springer (2004), pp. 290-304.

[18] VMTS Web Site, http://avalon.aut.bme.hu/_tihamer/research/vmts
[19] Levendovszky T., Lengyel L., Mezei G., Charaf H. A Systematic Approach to Metamodeling

Environments and Model Transformation Systems. In VMTS, 2nd International Workshop on Graph
Based Tools (GraBaTs); workshop at ICGT.

[20] Daniel Balasubramanian, Anantha Narayanan, Chris vanBuskirk, and Gabor Karsai. The Graph
Rewriting and Transformation Language: GReAT. Proceedings of the Third International Workshop
on Graph Based Tools (GraBaTs 2006); workshop at ICGT.

[21] Robert Wagner. Developing Model Transformations with Fujaba. In Proc. of the 4th International
Fujaba Days 2006, Bayreuth, Germany (Holger Giese and Bernhard Westfechtel, eds.), vol. tr-ri-06-
275 of Technical Report, pp. 79-82, University of Paderborn, September 2006.

[22] Sophia Drossopoulou, Susan Eisenbach. Java is Type Safe – Probably. European Conference on
Object Oriented Programming, 1997.

[23] Dekker, Anthony H. Lazy functional programming in Java. SIGPLAN Not. Volume 41, Number 3,
pp. 30-39, 2006.

[24] Lambda4J Web Site. http://www.nongnu.org/lambda4j/
[25] Henk Barendregt, Erik Barendsen. Introduction to Lambda Calculus, 1994.
[26] Plump, D. and S. Steinert. Towards Graph Programs for Graph Algorithms. In ICGT, LNCS 3256,

pp. 128-143, Springer, 2004.
[27] Haskabelle website : http://www.cl.cam.ac.uk/research/hvg/isabelle/haskabelle.html
[28] GraphViz website : http://www.graphviz.org

