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Abstract:  One of the challenges of attributed graph rewriting systems concerns the 
implementation of attribute computations. Most of the existing systems adopt the standard 
algebraic approach where graphs are attributed using sigma-algebras. However, for the 
sake of efficiency considerations and convenient uses, these systems do not generally 
implement the whole attribute computations but rely on programs written in a  
host language. In previous works we introduced the Double Pushout Pullback (DPoPb) 
framework which integrates attributed graph rewriting and computation on attributes in a 
unified categorical approach. This paper discusses the DPoPb’s theoretical and practical 
advantages when using inductive types and lambda-calculus. We also present an 
implementation of the DPoPb system in the Haskell language which thoroughly covers the 
semantics of this graph rewriting system. 
 
Keywords: attributed graph rewriting, attribute computation, algebraic graph 
transformation, Haskell language. 

1 Introduction  
The last decade shows a great interest in graph rewriting in MDE [15] as a model 
transformation technique. For these applications, it is important to use attributed graphs. There 
are several works on attributed graph transformations (see e.g. [11][12][13][3][8]) mostly 
based on the algebraic data types to implement attribute computations. In the algebraic 
approach, attributes are given as values within some ∑-algebras. Therefore, information is 
directly integrated in the graph structure by creating a new “attribute node” for each value of an 
algebraic sort. This approach is theoretically sound but shows some limits on the expressiveness of 
attribute computation and is especially difficult to be completely implemented. Thus most of the 
existing systems resting on the standard algebraic approach hardly respect the theoretical 
foundation. Consequently, the attributed graphs rewriting in these systems is validated 
theoretically but not practically. 

In [5] and [6] we introduced DPoPb, a unified categorical model of attributed graph 
transformations using inductive types for attribute values and lambda-terms for computations. 
Keeping the same conceptual scheme as in the DPO constructions, the goal of DPoPb is to put 
the attribute computation to work in a more uniform way by staying within the same theory for 
implementing computations. We argue in this paper that the inductive types and lambda-
calculus make attribute computations in DPoPb more expressive than in the DPO-standard 
model [1] and facilitate the implementation of attributed graph rewriting system. This claim is 
justified by an implementation of DPoPb engine in Haskell [2] which conforms entirely the 
theoretical model hence allows validating theoretically and practically the DPoPb attributed 
graphs rewriting. 
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The paper is organized as follows. In Section 2 we analyse the differences between the 
theoretical solutions for attribute computations in the DPoPb and the standard algebraic 
approach represented by the HLR framework [3].  Section 3 discusses the implementation of 
HLR and DPoPb graph rewriting systems. In Section 4, we sketch out the development of the 
DPoPb prototype in Haskell to validate the theoretical foundation.  Finally, in the last section 
we discuss some current and future works to improve the DPoPb approach. 

2 Attribute computations in the DPO and DPoPb approaches  
In this section we compare the solutions for attribute computations in the HLR approach [3] with 
the DPoPb’s one. We first outline attribution computations in each approach, and then we use 
an example to show their differences.   

2.1 Attribute Computation in HLR framework 
HLR framework [3] is representative for the algebraic approach attributed graph rewriting. This 
work is now very well-known so we just give an outline of the approach for attribute computation. 

In order to model attributed graphs with attributes for nodes and edges, HLR extend the 
classical notion of graphs to E-graphs. An E-graph G has two different kinds of nodes, 
implementing the graph and data nodes, and three kinds of edges, the usual graph edges and 
special edges used for the node and edge attribution. An E-graph morphism fG is defined then as 
a classical graph morphism. Let DSIG = (SD,OPD) be a data signature with attribute value sorts S’D 
∈ SD. An attributed graph AG = (G,D) consists of an E-graph G together with a DSIG-algebra D 
such that s∈S’D Ds = VD where VD is the set of data nodes of graph G. For two attributed graphs  
AG1 = (G1,D1) and AG2 = (G2,D2), an attributed graph morphism f : AG1 → AG2 is a pair f = (fG, fD) 
with an E-graph morphism fG : G1 → G2 and an algebra homomorphism fD : D1 → D2 such that the 
square in Fig. 1 commutes for all s ∈ S’D, where the vertical arrows are inclusions. 

 
Fig. 1. The algebra homomorphism fD in the attributed graph morphism f: AG1 → AG2 

Given a data signature DSIG as depicted, attributed graphs and attributed graph morphisms 
form the category AGraphs and graph rewrites can be realized by constructing the pushout of the 
category using the double pushout or simple pushout approach. In this section we consider the 
double pushout approach in HLR. A transformation rule p: L ← K → R is given by three 
attributed graphs (with variables) K, L, and R and two morphisms l: K → L and r: K → R which 
have to be injective on the graph structure and isomorphic over the ∑-algebra. In order to 
describe computations on the attributes, terms containing variables are to be used; e.g., in the 
graph R, an attribute x + y can be found if in the graph K the variables x and y are present. 

To show how to combine graph transformations with computations on attributes in the HLR 
framework, we rest on an example for computing the value of n!. In this example, we use the 
signature Nat which defines the operators zero, succ, add and mul on the sort Nat. We can define 
two algebras D1 and D2 associated to the signature Nat to give two different semantics for Nat. 
For the illustration purpose, in this example, we use D1 and D2 which are different only on the 
carrier sets as shown in Fig. 2b. We can define then the attributed graph type AG1 = (G,D1) to 
represent the graphs which can be attributed by the values from 0 to 6 and the attributed graph 
type AG2 = (G,D2) to represent the graphs attributed by the values from 0 to 720.  
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Fig. 2. Calculating n! by graph rewriting and attribute computations in HLR 

Given a value n ≤ 6, let us suppose we compute the value of n! by graph rewriting in the 
system supporting the attributed graphs defined with the above Nat signature. We use the 
graph G of type AG1 composed of one node having the attribute n∈ D1

Nat. The computation’s 
result will be stored in the graph H of type AG2 having also one node attributed by n∈ D2

Nat. 
Fig. 2b describes the needed transformation from G to H. However, with the signature Nat we 
cannot realize such a transformation because the factorial operator ! is not defined. 
Consequently, we must decompose the computation of n! into many transformation steps, 
using the four rules represented in Fig. 3.  

 
Fig. 3. Rules used for calculating n! in HLR 

The first rule is applied once on the initial graph to prepare the list of number analyzing n!. 
Rule 2 is for delegating the computation of n-1! to a new node. This rule is applied until 
number 2 is reached. When the rule 2 is completed, a chain of nodes is created with the final 
node in still self-referred. To stop the delegation, the rule 3 is applied once to obtain a simple 
chain of number from n to 2. Rule 4 now is applicable: it takes the numbers of the last two 
nodes and multiplies them, then stores the result in the first of these two nodes, and deletes the 
very last one. Applying rule 4 as long as possible to obtain the result represented by only one 
node left, containing the computed result for n!. We can see that the computation of n! in this 
example with HLR system requires four transformation rules and 2n-3 steps.  

For each application of a rule, the attributes of graph L must be updated to produce the 
graph R. In the literature, two main different approaches have been defined in order to specify 
attribute-value changes: relabeling attribute-nodes [11][26] and reconnecting attribute-value 
nodes [12][8]. In the relabeling issue, no built-in data types on labels are encoded and 
programs are in general based on rule scheme labelled with terms over algebras. On the 
opposite, in the reconnecting mode, a new edge is added each time the graph must reference a 
new attribute value. The example in Fig. 2b is illustrated with reconnecting scheme.  

2.2  Attribute computation in the DPoPb approach  
The DPoPb framework relies on the classical DPO approach for the structural part and uses 
type theory with inductive types for attribute computations. The precise definition of attributed 
graphs in the DPoPb approach can be found in [4][5][6]. Below we will give the essential 
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DSIG = Nat 
sort : Nat 
opns :  

zero : → Nat 
     succ : Nat → Nat 
     add : Nat Nat → Nat 
     mul : Nat Nat → Nat 
 

DSIG-algebra D1 

D1
Nat = {0,1, 2, 3, 4, 5, 6} 

zero D1 = 0 

succ D1 (0) = 1; succ D1 (1) = 2; … 

add D1 =…//defined by an conventional addtion table  

mul D1 =…//defined by an conventional multiplication table  
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(b) Request Transformation to compute n! 
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information necessary to explain how attributes are implemented and computed in the DPoPb 
framework.  

2.2.1 DPoPb Attributed Graphs and Attributed Graph Morphisms 
In the DPoPb approach, an attributed graph is defined with two parts: a graph structure 
composed of labeled nodes and edges and a set of attributes associated to edges or nodes.  
DPoPb uses type theory to code attributed graphs: finite types to describe the structure of 
graphs and general inductive types to define data types and computations.  

A morphism between two attributed graphs G and H is a 3-level structure morphism  
f: G → H defined by two components: the first component specifies the structural part of the 
morphism and the second one represents the attribute part of the morphism.  
− The structural part, denoted fS, a graph morphism from G to H, is the first level.  
− The attribute part has two levels. 

• A relational level, denoted fR. It includes the multirelation R between the attributes of H 
and G. For each attribute b of type B of the vertex s of G, a partition of the set R{s,b} of the 
H’s attributes necessary to compute b. Each element of the partition (a subset of R{s,b}) 
together with b defines a tree, and the set of all trees of fR is called the forest of the 
morphism. 

• To each tree described above is associated a computation function represented by a  
lambda-term t in a way such that if the leaves of a tree are the attributes a1,…, an of the 
types A1,…, An respectively and its root is the attribute b of type B, then the type of the 
term is A1 → … → An → B. The conditions to be satisfied is that t(a1,…, an) = b.  

Usually the equality is the ordinary reduction-based equality of lambda-terms. Two 
morphisms f, g: G → H are considered as equal if all components on all levels are equal. 

Fig.  4 shows an example of the DPoPb formalism representing attributed graph and 
attributed graph morphisms. In this example, we have a forest R composed of three trees T1, T2 
and T3 in which T1 = ({7,8}, 15, λx y . x + y), T2= ({“Good”}, 4, λs . length s) and  
T3 = ({“Good”,”Luck”}, “GoodLuck”, λs1 s2 . s1 ++ s2). 

 
Fig.  4 An attributed morphism having a computation forest composed of three trees 

The above definition of morphisms in DPoPb requires some comments on the reverse 
direction for the attribute relations and the role of partitions and associated trees in the attribute 
part of the morphism.  

In our framework which uses the double pushout approach to rewrite graphs, the arrows for 
attribute parts are reversed with respect to the arrows of the structural parts. This reversal 
permits us to have a pseudo-pullback (pushout in dual category) to organize the computations 

“Luck”: String 7: Nat 

“GoodLuck”: String 

4: Nat 

λ x y .  x + y 

H 

G 

“Good”: String 

15: Nat 

λ s .  length s 

λ s1 s2 . s1 ++ s2 

: structural part morphism 

: multirelation  

lamda-term : computation function  

gi  : an attribute of G, i ∈[0..N] 

hi  : an attribute of H, j ∈[0..M] 

R = {Ti}, i ∈[0..N]:  a forest  

Ti = ({h j}, gi, function): a tree of R. 

 

8: Nat 
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with attributes. The main idea of changing the orientation of the arrows for the functions is to 
allow that the attributes in graph L can be stored in the graph K and then the attributes in graph 
R can easily “go and pick up” any value of attributes in the graph K. Because graph K is the 
intersection of graphs L and R, it contains only the common attributes of L and R. To preserve 
information, we may need several computation functions converging to the same target.  
The use of multirelations follows naturally from the same assumptions. We assume that all 
lambda-terms (containing, probably, free variables) are defined in the same context that 
remains fixed (in principle, the context may be infinite). Thanks to this mechanism, several 
attributes in graph L can be computed into one attribute in graph K, and several attributes in 
graph R can share the same value of attributes in K. 

2.2.2 Attributes computations in DPoPb 
Now we take the same example presented in Section 2 on the computation of n! to illustrate the 
attribute computation in DPoPb. InDPoPb to calculate n! we need only one rule shown in Fig.5.  

  

Fig. 5. Calculating n! by graph rewriting and attribute computation in DPoPb 

The number n for which n! will be computed is specified as an attribute of type Nat 
associated to the unique structural node of the graph L. The computation of n! is realized by a 
graph rewrite which preserves the structure graph. So we just discuss here the computation to 
perform on attributes. The attribute part of the morphism l:  K → L specified at two levels: a 
relation connecting the attribute Nat in L to the attribute Nat in K and a lambda-term associated 
to this relation to define the computation function realized during the graph rewriting. To 
simplify programs of Fig. 5, we replaced the lambda-term by the definition of a function fact 
which computes the factorial value for its parameter x. On the right-hand, the attribute part of 
the morphism r:  K → R specified with a relation connecting the attribute Nat in R to the 
attribute Nat in K and an id function that allow copy the value of Nat in K to Nat in R. Given 
an initial graph G with a concrete value of n, the lambda-term of l will be applied to n to 
produce the result n!. This computation is performed by the β-reduction mechanism which 
substitutes the effective value of n for the formal variable x in the term. So the computation of 
n! in this example with DPoPb system requires only one transformation rule and one realizing 
step.  

As seen in the illustrating example of this section, in certain cases, the systems based on  
∑-algebras cannot represent directly complex computations on attributes if the operators used 
in the computation are not defined in the supporting ∑-algebras. In such cases, users have to 
decompose the computation into several rules (e.g. as illustrated in Fig. 2).  

In DPoPb, computations are based on lambda-calculus [25], a formal model for 
computations. Let us recall that in this system, we can express computations with lambda-terms 
which allow representing the terms (s), the function abstractions (λs . t) and the function 
applications (t s). Lambda-terms then can be evaluated by the simple and powerful β-reduction 
mechanism based on substitutions. This reduction mechanism is semantically defined and can be 

n: Nat 

fact x = if  x== 0 
then 1 
             else 

L 

n: Nat n: Nat 

id x = x  K R 
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easily implemented by a computer program. Thanks to this generic model of computation, the 
DPoPb approach can allow a more natural and straightforward way to represent complex 
computations defined only by abstraction and application of functions (e.g. as shown in Fig. 5).  

3 Implementation of HLR and DPoPb 
In this section, we compare the potential implementations of HLR and DPoPb with respect to 
their computational models. First we analyse the requested effort to implement exactly the 
foundation models of each approach. Then we discuss the solutions used by some significant 
systems to implement the HLR framework, as well as our solution for implementing the 
DPoPb framework. Discussions show the distance between the implementation and the formal 
model in each approach and some important side-effects raised in the tools resting on HLR. 

3.1 Underlying mechanism for the transformation engine 
In the HLR approach [3], attribute values are defined by separate data nodes which are 
elements of some algebras. When attributed graphs and graph morphisms are considered over 
∑-algebras, operations and constants defining the algebra must be always present and thus 
previously defined. Of course, this is practically impossible because it is very cumbersome to 
implement large graphs and unattainable for infinite graphs. In a tool implementation this 
problem could be solved by including the attribute values of the algebra graph that are directly 
reachable from the structural part of the graph. Consequently, most of the systems based on the 
approach HLR use an object-oriented programming language to implement attribute 
computations. Concretely, pre-conditions, post-conditions and actions are mainly expressed in 
an object-oriented programming language: Java for AGG [1] and Fujaba [21], C++ for GReAT 
[20], and Python for AToM3 [10]. Besides this popular solution, actions changing the models 
are sometimes coupled to the rule selection process as in VIATRA [17] which supports ASMs 
or in VMTS [18][19] where UML-like models are manipulated owing to stereotyped activity 
diagrams, XSLT and (Imperative) OCL. 

Let’s consider a system using an external language to express actions as well as conditions 
on attributes, for instance AGG tool. In AGG, graphs are attributed by Java objects which can 
be instances of Java classes from libraries like JDK or from user-defined classes. The main 
difference with the formal system is the use of Java classes and expressions instead of 
algebraic specifications and terms. Thanks to some interoperability with the host language, the 
obtained system is a general purpose graph transformation tool covering a large variety of 
applications including graph transformation. However, classes of the underlying object-
oriented language whose semantics is not covered by the formal foundation belong to 
applications as well. 

A guiding principle of DPoPb is to propose a close relationship between the formal ground 
and its underlying engine. The lambda-calculus which formalizes the algorithmic notion of a 
function is proposed as a model of attribute computations. Existing graph nodes describing 
attributes thus can be reused and updated thanks to lambda-terms implementing the attribute 
computations. Lambda-terms can be easily expressed in a functional programming which is 
based also on lambda-calculus. Such an implementation preserves the semantics of the formal 
model, and provides static strong typing, polymorphism, higher-order functions and lazy 
evaluation for the graph rewriting system. For implementing the DPoPb prototype, we chose 
the Haskell language and benefit all of these advantages of the lambda-calculus paradigm. 
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3.2  Types declarations of attributed graphs 
In HLR graph transformation tools, an attribute is often declared as a variable in a conventional 
programming language. For instance, in AGG, an attribute is implemented by a Java variable 
which can be assigned to any value conforming to its type. Because users can use any Java 
acceptable expressions to compute attributes’ value, the Java type system defines the type system 
of the graph rewriting. This issue is not specific to AGG; it exists also in other known graph 
transformation systems such as Fujaba, GReAT, AToM3... A strongly typed language such as Java 
is considered useful to reinforce the security of programs by preventing programmers from making 
freely mistakes. In fact, this statement is not true in certain cases. For example, a class in Java is 
perhaps a wrong subtype of its superclass.  In order to be a subtype, the methods of the subclass 
must satisfy the superclass' specifications. This relation cannot be checked at compile-time, so it is 
possible to create a subclass that is not a subtype [22]. Hence the type system used by the graph 
transformation scheme where each attribute has a name, a type and a value can be unsecure. 

For instance, let us consider the two following classes Integer and MyInteger in Java. 
MyInteger looks like an Integer by adding an attribute which specifies a name s for the value v: 

public class Integer { 
  private int v ; 
  public Integer (int v) {…} 
  public boolean equals (Integer i) {...} 

} 

public class MyInteger { 
  private int v ; 
  private String s ; 
  public MyInteger (int v, String s) {…} 
  public boolean equals (MyInteger i) {…} 

} 

MyInteger is not a subtype of Integer. To insure subtyping, we need that MyInteger must 
have a stronger specification than Integer. This is not the case because the type of the 
parameter of the equals method of MyInteger should be at most as strict as in the supertype. 
Using the Java’s extends relation between an Integer and MyInteger is also not appropriate 
with respect to subtyping. This is mainly because a C++ or Java class defines at the same time 
attributes (state) and methods (behaviour). Subclasses are not subtypes. Consequently, an 
Integer object cannot be dynamically substituted by a MyInteger one during the rewriting 
process. 

In contrast to these systems, the DPoPb can avoid such kinds of problem on the type 
system. In Haskell, a safe polymorphic type system is supported by a powerful type inference 
algorithm. A type specification is separated from its methods (functions). A class specifies the 
operations that the types must support. It’s a template for types. A type is said to be an instance 
of a class if it supports these operations. For instance, here is the (incomplete) Eq class from 
the Standard Prelude defining the ==  (equals) and /=  (different) functions. 

class Eq a where   -- a is an instance of Eq  
  (==), (/=) :: a -> a -> Bool  -- if a implements == and /= 

x /= y   =   not (x == y) 

data MyInteger = MyInteger {v :: Integer, s :: String} 

instance Eq MyInteger where 
   (MyInteger v1 s1) == (MyInteger v2 s2)    =   (v1 == v2) && (s1 == s2) 

This code defines MyInteger as a data type which wraps an Integer presenting the value v 
and a String s representing the name of the value. This type is then considered as an instance 
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of Eq. The three definitions (class, data type and instance) are completely separated and there 
is no rule about how they are grouped. 

We think that this separation is more secure than actual attribute declarations in an object-
oriented host language because well-typed lambda-terms are always well-behaved with respect 
to reduction. In addition, all the types associated with a function definition can be checked at 
compile-time, and inferred automatically. To take a full advantage of the typed lambda-
calculus, an attractive perspective of DPoPb is to define type checking rules between the types 
of the computation functions and the types of the attributes of the attributed graph. 

3.3  Attributes computations 

3.3.1 Loading compiled codes 
As previously stated, several transformation systems rely upon an underlying language for the 
specification of textual constraints and attribute updates. These definitions have to be compiled 
and provided to the graph transformation machinery in the form of a dynamic library, which is 
loaded at runtime. Within the transformation environment, it is quite easy to propose a special 
attribute editor that pops up when a graph object is selected for attribution. However, the user 
cannot directly access to the code of the function dealing with these attributes. As the function 
is considered as a black box, round trips between the host language and the graph rewriting 
tool are necessary to finalize the computation code. Each round trip is translated by a 
compilation process in the host language. 

In DPoPb, the use of a unified formalism based on type theory for manipulating attributes 
enables a reliable environment so that both structural and attribute manipulations are handled 
in the same framework. The β-reduction mechanism used to evaluate lambda-terms can be 
easily implemented. Implementation which allows compiling and dynamically evaluating 
attribute computations is then possible. In Section 4, we will show how this capability is 
instantiated for the DPoPb’s implementation. 

3.3.2 Lazy evaluation 
Another relevant feature for attribute computations is about lazy evaluation. Using this 
technique, no expression is evaluated until its value is needed and no shared expression is 
evaluated more than once. Lazy functions, also called non-strict, only evaluate their arguments 
when needed. On the opposite, C functions and Java methods are strict and evaluate their 
arguments in an eager mode. Lazy evaluation makes it possible for functions to manipule 
infinite data structures. This interesting feature enables us to describe an object without being 
tied to one particular application of that object. 

For comparison purposes, let us consider an infinite list of integers starting from a given 
value. Such a lazy list can be represented in Java as a process [23] which returns objects either 
forever, or until no more are left1: 

public interface Process {  
public Object nextElement () throws NoSuchElement;  

} 

                                                      
1 Java codes are extracted from [23]  
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public class NumFromProcess  implements Process {  
private int upto;  
public NumFromProcess (int n) {  

this.upto = n;  
}  
 
 
public Object nextElement () {  

return new Integer (this.upto ++);  
}  

} 

In Haskell language, for the same construction, we simply define: 
numFrom n = n : numFrom (n + 1) 

Extracting a finite list from NumFromProcess implies to manage exception handlings 
because we don’t have a method to explicitly test for the presence of the next element. This 
test is assumed by throwing a NoSuchElement exception when the nextElement method is 
invoked. For instance, the Java following class SingleProcess computes a Process producing 
only one object: 

public class SingleProcess  implements Process {  
private Object item;  
public SingleProcess (Object item) {  

this.item = item;  
} 
public Object nextElement () throws NoSuchElement {  

if (item == null) throw  new NoSuchElement ();  
else {  

Object temp = item;  
item = null;  
return temp;  

}  
} 

} 

In addition, the Process interface defines a lazy list that is consumed as fast as it is produced 
and a shared expression is evaluated more than once. If previous elements need to be saved, then 
the programmer must add classes to store computed values in a structured data type. 

In comparison, this mechanism is intrinsically supported by Haskell thanks to lazy 
evaluation. The following Haskell function f extract with take a list containing the successives 
values of the factorial computations, starting from 1! until n!. This is done by first building the 
infinite list nats and then applying the fact function to the obtained nats list. With the same 
technique, we build the infinite list facts of factorials. In this code, the map function is a 
higher-order function which goes through every element of a list and applies a function given 
by its first argument: + in the case of nats and fact for the list of factorials.    

f n = take n facts   facts = 1 : map (fact) nats 
nats = 1 : map (+1) nats  fact 0 = 1 

fact n = n * fact (n -1) 

With respect to functional programming languages, Java lacks some conciseness. Some 
libraries have been proposed to implement the lazy-evaluation mechanism for object-oriented 
environments. For instance Lambda4J [24] provides lazy lists and associated operations. More 
recently, LazyJ [23] extends Java's type system with lazy types. Besides expressiveness, a major 
challenge with lazy evaluation concerns sharing computation results. In all relevant functional 
language implementations, terms are represented as a graph. In the future, we would like to 
establish mappings between rewriting such terms and rewriting terms in an attributed graph. 
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4 The DPoPb prototype  
To validate the theoretical model DPoPb, we have developed a prototype in Haskell language. 
In the first time, the goal of this prototype is to construct the basic DPoPb categorical concepts 
for attributed graphs rewriting when focusing on the implementation of attribute computation. 
Fig. 6 displays the architecture of our prototype. 

 
Fig. 6. Architecture of the DPoPb prototype 

DPoPb prototype is a general purpose graph rewriting system composed of two modules 
DPoPb-InOut and DPoPb-Engine. The module DPoPb-InOut provides an interface for the 
prototype. It allows users to specify transformation rules and initial graphs (via the sub-module 
GetInput) as well as visualize the result of the transformation (by the sub-module 
PrintOutput). At the current stage of development, we base on the Haskell predefined modules 
wxHaskell and graphviz (defined in the Hackage Database [16]) for the graphical user 
interface and the graph visualization respectively.  

The DPoPb-Engine module is the kernel of our prototype. It contains two sub-modules: 
ConstructCatAttGraph and ComputeAttribute. The sub-module ConstructCatAttGraph 
implements the main concepts of DPoPb including the colimits of the category of DPoPb 
attributed graphs (CatAttGraph) as well as the graph rewriting based on the approach double 
pushout. The sub-module ComputeAttribute supplies the utilities functions concerning attribute 
computations during the rewriting (e.g. the composition the attribute part of attributed graph 
morphims which is needed in the construction of CatAttGraph pushout; the dynamic 
evaluation of lamda-expressions representing attribute computations). In 
ConstructCatAttGraph, when constructing the structural part of the colimits we reused 
CatGraph, the implementation of Schneider [7] defining the colimits of the category of graphs. 
We also reuse some functions in the API of Glasslow Haskell Compiler to support the 
dynamic specification and evaluation of attribute computations. 

Our main contributions in the development of the prototype concern solutions for the 
following theoretical and technical questions: how to implement the theoretical concepts of 
DPoPb, how to evaluate users-defined attribute computations at runtime and how to update 
graphs during the rewriting process. 

4.1  Implementing the theoretical concepts of DPoPb 
The mathematical model in [4] provided a formal framework for the category of attributed 
graphs CatAttGraph but it is not straightforward to map those categorical concepts into 
computational constructs. Thus, we had to define the constructive data structures and 
algorithms for storing graphs and graphs morphisms; for constructing the coproduct, 
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coequalizer, pushout complement and pushout of the category CatAttGraph. The difficulty of 
this task resides in defining the attribute part of the graphs and graphs morphisms in the 
construction of each colimit such that its categorical properties are satisfied.  

4.2  Evaluating users-defined attribute computations at runtime 
We want to allow users to define their graphs together with attribute computations as non-
compiled functions (written in Haskell for example). The challenge here is that at runtime the 
rewrite engine must enable the generation of Haskell codes of user-defined functions and 
integrate these codes into the engine in order to evaluate them in the rewrite process. Thus we 
need to support the meta-programming at runtime. To support this flexibility, we relied on the 
Glasgow Haskell Compiler (GHC) which proposes the necessary API functions to compile and 
evaluate Haskell functions. We used Haskell module hint 0.3.2 [16] wrapping those GHC 
functions to invoke the GHC compiler at runtime.  

4.3  Updating graphs during the rewriting 
The double pushout rewriting process necessitates an update of the transformation rules when the 
content of an initial graph is given. Using an imperative language, such an update is not difficult. 
However, the update implemented in an imperative language is undefined semantically and then 
out of control. Haskell is a pure functional language that does not allow side-effects. Hence we 
must ensure that computations with side-effects for the update of attributes during the rewrite 
process will be encapsulated to respect the functional style of the program. For this purpose, we 
base on monads [14]. We defined a monad transformer (State transformer) that enables hiding 
underlying machinery for updating graphs during the DPoPb process. The main interest here is 
that we can allow the update operations during the rewrite term process without losing the 
advantages of the functional paradigm and the Haskell type system. 
We now show in Fig. 7 some screenshots of our prototype.  

 
Fig. 7. DPoPb prototype’s screenshots 

In the left-hand are the widgets used to receive inputs including the transformation rules and 
the initial graph. Actually we do not implement an algorithm to find a match, so the initial graph 
G is took as an instance of graph L defined with concrete attributes’ values. The frame Morphism 
K → L shows how the attribute part of the morphism is specified with the attribute relations and 
the computation functions. The input information will be encoded in the internal data structure 
and manipulated by the DPoPb engine module to construct the pushout complement graph D and 
the pushout graph H. To visualize DPoPb graphs, currently we rely on the GraphViz system 
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[28]. The DPoPb internal data structures are thus translated to the graph descriptions in the DOT 
language (by using the Haskell module graphviz [16]) which can be displayed with GraphViz as 
shown in the right-hand of the figure. On the right side of this part, we display the graph 
representing the rules L←K→R. The attributes n of L and p of R are connected to the attribute m 
of K by the function factorial and the function identity respectively. The graph on the left side 
shows the pushout complement D and the pushout H constructed by applying the rule L←K→R 
on the concrete graph G. Since the value of G’s attribute is 3, the value of D’s attribute is 6 - 
factorial of 3. The value of H’s attribute is the copy of D’s attribute, thus it is also 6. 

5 Conclusion 
In the HLR framework, attributed graph structures are given by algebras over a specific 
signature where the structure part and the attribute part are separated from each other. If this 
solution is theoretically acceptable, it is not very efficient and cannot be easily implemented 
for a general purpose graph transformation system. Consequently, users have to program and 
compile computation functions separately within a companion programming tool before 
integrating their functions into transformation rules. 

Contrary to HLR approach, our approach proposes a single formalism that integrates the 
rewrite of structural parts of graphs with attribute computations. This solution rests on 
category theory and type theory thus doesn’t entail a semantic gap between the theoretical 
model and its implementation. This advantage has been validated by an ongoing–developed 
prototype of the DPoPb system implemented in the Haskell language.  

We have identified two directions for future researches. The first one concerns proving 
properties of transformations. As we want keeping trace of evaluation or verification of the 
correctness of attributes’ computations during the transformation, we plan to import 
transformations supported by our DPoPb tool into the Isabelle/HOL proof assistant via 
Haskabelle [26] in order to specify and prove relevant properties the transformations have to 
satisfy. Another direction deals with reasoning on programs transformations. It relies on the 
use of functional programming languages for programming applications based on rewriting 
attributed graphs. As these languages promote a more abstract style of programming and 
support higher-level constructions, we have in mind simplification of programs transformation 
and to cope with them as functional programs.       
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