
Electronic Communications of the EASST
Volume 36 (2010)

Proceedings of the
Workshop on OCL and Textual Modelling

(OCL 2010)

A Feature Model for an IDE4OCL

Joanna Chimiak–Opoka, Birgit Demuth

15 pages

Guest Editors: Jordi Cabot, Tony Clark, Manuel Clavel, Martin Gogolla
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

ECEASST

A Feature Model for an IDE4OCL

Joanna Chimiak–Opoka1, Birgit Demuth2

1 University of Innsbruck, Austria, joanna.opoka@uibk.ac.at
2 Technische Universität Dresden, Germany, birgit.demuth@tu-dresden.de

Abstract: An Integrated OCL Development Environment (IDE4OCL) can signif-
icantly improve the pragmatics and practice of OCL. Therefore we started a com-
prehensive requirement analysis with the long term vision of a multisite IDE4OCL
project. In this paper we present a feature model for the IDE4OCL vision based on
this analysis. In an earlier work we identified domain concepts, tool–level interac-
tions with IDE4OCL, and use cases for OCL developers including a set predefined
features. In the second step, we asked the OCL community members for their feed-
back on our proposal. Around 100 researchers, tool developers and practitioners
who gained experience with OCL have voted in an online–survey. The results gave
us a valuable insight in the needs of OCL usage both in usual and advanced OCL ap-
plications. One of the important results is a collection of features that have been pro-
posed additionally to our predefined features. We analysed all the comments of the
participants of the survey and consolidated them into an extended set of IDE4OCL
features and eventually into a feature model.

Keywords: OCL, modeling, feature model, integrated development environment

1 Introduction

Thirteen years ago, the first version of the Object Constraint Language (OCL) was published as
a part of the Unified Modeling Language (UML) standard. Since the publication of the OMG
OCL standard many academic and commercial OCL tools have been developed such as Dresden
OCL1, USE2 and MDT OCL3. In recent years OCL support is also implemented in modeling
tools as in Magic Draw UML4, Borland Together5 and ECO for Visual Studio6. An overview
of further OCL tools can be found in the OCL Portal7. This seems to affirm the following rule
of thumb [Rid84]: It is commonly thought that 10 years is needed for technology to pass from
its initial conception into wide–spread use. Below we will focus on two aspects important for a
wide–spread use; namely maturity and usability of OCL, related to standards and tools.

The question of the maturity of modeling, in particular modeling with UML, was discussed
during a MODELS 2009 keynote [Mel09]. Obviously OCL is less mature than UML, but the

1 http://dresden-ocl.sourceforge.net/
2 http://www.db.informatik.uni-bremen.de/projects/USE/
3 http://wiki.eclipse.org/MDT-OCL/
4 http://www.magicdraw.com/
5 http://www.borland.com/us/products/together/
6 http://www.capableobjects.com/ProductsServices ECO.aspx
7 http://st.inf.tu-dresden.de/oclportal/

1 / 15 Volume 36 (2010)

A Feature Model for an IDE4OCL

maturity of OCL has been improved in the recent years. Considering the amount of research
work related to OCL and the number of academic and industrial OCL tools [CGG08], one can
see a huge potential for OCL to be in wide–spread use in the future. However, changes and
imperfections of OCL specification constitute a crucial obstacle in achieving full maturity of the
language.

Another important issue related to the adoption of a technology is its usability. As indi-
cated in [Con09] software users and their usability issues seem to be commonly neglected in
literature and practice. The availability of multiple OCL tools has caused the growth of the
OCL community in the academic and industrial context. However, the OCL community has not
agreed, until now, what functionality is important for OCL users. The topic of the last OCL
Workshop [CCG+09] was therefore pragmatics of OCL. The question of usability of an OCL
tool was already discussed in [CPP08], where it was mentioned that tools’ constituents (editors,
compilers, browsers) must implement the functionalities established by integrated development
environments (IDEs).

We went one step further and published a systematic requirements analysis for such an inte-
grated development environment for OCL (IDE4OCL) [CDSR]. We identified domain con-
cepts, tool–level interactions with IDE4OCL, and use cases for OCL developers including a set
of 21 predefined features. To identify use cases and features we analysed our personal experi-
ence with academic and industrial users of OCL and lessons learned from the well–established
domain of IDEs for programming languages. A comprehensive description of the identified use
cases and features, discussion of architectural decisions and technical feasibility can be found in
our prior paper.

To validate our ideas, in the second step, we asked members of OCL community for their
feedback. In this paper we present qualitative8 results of our on–line survey, in which around
100 researchers, tool developers and practitioners, who gained experience with OCL, expressed
their opinions. The results gave us a valuable insight in the needs of OCL usage both in usual
and advanced OCL applications. One of the important results is a collection of features that
have been proposed in addition to features predefined by us. We analysed all comments of
the participants of the survey and consolidated them into an extended set of IDE4OCL features
eventually presented as a feature model.

The feedback from the OCL community is very important to us, as our long term goal is
a community driven development of an IDE4OCL with partners from the academic and in-
dustrial context. Moreover, we aim to network OCL users9. According to our knowledge, our
research is the first attempt at questioning the global OCL community to systematically gather
requirements to develop an IDE for OCL. Our goal is to gain a common understanding of the
important functionality for OCL–driven modeling and development.

The rest of the paper is structured as follows: in Section 2 we outline the idea of an IDE4OCL.
In Section 3 we shortly describe our survey–based research and give respondents characteristics.
The collections of features proposed by us and by respondents of our survey are included in Sec-
tion 4. Based on both collections, features are summarised in Section 5 and presented as a feature
model for an IDE4OCL. Finally, in Section 6, we summarize our results and indicate future work.

8 The quantitative evaluation of the results is a topic of a future paper.
9 LinkedIn group of OCL users at http://www.linkedin.com/groups?gid=3007822

Proc. OCL 2010 2 / 15

ECEASST

2 IDE4OCL Overview

In this section we summarize the idea of IDE4OCL presenting its context, use cases and features.
In recent years, many OCL based tools and tool–chains have been developed for multiple

purposes. Currently, the OCL landscape is rich and heterogeneous. For the purpose of the
context specification of IDE4OCL we propose a simplified view of an OCL tool landscape with
tools directly interacting with IDE4OCL (Fig. 1). The view is based on possible usage scenarios
of OCL discussed in [DW09]. The landscape specification also shows what IDE4OCL is not
intended to be (components that are other ones than in the diagram) and at the same time points
out, which functionality is considered to be outsourced (realisations in the other components in
the diagram).

The architectural style of IDE4OCL can be considered as a toolset [HDF02] or a collection
of plug–ins. We assume the possibility of OCL expression exchange between tools with full
preservation of their semantics.

Transform OCL into Tests
<<Realizations>>

Testing Tool

Design Models and Model Instances
Analyse Model Instance with OCL

Verify Model Instances with OCL

<<Realizations>>

Modeling Tool

Evaluate Statement

Specify Statement
Verify Statement

<<Realizations>>

Manage Project

IDE4OCL

Reason on/ Check Project
<<Realizations>>

Formal Verification Tool

Store and manage models/projects
<<Realizations>>

Repository

Use OCL for Model Transformations
Transform OCL into Code
<<Realizations>>

MDE Tool

Project

Evaluation Results Project

Project

Package,
OCL Expression

Model

Model,
Model Instance,

Project

Project

Evaluation Results

Package,
Model Instance

Figure 1: The OCL tools landscape: relations between tools (from [CDSR]).

From the functional point of view, we distinguished four main use cases to be realised by the
IDE4OCL component (Fig. 1), namely specification, evaluation and verification of statements
and project management.

Specify Statement is the basic use case of an IDE4OCL, where an OCL developer specifies an
OCL statement10. Note that the OCL statement can be specified both on the metamodel
and the model layer. We consider here the creation of a new statement or a package from
scratch or the modification of an existing one.

10 The term OCL statement was introduced in [CDSR] for pragmatic reasons to denote a single artefact of an OCL
specification that can be developed within an IDE4OCL.

3 / 15 Volume 36 (2010)

A Feature Model for an IDE4OCL

Evaluate Statement is a use case where statements are parsed by an OCL parser that creates
an abstract syntax model that is evaluated by an OCL interpreter. This executes the state-
ments defined on the model for the model instance. This use case can be performed on
request from an OCL developer or from another tool in the OCL tool landscape (Fig. 1).
As mentioned in [CDSR], we consider the evaluation in the form of code generation as
outsourced functionality.

Verify Statement use case covers both formal and empirical approaches to verification and val-
idation of an OCL specification. Due to the complexity of formal verification, we consider
it to be outsourced. As a form of empirical validation of statement, IDE4OCL should
support testing of OCL statements (OCLUnit, [CO09]).

Manage Project use case is required for efficient support of OCL development. In the case of
large projects it is important to have efficient management of all artefacts and configura-
tion features of the IDE4OCL itself. This use case covers all management issues within
IDE4OCL and related communication with other tools.

From the implementation point of view, the Specify and Evaluate Statement use cases may
be hardly distinguishable. Modules to edit, to parse and to interpret OCL statements are crucial
parts of IDE4OCL. For high usability, a user–friendly editor is indispensable and must fulfill the
typical features of the Specify Statement use case. Nowadays, modern parsers go beyond pure
parsing and are powerful tools offering advanced editing support. An OCL parser has also to
semantically check OCL statements against the underlying model. A parser and editor is often
shortly referred as an OCL editor.

For the Specify Statement use case we identified 21 features (among others Auto–completion,
Basic Editing, Debugging and Syntax Highlighting), which were used in the on–line survey
described in the next section. The features themselves are described in Section 4.2.

3 Survey–Based Research

In this section we describe the design of the survey (Section 3.1), data collection issues (Sec-
tion 3.2), and respondents characteristics (Sections 3.3). Features proposed by respondents are
described in Section 4.2.

3.1 Survey Design and Structure

The first step in our empirical research [BW84] was the design of the survey. The goal of the
survey was to evaluate the appropriateness and completeness of the set of predefined features.
The survey consists of four parts: personal data, appropriateness of features, completeness of the
features and feedback. As the goal of this paper is to provide analysis of the qualitative survey
results, we focus mostly on feedback related to achieve completeness of the futures.

Personal data part was designed to collect information about respondents. The results are pre-
sented in Section 3.3.

Appropriateness of features part dealt with importance and urgency of the predefined features.
The results of the statistical analysis will be published in an future paper. Here we use
statistical evaluation results to select mandatory features for the feature model in Section 5.

Proc. OCL 2010 4 / 15

ECEASST

Completeness of the features part was to ask the respondents on their opinion about the com-
pleteness of the set of the predefined features and to propose extensions for each use case.
All but the first question in this part were open text questions, thus the respondents were
free to write any information there. The summary of this part is given in Section 4.2 and
Section 5.

Feedback part consisted of the inquiry of respondents’ feedback in form of free text comments.
These so–called open questions are spread over survey sections according to their content.

3.2 Data Collection

The second step of our research, data collection, was a difficult task, as there is no easy way to
identify OCL users. To collect data we used different channels: personal and electronic. We
used hard copies and an on–line survey engine11.

Initially, data was collected through personal contact with respondents. Our first opportu-
nity to encounter the OCL community was at the MODELS 2009 conference, especially at the
OCL Workshop. We distributed our survey after the presentation and discussion of the idea of
IDE4OCL [CDSR]. The second opportunity to meet people related to OCL was the 10th an-
niversary of Dresden OCL12 where we distributed our survey to the participants. Additionally,
we contacted our co–workers and students in Dresden and Innsbruck.

After the phase with direct contacts, we started to use the electronic channels: mailing lists,
portals, e–mails and invitations via the survey engine with pre–generated tokens. We identified
and directly contacted over 200 people using OCL in the academic and industrial context13 and
collected data over a period of 12 months14.

3.3 Respondents Characteristics

In the personal data part of the survey we asked respondents to provide information on their
experience with OCL and the context in which they are using it. Additionally we asked for self–
estimation of their OCL knowledge. Below we shortly describe these dimensions and present
corresponding diagrams (Fig. 2).

The distribution of experience based on 5 multiple choice kinds of experience is shown on the
left side of Fig. 2. The largest group consists of users (E5), the next groups of tool developers (E3)
and researchers (E4). Several respondents were involved in standardisation processes (E1, E2).

The distribution of contexts based on 4 multiple choice options of occupation is shown in
the middle of Fig. 2. The largest group of respondents came from research institutions (C2),
the next groups are employees of companies (C3) and students (C4). Only several respondents
are working for standardisation organisations (C1). The greater amount of respondents from

11 http://www.limesurvey.org/
12 http://dresden-ocl.sourceforge.net/10years.html
13 This number is based on the number of invitations from the survey engine and excludes people contacted indirectly
by broadcasting (via portals, mailing lists and e–mails). Considering the direct contact only, the response rate was
48%.
14 The survey is still open and available at http://squam.info/ide4ocl/.
We will monitor and analyse its results from time to time.

5 / 15 Volume 36 (2010)

A Feature Model for an IDE4OCL

E1 E2 E3 E4 E5

Experience (n=102)

8 14

45 38

76

C1 C2 C3 C4

Context (n=102)

6

62

30 28

K1 K2 K3 K4 K5

Knowledge (n=102)

9

34 27 25
7

E1: OCL standardisation
E2: OMG standardisation
E3: OCL tool development
E4: OCL research
E5: OCL usage in a model-

ing/development process

C1: work for OMG
C2: work in a research institu-

tion
C3: work in a commercial com-

pany
C4: being a student

K1: novice user
K2: user
K3: advanced user
K4: expert
K5: guru

Figure 2: Distribution of different experience, context (multiple choice options, in dark grey)
and knowledge types (single choice options, in light grey).

research institutions compared to companies may be interpreted as a sign of wider usage of OCL
in the academic rather than the industrial context.

This observation and its interpretation can be caused by the academic bias, which makes gen-
eralisation vulnerable. It is easier to contact respondents from the academic context, i.e. students
and researchers, because research on OCL is published. In contrast, information on usage of
OCL in the commercial context is harder to find. Furthermore, the authors in social networks are
predominantly settled in the academic context.

The distribution of knowledge based on 5 disjoint self–estimation levels is presented on the
right side of Fig. 2. Central groups (K2–K4) are more dominant than peripheral ones (K1, K5).

4 Collection of Features

In this section we present features, which covers features defined in a solid requirements analysis
by the authors of the survey (Section 4.1) and further features proposed by the respondents of
the survey (Section 4.2).

4.1 Predefined Features

In the following, we present shortened definitions of 21 predefined features. For complete defi-
nitions we refer to [CDSR] or to the web15.

Association End Navigability should be supported independently of the navigability of the un-
derlying association in the model.

15 http://squam.info/?p=325

Proc. OCL 2010 6 / 15

ECEASST

Auto–completion enables predicting a word or phrase that the user wants to type in without the
user actually typing it in completely. Not only the OCL grammar but also the underlying
model (model context, attributes, operations, ...) has to be included in the auto–completion
mechanism.

Auto–indentation helps to better convey the structure of code to human readers (e.g. to show
the relationship between OCL nested structures).

Basic Editing is a set of features related to editing any kind of text documents, which can be
useful when editing OCL statements, e.g. spell checking or regular expression based find
and replace.

Code Folding enables the user to selectively hide and display sections of an edited file.
Collaborative Editing allows several people to edit a file using different computers and pro-

vides a possibility of team/pair work to enable knowledge transfer (e.g. teacher and stu-
dent, geographically distributed developers).

Debugging should support developers in understanding the nature of bugs and typically offers
functions such as running an expression step by step, conditional breakpoints in an expres-
sion to examine the current state, tracking and changing the values of variables. Addition-
ally, logging of and test generation based on debugging activities may be supported.

Document Interface is a set of features supporting editing of multiple documents. It covers
support of multiple instances, single and multiple document window splitting, multiple
document overlappable windows and a tabbed document interface. While working with
hybrid models, it enables traceing relationships between textual and graphical notations.

Hybrid OCL/MOF View should provide an abstract syntax model and additionally highlight
the context of any OCL expression in the metamodel.

Macro Mechanism enables short sequences of keystrokes and mouse actions to be transformed
into other, usually more time–consuming, sequences.

Name Resolution for model elements in the form of simple or package–qualified names is re-
quired.

Profiler enables performance analysis based on OCL statement/package evaluation time. It can
be used to determine which OCL statements are most frequently evaluated and focuses on
their optimization.

Refactoring Support is useful for renaming and restructuring entities whilst preserving their
original semantics. For full support, dependencies between statements must be analysed
to perform a series of renaming activities. Also, extracting a definition or a template from
a statement should be supported to avoid code duplications.

Reuse Support can be realized at different levels. At the same abstraction level, OCL code
can be reused by the composition of statements, template and library import mechanisms.
A specification from the higher abstraction level can be reused during development of a
specification at a lower level to ensure the correctness of metamodel instantiation.

Statement Element Browser provides facilities to browse, navigate, or visualize (e.g. as an
outline) the structure of an OCL project, including OCL statements, elements and element
instances.

Statement Coverage is used to measure, based on coverage criteria, the degree to which an
OCL specification has been tested.

Static Statement/Specification Analysis is the analysis conducted without evaluation of a state-

7 / 15 Volume 36 (2010)

A Feature Model for an IDE4OCL

ment/specification and allows implicit typing or displaying size and complexity metrics.
Symbol Database enables quick and easy location of statements, elements, element instances

and so on based on indexing.
Syntax Highlighting enables the display of OCL code in different colors and fonts according to

the category of terminal symbols. Additionally highlighting for an underlying metamodel,
errors and brace matching should be considered.

Template Support enables the definition, usage and management of templates. It is related to
refactoring and reuse features.

Visibility and Lexical Scoping MOF provides the context–sensitive interpretation of a pack-
age during the name resolution of OCL constraints in the context of a package with two
distinct interpretations (depending on its role as a source or as a target of a package merge
or import relationship).

The features were intended for the Specify Statement use case, but they partially cover other
use cases. In Fig. 3 we present coverage of use cases by the set of predefined features.

A
ss

oc
ia

tio
n

E
nd

 N
av

ig
ab

ili
ty

 [F

...
 [F

...

A
ut

o
In

de
nt

at
io

n
 [F

ea
tu

re
s:

:P
re

...
 [F

ea
tu

re
s:

:P
re

...

A
ut

oc
om

pl
et

e
 [F

ea
tu

re
s:

:P
re

de
fi.

..
 [F

ea
tu

re
s:

:P
re

de
fi.

..

B
as

ic
 E

di
tin

g
 [F

ea
tu

re
s:

:P
re

de
fin

...
 [F

ea
tu

re
s:

:P
re

de
fin

...

C
od

e
F

ol
di

ng
 [F

ea
tu

re
s:

:P
re

de
fi.

..
 [F

ea
tu

re
s:

:P
re

de
fi.

..

C
ol

la
bo

ra
tiv

e
E

di
tin

g
 [F

ea
tu

re
s:

:..
.

 [F
ea

tu
re

s:
:..

.

D
eb

ug
gi

ng
 [F

ea
tu

re
s:

:P
re

de
fin

ed
]

 [F
ea

tu
re

s:
:P

re
de

fin
ed

]

D
oc

um
en

t I
nt

er
fa

ce
 [F

ea
tu

re
s:

:P
...

 [F
ea

tu
re

s:
:P

...

H
yb

rid
 O

C
L/

M
O

F
 V

ie
w

 [F
ea

tu
re

s.
..

 [F
ea

tu
re

s.
..

M
ac

ro
 M

ec
ha

ni
sm

 [F
ea

tu
re

s:
:P

re
...

 [F
ea

tu
re

s:
:P

re
...

N
am

e
R

es
ol

ut
io

n
 [F

ea
tu

re
s:

:P
re

...
 [F

ea
tu

re
s:

:P
re

...

P
ro

fil
er

 [F
ea

tu
re

s:
:P

re
de

fin
ed

]
 [F

ea
tu

re
s:

:P
re

de
fin

ed
]

R
ef

ac
to

rin
g

S
up

po
rt

 [F
ea

tu
re

s:
:..

.
 [F

ea
tu

re
s:

:..
.

R
eu

se
 S

up
po

rt
 [F

ea
tu

re
s:

:P
re

de
f..

.
 [F

ea
tu

re
s:

:P
re

de
f..

.

S
ta

te
m

en
t C

ov
er

ag
e

 [F
ea

tu
re

s:
:P

...
 [F

ea
tu

re
s:

:P
...

S
ta

te
m

en
t E

le
m

en
t B

ro
w

se
r

 [F
ea

...
 [F

ea
...

S
ta

tic
 S

ta
te

m
en

t/S
pe

ci
fic

at
io

n
A

...
S

ta
tic

 S
ta

te
m

en
t/S

pe
ci

fic
at

io
n

A
...

S
ta

tic
 S

ta
te

m
en

t/S
pe

ci
fic

at
io

n
A

...

S
ym

bo
l D

at
ab

as
e

 [F
ea

tu
re

s:
:P

re
...

 [F
ea

tu
re

s:
:P

re
...

S
yn

ta
x

H
ig

hl
ig

th
in

g
 [F

ea
tu

re
s:

:P
...

 [F
ea

tu
re

s:
:P

...

T
em

pl
at

e
S

up
po

rt
 [F

ea
tu

re
s:

:P
re

...
 [F

ea
tu

re
s:

:P
re

...

V
is

ib
ili

ty
 a

nd
 L

ex
ic

al
 S

co
pi

ng
 M

..
..

Use Cases

Evaluate Statement

Manage Project

Specify Statement

Verify Statement

4 1 1 1 1 2 2 1 4 1 2 3 1 1 1 3 1 1 1 2 1

Figure 3: Use cases and their related predefined features

4.2 Proposed Features

In the question on completeness on predefined features for the Specify Statement use case 68% of
respondents answered positively. 59 respondents left their qualitative feedback and among them
46 answered questions on proposed features for the specify (23), evaluate (31), verify statement
(27) and manage project (27) use case. We analysed and grouped their proposals and selected 13
most frequently mentioned features. Below we provide definitions of the proposed features and
next we show their relation to the use cases (Fig. 4).

Batch Mode is a usage of IDE4OCL without activating its GUI. It enables running IDE4OCL
as a back–end tool or incorporating it into a tool chain. A full and partial batch mode

Proc. OCL 2010 8 / 15

ECEASST

can be considered depending on the user interaction required. Input for the batch mode
can be provided from a command line, scripting mechanism or via configuration files. An
example usage scenario is the evaluation of model metrics defined in OCL and passing
their values to another tool or storage. Another example can be the verification of an OCL
project by testing all OCL expressions (running OCLUnit tests [CO09]) before committing
an OCL project into a version control system.

Documentation Specification and Generation provides an in–code documentation mechanism
that is popular for many programing languages, e.g. Javadoc16. This mechanism enables
keeping documentation together with code and generate documents based on the current
state of the development [HT99]. We proposed adaptation of this practice to the OCL
context [CO09].

Error Handling is generally the detection and resolution of errors and warnings at different
levels. In the OCL context error handling refers both to the static and the dynamic seman-
tics of OCL expressions. The user’s requirements for an efficient development of OCL
statements include instant error/warnings detection while editing OCL, detection of all er-
rors/warnings in an OCL package at a time (i.e. error reporting should not stop after the
first error). as well as immediate, helpful and all in all user adequate visualization of er-
rors/warnings respectively messages. Beyond error detection, developers wish support for
quick fixes in OCL specification and evaluation.

Interfaces to Other Tools enable cooperation between IDE4OCL and other tools in the OCL
landscape. We decided to outsource some issues to avoid extensive complexity and het-
erogeneity. The interfaces should enable passing selected OCL statements to these tools to
link the outsourced functionality. If appropriate, they should display feedback from them
in the IDE4OCL. To integrate particular tools, adaptors have to be created.

OCL and Model Perspective provides two perspectives: one with OCL as main artifact and
one with models in focus. In some cases, especially in the specify statement use case,
it is easier to work within the OCL perspective. For example, when refactoring, reusing
or optimising OCL expressions. In other cases, especially in the evaluate statement use
case, it is more comfortable to work within the model perspective. For example, when
evaluating OCL expressions results may be visualised in a corresponding model/diagram.
Model elements can be enriched with annotations based on OCL evaluations results. It
increases comprehensiveness of models and gives better insight into their violations of
OCL–specified quality restrictions.

OCL Compliance is a prerequisite for realizing interoperability with other tools, which is one
of the important architectural issues of an IDE4OCL. The OCL specification17 distin-
guishes in its Chapter 2 three kinds of OCL compliance: syntax, XMI and evaluation
compliance. OCL 2.0 was developed in parallel with UML 2.0 and MOF 2.0 that share a
common core, thus the OCL standard requires that each OCL tool has to declare what com-
pliance points against UML 2.0 and MOF 2.0 are fulfilled. To the best of our knowledge
we know no OCL tool that describes its compliance. In many cases OCL tool support

16 http://java.sun.com/j2se/javadoc/—a tool for generating API documentation in HTML format from doc comments
in Java source code.
17 OMG OCL2.2: http://www.omg.org/spec/OCL/2.2/

9 / 15 Volume 36 (2010)

A Feature Model for an IDE4OCL

is restricted to class diagrams, but in practical applications support of other diagrams is
important, e.g. of state machines, like in ECO for Visual Studio.

OCL Testing is a supportive mechanism for OCL developers. It enables to check if a defined
OCL statement evaluation provides expected results based on a test model. However,
testing shows the presence, not the absence of bugs[DBR69], it is the best practice to
increase the quality of code. We proposed and discussed unit testing of OCL in [CO09].

Scalability is an often required feature enabling evaluation on large models, large collections of
objects, or large OCL packages, but it has not yet been investigated to a sufficient extent.
Support of configurations or incremental approaches can be used as a realisation approach
of this feature. In the support for configurations, constraints in particular invariants should
be evaluated in relevant situations to reduce the effort for useless or costly evaluations such
as in the case of the OCL22Java generator18. In incremental integrity checking, only the
subset of the system state that has been changed is considered [CT09].

Support of Libraries enables to increase modularisation and reuse of OCL statement as it pro-
vides import mechanism. It can be used to provide libraries of typical statements for the
OCL standard library either as a learning material or for reuse purposes. Additionally, for
user convenience, on–fly libraries could created, e.g. for all OCL statements relating to a
particular context to be editable together. Moreover, it should be possible to bind libraries
in another formats or in another storage, e.g. as jar files or from databases. An example
scenario: A UML profile comes with the constraints defined. These constraints could be
compiled into the library, and then the tool, using this profile can just access/run constraint
implementations from the (jar) library.

Support of OCL Modularisation can be interpreted from various perspectives. One is a tech-
nique for the support of user–defined modularisation of the language itself. This is useful
to extend, adapt or embed OCL expressions for different usage19 as well as to reduce
the complexity of OCL [AZH08], [WTZ10]. Another OCL modularisation feature is the
modularisation of OCL packages. For example, this could be useful for reuse of OCL
expressions in the case of collaboration of partners who share the same model but not all
constraints. A technique that we recommend for it is the usage of libraries.

Syntax and Semantics Extensions can increase acceptance of OCL by modifications of its syn-
tax that resembles a formal language. Therefore the support for creation of an alternative
concrete syntax is required. Another idea is to introduce notational beautifiers that means
a printer that exports OCL programs using a math–inspired short–hand notation [Sue06].
Extending the semantics of OCL besides the syntax is much more difficult but also desired.
Examples are the introduction of regular expressions or ad–hoc polymorphism. It should
be indicated that OCL language modularization is a technique implementing syntax and
semantics extensions.

Variability of Metamodels and Technical Spaces is required to support the original intention
of OCL, i.e. to specify constraints on UML models and well–formedness rules in meta-
modeling. Along the model–driven software development and domain specification lan-

18 http://dresden-ocl.svn.sourceforge.net/viewvc/dresden-ocl/trunk/ocl20forEclipse/doc/pdf/manual.pdf
19 see presentation of Christian Wende et al at the Workshop Dresden OCL - Quo Vadis at
http://dresden-ocl.sourceforge.net/10years.html

Proc. OCL 2010 10 / 15

ECEASST

guages hype, OCL is very often used on various metamodels. Consequently, parsers and
interpreters are needed that support variability of metamodels. Regarding interpreters, the
used metamodel is not the only issue. In practice, OCL interpreters are implemented in a
specific technical space such as Java, EMF or a proprietary model repository. To be generic
against models in variable technical spaces, an IDE4OCL should provide a framework to
evaluate OCL expressions on objects in different technical spaces [WTW10].

Version Management is desired to have version control for both OCL expressions and models.
It should provide support for change management and change tracking. Versioning can
help to integrate OCL statements into the software life cycle. A minimalistic solution is
an integration with subversion or CVS. However, a target solution should be more mature
and dedicated for versioning of OCL and models at statement and model element level.

B
at

ch
 M

od
e

 [F
ea

tu
re

s:
:P

ro
...

 [F
ea

tu
re

s:
:P

ro
...

D
oc

um
en

ta
tio

n
S

pe
ci

fic
at

i..
.

D
oc

um
en

ta
tio

n
S

pe
ci

fic
at

i..
.

D
oc

um
en

ta
tio

n
S

pe
ci

fic
at

i..
.

E
rr

or
 H

an
dl

in
g

 [F
ea

tu
re

s:
:..

.
 [F

ea
tu

re
s:

:..
.

In
te

rf
ac

es
 to

 o
th

er
 T

oo
ls

 [.
..

 [.
..

O
C

L
an

d
M

od
el

 P
er

sp
ec

tiv
.

....

O
C

L
C

om
pl

ia
nc

e
 [F

ea
tu

re
...

 [F
ea

tu
re

...

O
C

L
T

es
tin

g
 [F

ea
tu

re
s:

:P
r.

..
 [F

ea
tu

re
s:

:P
r.

..

S
ca

la
bi

lit
y

 [F
ea

tu
re

s:
:P

ro
p.

..
 [F

ea
tu

re
s:

:P
ro

p.
..

S
up

po
rt

 o
f L

ib
ra

rie
s

 [F
ea

t..
.

 [F
ea

t..
.

S
up

po
rt

 o
f O

C
L

M
od

ul
ar

is
...

S
up

po
rt

 o
f O

C
L

M
od

ul
ar

is
...

S
up

po
rt

 o
f O

C
L

M
od

ul
ar

is
...

S
yn

ta
x

an
d

S
em

an
tic

s
E

xt
...

S
yn

ta
x

an
d

S
em

an
tic

s
E

xt
...

S
yn

ta
x

an
d

S
em

an
tic

s
E

xt
...

V
ar

ia
bi

lit
y

of
 M

et
am

od
el

s
...

V
ar

ia
bi

lit
y

of
 M

et
am

od
el

s
...

V
ar

ia
bi

lit
y

of
 M

et
am

od
el

s
...

V
er

si
on

 M
an

ag
em

en
t

 [F
ea

...
 [F

ea
...

Use Cases

Evaluate Statement

Manage Project

Specify Statement

Verify Statement

2 2 3 4 4 4 4 4 4 4 4 4 1

Figure 4: Use cases and their related proposed features

5 An IDE4OCL Feature Model

In the previous section we presented sets of predefined (Section 4.1) and proposed features (Sec-
tion 4.2) without any prioritisation of them. In this section we structure features into a compre-
hensive IDE4OCL feature model, where we distinguish between mandatory and optional features
and group them into more general categories.

The feature model should give a better understanding and overview of the features for both
OCL users and OCL tools developers. For researchers on the OCL related topics, it can serve as
an overview of topics crucial to OCL users (categories of features). Moreover, it can serve as a
basis for development of customised IDE4OCLs in the software product line approach and as an
aggregation and visualisation framework in tools comparison.

11 / 15 Volume 36 (2010)

A Feature Model for an IDE4OCL

For the predefined features we used quantitative evaluation of the survey (as described below)
and due to the lack of such evaluation for proposed features we based our classification on per-
sonal experience with OCL and IDEs. Below we describe our strategy of feature classification
in the feature model depicted in Figure 5.

• The predefined features with the statistically highest importance and at the same time high-
est urgency ranking in the survey 20 are declared as mandatory features: Auto–completion,
Basic Editing, Syntax Highlighting, Debugging and Refactoring Support. The first three
features can be corresponding to the state-of-the-art considered as basic mandatory fea-
tures. Debugging and Refactoring Support are in contrast features that are not yet imple-
mented in OCL tools. Therefore these both features are a challenge for OCL tool devel-
opers in the near future. All other predefined features are considered as optional features
regardless of their importance and urgency ranking.

• From the architectural point of view the IDE4OCL must provide interfaces to the tools
in the OCL tools landscape (Fig. 1). Therefore the feature Interfaces to tools in the OCL
landscape is also mandatory. An optional feature is Batch Mode.

All other predefined and proposed features we classify into features for language and model
support and features for user-friendly support.

• Language and model support is declared as mandatory because one subfeature is OCL
compliance that should be mandatory to achieve a high exchangeability with other tools.
According to the OCL specification, at least one of the compliance points (syntax, XMI,
evaluation) should be fulfilled. The predefined features (Association End Navigability,
Name Resolution and Visibility and Lexical Scoping MOF) are aggregated into a com-
pound feature for standardization support. Syntax and Semantics Extensions, Modularisa-
tion, OCL and Model Perspective, Variability as well as Syntax Highlighting are optional
features for language and model support.

• The rest of the features we classify as user-friendly support that are all optional. To or-
der them we distinguish feature for editing, reuse, maintenance and performance sup-
port. Editing support include typical editor features that are nice to have but not manda-
tory (Static Statement/Specification Analysis, Template Support, Symbol Database, Macro
Mechanism, Code folding, Statement Element Browser, Collaborative Editing, Document
Interface and Auto–indentation). Reuse Support was extended by two proposed features:
Support of libraries and OCL testing. Statement Coverage, Version management, Error
handling, and Documentation Specification and Generation are features that support main-
tenance of OCL packages. Besides a Profiler, OCL users wish Scalability of large models,
large collections of objects and/or large OCL packages to improve the performance of
OCL evaluation.

We want to explicitly note that the presented feature model is a first consolidated proposal that
should be the subject of further discussions in the OCL community.
20 The statistical evaluation of the appropriateness of the predefined features will be published in a paper on quanti-
tative evaluation of the survey.

Proc. OCL 2010 12 / 15

ECEASST

language and model

support
architectural support

IDE4OCL

syntax

highlighting
basic editing debuggingautocompletion

user-friendly

support

modularisation variability
syntax and semantics

extensions

of

metamodels

of OCL

packages

of technical

spaces
of language

association end

navigability

hybrid OCL/

MOF view

name

resolution

visibility and lexical

scoping MOF

OCL and model

perspective

standardization

support
syntax

OCL

compliance

evaluationXMI

statement

coverage

maintenance

support

user-friendly

support

performance

support

profiler scalability

of large collections

of objects

of large

models

error handling
documentation specification

and generation

version

management

reuse support

OCL testing
support of

libraries

editing

support

static analysis

macro

mechanism

collaborative

editing

auto-

indentation

document

interface

code folding

statement element

browser

symbol

database

template

support

AlternativeMandatory Optional

refactoring

support

batch

mode

interfaces to tools

in OCL landscape

of large OCL

packages

Figure 5: The IDE4OCL feature model with mandatory, alternative and optional features taken
from predefined (in green) and proposed (in blue) features.

6 Conclusions and Future Work

Our long–term goal is the development of an OCL tool that can be part of a comprehensive
model–driven software development environment. Additionally, we want to improve the usabil-
ity of OCL usage for the software developer by efficient tool support. A requirements analysis
is an important success factor in achieving this goal. Therefore we started with a solid require-
ments investigation for an IDE4OCL by questioning members of the OCL community both in
academia and industry. We collected and analysed data, opinions and comments from around
100 respondents. Hence we may say that our results reflect the needs of a significant group of
the OCL users.

In this paper we described qualitative feedback from the OCL community. We presented the
most frequently mentioned features in the survey responses (Section 4.2). We created a proposal
for a feature model of an IDE4OCL (Section 5) which includes predefined and proposed fea-
tures. We recommend in a first version of an IDE4OCL the implementation of the features that
are denoted as mandatory in the feature model. After a discussion in the OCL workshop we
want to publish the updated feature model as a reference model and additionally as a comparison
framework for OCL tools of IDE flavor.

13 / 15 Volume 36 (2010)

A Feature Model for an IDE4OCL

In our future work we are looking for academic and industrial partners who are willing to col-
laborate in the further development, decomposition and implementation of our IDE4OCL vision
within an open source project.

Acknowledgement The research herein is partially conducted within the competence network Softnet Austria (www.soft-

net.at) and funded by the Austrian Federal Ministry of Economics (bm:wa), the province of Styria, the Steirische

Wirtschaftsfoerderungsgesellschaft mbH. (SFG), and the city of Vienna in terms of the center for innovation and

technology (ZIT). Our gratitude goes to all respondents of our survey, especially to those who proposed additional

features and gave us constructive feedback. Additionally, we want to thank participants of the last OCL workshop,

Manuel Clavel and Tricia Balfe for interesting discussions. We would like to thank Darius Silingas and Nicolas F.

Rouquette for co–operation in the initial phase of the project and Kevin Church and Hannes Mösl for their reviews

during finalisation of the paper. Last but not least, our gratitude goes to our student–developers at universities of

Innsbruck and Dresden for all discussions and their readiness to make our visions real.

Bibliography

[AZH08] D. Akehurst, S. Zschaler, G. Howells. OCL: Modularising the Language. In Ocl4All:
Workshop at MoDELS 2007, Electronic Communications of the EASST. Volume 9.
2008.

[BW84] V. R. Basili, D. M. Weiss. A Methodology for Collecting Valid Software Engineering
Data. IEEE Trans. Software Eng. 10(6):728–738, 1984.

[CCG+09] J. Cabot, J. Chimiak-Opoka, M. Gogolla, F. Jouault, A. Knapp. Ninth International
Workshop on the Pragmatics of OCL and Other Textual Specification Languages.
In Ghosh (ed.), MoDELS Workshops. Lecture Notes in Computer Science 6002,
pp. 256–260. Springer, 2009.

[CDSR] J. Chimiak-Opoka, B. Demuth, D. Silingas, N. F. Rouquette. Requirements Analysis
for an Integrated OCL Development Environment. ECEASST 24.

[CGG08] J. Cabot, M. Gogolla, P. V. Gorp. Eighth International Workshop on OCL Concepts
and Tools. In Chaudron (ed.), MoDELS Workshops. Lecture Notes in Computer Sci-
ence 5421, pp. 257–262. Springer, 2008.

[CO09] J. Chimiak-Opoka. OCLLib, OCLUnit, OCLDoc: Pragmatic Extensions for the Ob-
ject Constraint Language. Pp. 665–669 in [SS09].

[Con09] L. L. Constantine. Interaction Design and Model–Driven Development. P. 377 in
[SS09].

[CPP08] D. I. Chiorean, V. Petrascu, D. Petrascu. How My Favorite Tool Supporting OCL
Must Look Like. ECEASST 15, 2008.

[CT09] J. Cabot, E. Teniente. Incremental integrity checking of UML/OCL conceptual
schemas. J. Syst. Softw. 82(9):1459–1478, 2009.
doi:http://dx.doi.org/10.1016/j.jss.2009.03.009

Proc. OCL 2010 14 / 15

ECEASST

[DBR69] E. W. Dijkstra, J. N. Buxton, B. Randell (eds.). Software Engineering Techniques.
1969.

[DW09] B. Demuth, C. Wilke. Model and Object Verification by Using Dresden OCL. In
Proc. of the Russian-German Workshop Innovation Information Technologies: The-
ory and Practice. 2009.

[HDF02] H. Hußmann, B. Demuth, F. Finger. Modular architecture for a toolset supporting
OCL. Sci. Comput. Program. 44(1):51–69, 2002.

[HT99] A. Hunt, D. Thomas. The pragmatic programmer: from journeyman to master.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[Mel09] S. J. Mellor. Models. Models. Models. So What? P. 1 in [SS09].

[Rid84] W. E. Riddle. The magic number eighteen plus or minus three: a study of software
technology maturation. SIGSOFT Softw. Eng. Notes 9(2):21–37, 1984.
doi:http://doi.acm.org/10.1145/1010925.1010927

[SS09] A. Schürr, B. Selic (eds.). Model Driven Engineering Languages and Systems, 12th
International Conference, MODELS 2009, Denver, CO, USA, October 4-9, 2009.
Proceedings. Lecture Notes in Computer Science 5795. Springer, 2009.

[Sue06] J. G. Suess. Sugar for OCL. Proceedings of the Sixth OCL Workshop OCL for
(Meta-)Models in Multiple Application Domains (OCLApps 2006), November
2006. In: Dan Chiorean and Birgit Demuth and Martin Gogolla and Jos Warmer
(Eds.): Proceedings of the Sixth OCL Workshop OCL for (Meta-)Models in Multi-
ple Application Domains (OCLApps 2006).

[WTW10] C. Wilke, M. Thiele, C. Wende. Extending Variability for OCL Interpretation. ac-
cepted for MoDELS 2010, 2010.

[WTZ10] C. Wende, N. Thieme, S. Zschaler. A Role–based Approach Towards Modular Lan-
guage Engineering. In Brand et al. (eds.), Software Language Engineering, 2nd Int’l
Conf. (SLE 2009), Revised Selected Papers. LNCS 5969, pp. 254–273. Springer,
Mar. 2010.

15 / 15 Volume 36 (2010)

