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Abstract: During the last decade, several hard problems have been described and
solved in Datalog in a sound way (points-to analyses, data web management, secu-
rity, privacy, and trust). In this work, we describe novel evaluation strategies for this
language within the context of program analyses. We first decompose any Datalog
program into a program where rules have at most two atoms in their body. Then,
we show that a specialized bottom-up evaluation algorithm with time and memory
guarantees can be described as the on-the-fly resolution of a Boolean Equation Sys-
tem (BES). The resolution computes all ground atoms in an efficient way thanks to
a compact data structure with constant time access that has so far not been used in
the Datalog or the BES literature. A prototype has been developed and tested on a
number of real Java projects in the context of Andersen’s points-to analysis. For this
specific points-to analysis, experimental results show that our prototype is several
orders of magnitude faster than state-of-the-art solvers like BDDBDDB or XSB, and
an order of magnitude better that the novel strategy of Liu and Stoller [LS09] both
in execution time and memory consumption.

Keywords: datalog; bottom-up evaluation; boolean equation system; program anal-
ysis

1 Introduction

The subset of Prolog that is called Datalog was first used in the late 70’s [GM78]. It was further
popularized in the late 80’s by Ullman [Ull89] and Abiteboul [AHV95] with a direct application
to database queries. At the time it was defined, Datalog was a very simple language that had a
higher expressiveness than other standardized relational languages, such as Sql, which only sup-
ported recursive queries in its fourth revision (Sql:1999). Several extensions of the initial Datalog
language have been made since then, namely the inclusion of negation, disjunctions in the head
of the rules (DLV) 1, constraints, as well as new Datalog-based languages like Axlog [ABM09],
Elog [BFG01], and SociaLite [SSN+10].

We have observed a resurgence of Datalog in different computer science communities over
the last decade. Datalog has been used in a number of non-trivial analysis problems referenced
∗ This author is partly sponsored by the Spanish MEC FPU grant AP2008-00608.
† This work has been partially supported by the EU (FEDER), the Spanish MEC/MICINN under grants TIN 2007-68093-
C02 and TIN 2010-21062-C02-02 and the Generalitat Valenciana under grant Emergentes GV/2009/024.
1 http://www.dbai.tuwien.ac.at/proj/dlv/
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in [LS09] such as pointer analysis, simplification of regular tree grammar-based constraints, trust
management, path queries, model checking, security frameworks, queries of semi-structured
data and social networking. Datalog is now popular in companies that currently sell solutions
based on Datalog, such as LogicBlox, Semmle Ltd., Lixto, and Exeura2.

In this paper, we are interested in the use of Datalog to detect critical errors in system software
(such as memory leaks or Sql injections) by static analysis of conservative approximate pointer
information. Static analysis techniques [ALSU07] like abstract interpretation are a powerful
means for finding code errors before actually running the program. They have also been success-
fully used in conjunction with model checking, by making the program more abstract in order
to save time and memory during its verification [GJMS07]. Among the most renowned static
analyses are the pointer analyses, which compute relationships between program pointers and
memory locations. These analyses appear in many program verification and optimization prob-
lems. In this paper, we will introduce novel evaluation strategies for solving Datalog programs
and apply them to the problem of pointer analysis.

Since the advent of the first naı̈ve algorithm to solve Datalog programs, numerous optimiza-
tions have appeared in the literature. BDDBDDB [WL04] is a recent tool that uses an implicit
BDD-based representation to solve Datalog programs. It is an efficient solver in practice, yet
its worst case complexity is linear with the cardinality of the cartesian product of the argument
domains. Liu and Stoller have recently defined an evaluation strategy based on an explicit repre-
sentation of Datalog programs that offers (lower) complexity guarantees [LS09]. The strategy is
a generalization of the systematic algorithm development method of Paige et al. [PK82], which
transforms extensive set computations like set union, intersection, and difference into incremen-
tal operations. Incremental operations are supported by sophisticated data structures with con-
stant time access. An imperative resolution algorithm is derived, and it computes a fixed point
over all (preformatted) rules by first considering input predicates, then considering rules with
one subgoal, and finally considering rules with two subgoals.
We propose novel evaluation strategies based on the following:

1. A declarative description of Liu and Stoller’s bottom-up resolution strategy that is sep-
arate from the fixed-point computation. This is achieved by transforming Datalog pro-
grams to Boolean Equation Systems (BESs) and evaluating the resulting BESs by standard
solvers. BESs have been used successfully in the formal verification of asynchronous sys-
tems [And94a, VL92, Mad97]. The main features of this formalism are the following: it is
concise (simple list of boolean equations); it relies on fixed-point operators; and there exist
linear time and memory complexity algorithms to solve alternation-free BESs [Mat06].

2. A simplification of the resulting BES based on the dependency between predicate symbols
for a given Datalog program. This predicate order graph allows us to remove various set
operations during the construction of the BES.

3. A sophisticated data structure with worst-case constant access and compact representation
of the underlying data. This efficient data structure is based on prefix tree structures, lists
and bitmaps. This structure has faster look-up keys than binary search trees and imperfect
hash tables commonly used in the Datalog literature.

2 www.logicblox.com, www.semmle.com, www.lixto.com, www.exeura.com
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The rest of the paper is organized as follows: Section 2 introduces both the syntax and seman-
tics of the Datalog language considered in this paper. It also gives a running example, namely
Andersen’s points-to analysis, which illustrates our approach throughout the different sections.
Section 3 introduces our BES approach, and Section 4 presents an algorithm that computes an
evaluation order over the predicates. Section 5 details the data structure that efficiently supports
the evaluation strategy. Section 6 compares the experimental results for the points-to analysis
of real Java programs performed by different state-of-the-art Datalog solvers. Finally, Section 7
concludes and gives future directions of research.

2 Datalog Programs

Datalog has a simple and clear syntax and semantics. A Datalog program is composed of a finite
set of declarative rules to both describe and query a deductive database.

Definition 1 (Syntax of Rules)

p0(a0,1, . . . ,a0,n0) :− p1(a1,1, . . . ,a1,n1), . . . , pm(am,1, . . . ,am,nm).

where each pi is a predicate symbol of arity ni with arguments ai, j ( j ∈ [1..ni]) that are either
constant or variable.

The atom p0(a0,1, . . . ,a0,n0) in the left-hand side of the rule is the rule’s head. The finite con-
junction of subgoals, also called hypotheses, in the right-hand side of the formula is the rule’s
body, i.e., atoms that contain all variables appearing in the head. Following logic programming
terminology, a rule with empty body (m = 0) is called a fact. The set of facts is called the ex-
tensional database, whereas the set of ground atoms inferred from rules is called the intensional
database. For ease of exposition, we will consider Datalog programs with finite sets of rules
and facts, and with rules that do not contain negated hypotheses, although the evaluation strategy
would work for rules with stratified negation [LS09]. In the rest of the paper, we will follow the
logic programming criteria where variables are described in capital letters and where predicate
symbols and constants are described in lower-case letters.

Definition 2 (Fixed point semantics) [Ull89, AHV95] Let R be a Datalog program. The least
Herbrand model of R is a Herbrand interpretation I of R defined as the least fixed point of a
monotonic, continuous operator TR : I → I known as the immediate consequences operator
and defined by:

TR(I) = {q ∈ BR | q :−b1, ...,bm is a ground instance of a rule in R,
with BR the Herbrand base, bi ∈ I, i = 1..m,m≥ 0}

Following the approximation of [LS09], some auxiliary definitions are necessary: a variable
that occurs multiple times in a hypothesis is called an equal card, and a variable that occurs
only once and in only one hypothesis but not in the head of a rule is called a wild card. In the
remainder of the paper, our derivation of the specialized Datalog evaluation algorithm will be
applied to a restricted form of Datalog defined as follows: rules have at most two hypotheses;
equal cards and wild cards can only occur in rules with one hypothesis; and facts must be ground.
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There exists a decomposition from any non-restricted Datalog program into a restricted one.
This decomposition does not affect the guaranteed worst-case time or space complexities of the
original program evaluation. Grouping and reordering of predicate arguments do not affect the
complexities, either. We will use this rule format to describe the bottom-up evaluation strategy
in terms of BES in the next section.

Definition 3 (Restricted Datalog Rules) Rules and facts have exactly the following forms:
form 2: q2(X1s,X2s,Y′s,c3s) :−h1(X1s,Ys,c1s),h2(X2s,Ys,c2s).
form 1: q1(Z′s,bs) :−h(Zs,as).
form 0: q(cs).

where each X1s,X2s,Ys,Y ′s,Zs, and Z′s abbreviates a group of variables; each c1s, c2s, c3s, as, bs,
and cs abbreviates a group of constants; variables in Y ′s and Z′s are subsets of the variables in Ys

and Zs respectively.

Example 1 (The Datalog-based Andersen points-to analysis.) In his thesis [And94b], Andersen
gave a type inference system of a flow- and context-insensitive, inclusion-based pointer analysis
for C programs. This analysis is based on four kinds of assignment statements that involve point-
ers (object allocations vp0, variable assignments a and store s or load l operations into structures
and fields of structures). They can be represented as four declarative rules as follows [ALSU07]:

vp(X, Y) :- vp0(X, Y). (1)
vp(X, Y) :- a(X, Z), vp(Z, Y). (2)
hp(Y, S, T) :- s(X, S, Z), vp(X, Y), vp(Z, T). (3)
vp(Z, T) :- l(X, S, Z), vp(X, Y), hp(Y, S, T). (4)

where vp0, a, s, and l are extensional predicates and vp (variables that point to heap locations),
hp (heap locations that point to other heap locations through object fields) are intensional predi-
cates.
We can note that Datalog rules (3) and (4) are not in one of the three forms accepted by our
formal derivation since their bodies have three hypotheses.

Rules with more than two hypotheses must be decomposed first into rules with two hypothe-
ses. This can be achieved by repeatedly inserting auxiliary predicates in rules with more than
two hypotheses in order to convert them into rules with at most two hypotheses. For a given
rule with h hypotheses, there exist (2h− 3)!! ways of decomposing it by means of a simple
algorithm [LS09], with:

n!! =

{
1, if n = 0 or n = 1
n× (n−2)!!, if n≥ 2

Time complexity of a Datalog program is given by the sum of firings over all rules. The total
number of times a rule is fired can be computed in terms of predicate size, domain size, argument
size, and relative argument size. Given a Datalog program with k rules ri (i ∈ [1..k]) with hi

hypotheses (hi > 2), the time complexity of searching the optimal decomposition process can be
bounded by O(k.(hmax!!)), with hmax being the maximum number of hypotheses in a rule of the
program.

Proc. AVoCS 2010 4 / 18
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Assuming that all sets are of the same size, a key aspect in minimizing the evaluation cost
is the process of looking up rules of form 2 based on the set of common variables in the
hypotheses. If a decomposition maximizes the size of that set for every rule, then fewer sets
have to be checked in order to obtain new solutions. In addition to that, if those sets are in the
same order as in the original program, no reordering, also called views, of the sets of variables
belonging to a hypothesis would be needed to solve the problem. The concept of views will be
expanded in section 3 and section 5.

Example 2 Given the Datalog-based Andersen points-to analysis of Example 1, one decompo-
sition that satisfies the strategy presented above, is described as follows:

vp(X, Y) :- vp0(X, Y). (1)
vp(X, Y) :- a(X, Z), vp(Z, Y). (2)
temp1(Z, Y, S) :- s(X, S, Z), vp(X, Y). (3)
hp(Y, S, T) :- temp1(Z, Y, S), vp(Z, T). (4)
temp2(Y, S, Z) :- l(X, S, Z), vp(X, Y). (5)
vp(Z, T) :- temp2(Y, S, Z), hp(Y, S, T). (6)

where temp1 and temp2 are two newly inserted auxiliary predicates.
All rules are now either in form 1 or form 2 formats. As an example, we have decomposed
rule hp as follows:

1. Choose a pair of predicates in hp. In this case: s(X,S,Z) and vp(X,Y).

2. Create a new rule with the chosen pair as body and a new predicate as header, whose
variables are those that are not repeated in both predicates. In this case:
temp1(Z,Y,S) :−s(X,S,Z),vp(X,Y).

3. Substitute the chosen pair with the head of the new created rule. In this case:
hp(Y,S,T) :−temp1(Z,Y,S),vp(Z,T).

4. Repeat the process from step 1 if the rule still has more than two hypotheses.

Since the original rule hp has only three hypotheses, the rule’s decomposition terminates after
one iteration. Only one new auxiliary predicate has been created and both new and modified
rules have exactly two hypotheses in their body.

The problem considered in this paper is to efficiently compute the least set of ground atoms
that can be inferred using the rules. In the case of the points-to analysis, we want to derive all
ground atoms for predicates vp and hp.

3 BES Approach

In this section, we describe the bottom-up evaluation strategy for any restricted Datalog program
at a high level by using parameterized Boolean equation systems (PBESs). We illustrate this
evaluation strategy on the example of Andersen’s points-to analysis. The PBES is instantiated
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into a parameterless BES that is later solved. Finally, we propose an algorithm to compute a
predicate evaluation order for a given Datalog program and show its usefulness to optimize the
BES resolution.

3.1 Parameterized Boolean Equation System (PBES)

In this paper, we will use a restricted fragment of the PBES formalism [GM98], namely, single
equation block PBESs. We first recall the definition of parameterless BES to later introduce its
parameterized extension.

Definition 4 (Single block BES) Given W a set of boolean variables, a Boolean Equation
System (BES) B = (W0,M) is defined as follows: W0 ∈ W is a boolean variable whose value
is of interest in the context of the local resolution methodology; M is a set of n fixed point
equations of the form Wi

σ
= φi, where all Wi are different (i ∈ [0..n]). σ ∈ {µ,ν} is the least (µ)

or greatest (ν) fixed point operator. Each Wi is a boolean variable from W whose value is the
value of the respective boolean formula φi. A boolean formula φ , defined over an alphabet of
boolean variables W , is an expression built with the following syntax given in positive form:
φ ::= true | false | φ1∧φ2 | φ1∨φ2 |W where boolean constants and operators have their usual
semantics, φ1 and φ2 are boolean formulas, and W is a boolean variable. Empty conjunction
(resp. disjunction) corresponds to boolean constant true (resp. false).

Definition 5 (Valuation of boolean variables and formulas) A valuation is a function v from a
set of boolean variables W to {true, false}. It is extended over boolean formulas so that v(φ),
being φ a boolean formula, is the value of the formula after substituting each free variable W in
φ by v(W ).

Definition 6 (Semantics of a BES) The semantics of a BES B, denoted by [[B]], is the least
(resp., greatest) fixed point valuation of the n boolean formulas φi of B.

There exist algorithms for solving single block BESs with a temporal and spatial complexity
that is linear with respect to the total number of boolean variables and boolean operators of the
BES [Mat06]. Thus, BESs allow us to simplify the definition of Datalog evaluation algorithms by
only describing declarative aspects of the algorithm, and not operational aspects like fixed-point
computation.

Definition 7 (Single block PBES) Single block PBESs are single block BESs where boolean
variables have typed value parameters D ⊆ D . Hence, boolean formulae have the following
extended syntax given in positive form:

φ ,φ1,φ2 ::= true | false | φ1∧φ2 | φ1∨φ2 | X(e) | ∀d ∈ D. φ | ∃d ∈ D. φ

where e is a data term (constant or variable of type D), X(e) denotes the call of a boolean variable
X with parameter e, and d is a term of type D.

The main advantages of specific symbolic encodings such as Binary Decision Diagrams
(BDDs) over explicit encodings such as PBESs in the context of program analysis, is that BDDs
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can efficiently compact the program predicates. However, the compaction highly depends on
the regularity of the points-to analysis domain, the redundancy of the relations, and the boolean
variable ordering. These factors may vary the execution time of the analysis by several orders of
magnitude as we observed with the Andersen’s points-to analysis with standard BDD and data
mining libraries. The Datalog relations can be represented compactly with well adapted data
structures (prefix trees structures, lists and bitmaps) for any relation ordering in the Datalog pro-
gram. Moreover, explicit encodings may facilitate the design of distributed solutions and the
integration of further optimizations.

3.2 PBES Evaluation Strategy

The meaning of a restricted Datalog program corresponds to the fixed-point computation of
a set of ground atoms over a given set of rules and facts. In this evaluation strategy, we are
interested in all the ground atoms that can be inferred from the Datalog program. Hence,
our PBES will be described in terms of a greatest fixed-point computation (ν). Rules of the
program are in one of the three forms described in Section 2. As in [LS09], we would like to
impose a bottom-up evaluation in which only inferred ground atoms of the Datalog program
are generated. Therefore, the PBES should start the computation from boolean variable W0 by
generating boolean variables that hold the given facts. This will constitute the first boolean
formula of our PBES description. We will represent each ground atom p(cs)., namely facts and
inferred ground atoms, as a parameterized boolean variable W1(p : Dp, cs : Dcs) identified by
predicate symbol p defined over a domain Dp of predicates, and constant arguments cs, defined
over a domain Dcs = Dap,1 × . . . × Dap,pn

, which is the composition of the argument domains.
Then, new boolean variables W1(q, ds), with q, a predicate symbol, and ds, constant arguments,
will be generated for each parameterized boolean variable W1(p : Dp, cs : Dcs) and each rule
where predicate p appears as a hypothesis. This will constitute the second boolean formula of
our PBES description. Both boolean equations are defined as follows:

W0
ν
=

∧
q(cs). ∈ Facts

W1(q, cs)

W1(p : Dp, cs : Dcs)
ν
=

∧
p o f h(Zs,as)

W1(q1, (Z′s,bs)) (*1*)

∧
∧

p o f h1(X1s,Ys,c1s)

∧
X2s ∈ h2(X2s,Ys,c2s).

W1(q2, (X1s,X2s,Y ′s,c3s)) (*2*)

∧
∧

p o f h2(X2s,Ys,c2s)

∧
X1s ∈ h1(X1s,Ys,c1s).

W1(q2, (X1s,X2s,Y ′s,c3s)) (*3*)

Boolean formulas on the right hand-side of both equations are conjunctions of distinct W1
boolean variables. In the first equation, one variable W1 is generated for each fact of the Datalog
program. In the second equation, for each hypothesis h of the Datalog program that matches the
predicate parameter p on the left hand-side of the equation, one variable W1 is generated for each
conclusion q that can be inferred by the given rule. Since there are three types of hypotheses in
the Datalog programs, the second boolean equation is divided into three parts:

(*1*) In rules of form 1, q1(Z′s,bs) :− h(Zs,as)., a new ground atom q1(Z′s,bs). is inferred
when p appears as the hypothesis h of the rule, and arguments (Zs,as) of h can be sub-
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stituted by constant parameters cs. For each new ground atom, a new boolean variable
W1(q1, (Z′s,bs)) is generated.

(*2*) In rules of form 2, q2(X1s,X2s,Y′s,c3s) :− h1(X1s,Ys,c1s), h2(X2s,Ys,c2s)., where p
appears in the first hypothesis h1, arguments (X1s,Ys,c1s) of h1 are substituted by con-
stant parameters cs. Then, for each value of X2s such that h2(X2s,Ys,c2s). is a previ-
ously computed ground atom, a new ground atom q2(X1s,X2s,Y′s,c3s). is inferred, and
W1(q2, (X1s,X2s,Y ′s,c3s)) is generated.

(*3*) If p appears in the second hypothesis h2 of a rule of form 2, new boolean variables
W1(q2, (X1s,X2s,Y ′s,c3s)) are generated symmetrically.

It can be observed that there is a one-to-one correspondence between boolean variables W1 and
solutions (ground atoms) inferred from the Datalog program. The solution of the greatest fixed-
point computation over this PBES always gives that all boolean variables are true. Indeed, this
PBES is actually a tautology whose only purpose is to incrementally compute all possible boolean
variables of the PBES starting from boolean variable W0. In order to obtain an efficient implemen-
tation of this PBES-based evaluation strategy, expensive set operations like Xis ∈ hi(Xis,Ys,cis)
(set membership) must be replaced by constant time incremental computation based on auxiliary
maps that will be described in Section 5. For instance, our evaluation strategy will construct
an auxiliary map (also called view) hi(Xis,Ys,cis) for every hypotheses pertaining to a rule of
the form 2. The arguments of hypothesis hi will be reordered if they are not strictly grouped
with the following order: Ys, Xis, cis. Using this approach and a standard BES resolution algo-
rithm, the temporal and spatial complexity of our evaluation strategy is linear with the number
of ground atoms. In the rest of the section, we use a canonical form to specify the hypothesis,
which is agnostic to any order related to the internal data structures, to ease the exposition of the
transformation.

Example 3 (PBES evaluation of Andersen’s points-to analysis) For a given Datalog program,
the PBES evaluation algorithm can be solved by instantiating the parameterized boolean variables
over the given predicate domain [GM98].

Figure 1 describe a simple example in Java, from which a set of facts are extracted.

Example a = new Example(); vp0(va, h1).
Example b = new Example(); vp0(vb, h2).
b = a; a(vb, va).
a.x = b; s(va, x, vb).
c = a.x; l(va, x, vc).

(a) (b)

Figure 1: (a) Example of Java program. (b) Corresponding input relations (facts).

In order to efficiently represent the domains, we represent data values as natural numbers.
With the example above, we choose the following mapping between domains and values: va=1,
vb=2, vc=3 h1=0, h2=1 x=0
The computed five facts are now written as follows:

Proc. AVoCS 2010 8 / 18
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vp0(1,0). vp0(2,1). a(2,1). s(1,0,2). l(1,0,3).

Given the Datalog-based Andersen’s points-to analysis in Example 2 and the facts above, we
can instantiate the PBES by incrementally constructing a BES from variable W0 [Mat98], which
would give the following instantiated BES:

W0
ν
= W1,vp0(1,0) ∧ W1,vp0(2,1) ∧ W1,a(2,1) ∧ W1,s(1,0,2) ∧ W1,l(1,0,3)

W1,vp0(1,0)
ν
= W1,vp(1,0)

W1,vp0(2,1)
ν
= W1,vp(2,1)

W1,a(2,1)
ν
= true

W1,s(1,0,2)
ν
= true

W1,l(1,0,3)
ν
= true

W1,vp(1,0)
ν
= W1,vp(2,0) ∧ W1,temp1(2,0,0) ∧ W1,temp2(0,0,3)

W1,vp(2,1)
ν
= true

W1,vp(2,0)
ν
= true

W1,temp1(2,0,0)
ν
= W1,hp(0,0,0) ∧ W1,hp(0,0,1)

W1,temp2(0,0,3)
ν
= true

W1,hp(0,0,0)
ν
= W1,vp(3,0)

W1,hp(0,0,1)
ν
= W1,vp(3,1)

W1,vp(3,0)
ν
= true

W1,vp(3,1)
ν
= true

It can be observed that parameters p and cs of variable W1 in the PBES appear as a sub-
script in the BES, like W1,vp0(1,0) with the fact vp0(1,0). W0 is now defined as the conjunction
of parameterless boolean variables, one per fact in the Datalog program. Then, all boolean
variables except W0 are defined by the second equation of the PBES. For instance, variable
W1,vp0(1,0) holds the fact vp0(1,0). Now, vp0 is only used in one rule of the Datalog pro-
gram, namely vp(X,Y) :− vp0(X,Y)., which is of form 1, so only the (∗1∗) part of the
second boolean equation in the PBES applies. From the Datalog rule, we can infer only one
ground atom, namely vp(1,0). As a result, only one boolean variable W1,vp(1,0) is generated
on the right hand-side of the equation defining W1,vp0(1,0) as shown above. Another exam-
ple is the boolean variable W1,a(2,1). Predicate a is only used in one Datalog rule, namely
vp(X,Y) :− a(X,Z), vp(Z,Y)., which is of form 2. Since a appears as the first hypothe-
sis in this rule, so only the (∗2∗) part of the boolean equation applies. Now, there does not
exist any value Y such that vp(1,Y). is a previously computed ground atom. Indeed, only the
ground atoms vp0(1,0). and vp0(2,1). have been computed so far. Therefore, variable W1,a(2,1)
is defined in terms of an empty conjunction, which is by definition the constant true. Finally,
we can comment on the equation defining variable W1,hp(0,0,0). Predicate hp only appears in one
rule, namely vp(X,Y) :− temp2(Y,S,Z), hp(Y,S,T)., which is of form 2. Since it is the
second hypothesis in the rule, only the (∗3∗) part of the boolean equation applies. Now, there
exists a value Z such that temp2(0,0,Z). is a previously computed ground atom. Indeed, the
ground atom temp2(0,0,3). has been previously generated in the equation that defines variable
W1,vp(1,0). Hence, the ground atom vp(3,0). can be inferred from the rule and a boolean variable
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W1,vp(3,0) is generated on the right hand-side of the equation defining W1,hp(0,0,0).
The least set of ground atoms that can be inferred using the rules of the Datalog-based points-

to analysis is the set of all computed boolean variables, minus W0. In the case of pointer analysis,
we are interested in the intentional database, namely the inferred ground atoms for vp and hp.
These atoms are given by the computed boolean variables W1,vp(...) and W1,hp(...), from which
we directly obtain the solutions vp(1,0)., vp(2,0)., vp(3,0)., vp(2,1).,vp(3,1)., hp(0,0,0).,
and hp(0,0,1). Since there exists a mapping between the natural number values and the Java
program’s domains, we can describe the solutions in terms of the program’s elements as follows:
vp(va, h1). vp(vb, h1). vp(vc, h1). vp(vb, h2). vp(vc, h2). hp(va, x, va). and hp(va, x, vb).

4 Evaluation Order based on Predicate Dependency Graphs

Predicate order evaluation has a direct impact on performance re-
sults while not affecting time complexity of the evaluation problem.

Figure 2: Predicate Dependency Graph for An-
dersen’s Points-to Analysis

Depending on the predicate sorting, several
operations can be discarded in the evaluation
algorithm. In this section, we propose an al-
gorithm to compute a predicate evaluation or-
der for a given Datalog program and show
its usefulness to optimize the BES resolution.
The algorithm constructs a predicate evalua-
tion order from a predicate dependency graph
(PDG). A PDG is a directed graph that de-
scribes how predicates are dependent on each
other. Each node is a predicate and each edge
indicates that the start node appears as a hy-
pothesis in a rule whose conclusion is the end
node.

Example 4 Given the decomposed Datalog program for Andersen’s points-to analysis in Sec-
tion 1, Figure 2 shows its corresponding PDG. In this example, it can be observed that only the
extensional predicates, namely vp0, s, l, and a, are not part of a cycle.

From a PDG, a topological order can be constructed based on the number of incident edges for
each node as follows:

1. A node with no incident edges means that it does not appear as the conclusion of any rule
in the program. Thus, it is preferable to start the evaluation of the program by propagating
the ground atoms of these nodes;

2. Then, all successor nodes that are not part of a cycle, can be ordered and evaluated topo-
logically; and

3. Finally, the remaining nodes that pertain to a cycle cannot be ordered topologically. In
order to optimize the execution, we propose to order and evaluate them by decreasing
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number of incident edges.

This algorithm forms three levels of predicate.

Example 5 From the PDG in Figure 2, predicates vp0, s, l, and a will be evaluated first since
the corresponding nodes do not have incident edges. The construction of a topological order over
these predicates allows them to be evaluated in any order. All other predicates are part of a cycle.
By decreasing the number of incident edges, we get the following predicate order: vp, and then
in any order hp, temp2 and temp1.

In the PBES evaluation strategy described in Section 3.2, some expensive computations are
performed, like X2s ∈ h2(X2s,Ys,c2s)., which looks up previously computed ground atoms
for predicate h2 with arguments (X2s,Ys,c2s). Another expensive operation is the update of the
auxiliary data structure with new ground atoms. This operation does not explicitly appear in the
PBES description. The data structure can be updated when a new ground atom is found, or when
this ground atom is used as a hypothesis to compute other ground atoms. We will consider this
approach later in this paper. By considering the predicate evaluation order described above, we
can determine the smallest set of look-up and update operations that should be performed in order
to obtain all solutions for a given Datalog program. For instance, if a predicate participates in a
rule of form 2 that generates a predicate that has a higher evaluation order, then the following
hold:

• If the other hypothesis in the rule has a lower order or the same order and it has already
been processed, then it is only necessary to look up the data structure to test the existence
of ground atoms.

• If the other hypothesis in the rule has a higher order or the same order and it has not been
processed yet, then it is only necessary to update the data structure by adding the new
computed ground atom.

Example 6 The predicate evaluation order can be used while instantiating the PBES described in
Section 3.2 for Andersen’s points-to analysis. Instead of choosing the facts in an unordered way,
we can choose all facts that pertain to a predicate at the same time as indicated in the evaluation
order. Then, the simplifications specified in the previous example can be made dynamically
to prevent having to look up or update the data structure. For instance, given the fact a(2,2).,
the predicate a participates in a rule of form 2, namely rule vp(X,Y) :−a(X,Z),vp(Z,Y)..
This rule generates a predicate, namely vp, from another hypothesis which is also vp. From
the evaluation order, vp is evaluated after a. Thus, only an update of the data structure with
the ground atom a(2,2). is necessary. Thanks to the proposed sorting algorithm, we know in
advance that no look-up to previously computed ground atoms in the data structure is necessary.
This means that the conjunction

∧
X2s ∈ h2(X2s,Ys,c2s).

can be simply discarded for facts of predicate

a. The resulting boolean formula that computes all the conclusions inferred from a(X,Y) can
be reduced to true. The same applies to predicates s and l, which appear as hypotheses in rules
of form 2. Hence, we could reduce the instantiated BES by the number of facts in a, s, and
l, which would only generate true boolean variables. Note that any BES resolution algorithm
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could be used to solve our problem. However, in order to capture the preferred evaluation order,
a specialized algorithm based on multiple queues is required. Such an algorithm could use one
queue for all predicates or one queue per predicate level.

Even though they have less impact on the execution time, there are other kinds of optimizations
that are based on the predicate evaluation order such as:

• removing useless rules from strongly connected components in the graph.

• preventing the addition of new ground atoms if there only exists a unique intensional pred-
icate in each strongly connected component of the graph.

5 Efficient and Compact Auxiliary Data Structure

In this section, we describe a sophisticated data structure that has quicker access time and lower
memory consumption than the dedicated structure in [LS09]. This efficient and compact data
structure plays an essential role in the drastic improvements that can be observed in the experi-
mental results of Section 6.

5.1 Data Structure Representation

We have defined a data structure that is extremely compact in memory while ensuring constant
access to previously computed ground atoms and boolean variables. In our evaluation algorithm,
we need to perform constant time access over two structures:

1. auxiliary mapping relations, to search all tuples (Xis,Ys,cis) that were previously com-
puted given a set of constant arguments (Ys,cis) and a predicate hi, i.e., operations
Xis ∈ hi(Xis,Ys,cis) of our PBES evaluation strategy; and

2. result sets, to test if a new generated ground atom has already been computed before adding
a new boolean variable.

The auxiliary mapping relations are represented by linked lists, one per node in the data structure
representation. This allows us to access all existing ground atoms for a given predicate in a
constant time. However, we can no longer use linked lists to retrieve one particular ground atom
in a constant time. Instead, result sets are represented by adding bitmaps to the leaf nodes of the
data structure representation. These bitmaps are based on digital trees to allow sparse domains.
Note that both linked lists and bitmaps grow dynamically.

As a result, our data structure representation is based on the following: linked lists to represent
sets; a representation of a trie (currently smart digital trees are used) to represent a layered
indexed map; and bitmaps to test whether or not a ground atom has been previously computed. In
the worst-case, associative access to elements of this data structure are done in O(1) time. Update
and look-up operations to the structure are also done in O(1) time. If we relax the constraint about
constant access, we could remove the bitmaps of the structure for certain specific problems. An
ordered auxiliary mapping relation could be used in their place. In practice, this would save most
of the memory used to solve the evaluation problem.
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Example 7 Figure 3 gives the final state of our data structure representation after all the possible
ground atoms have been inferred with Andersen’s points-to analysis and the five initial facts of
Example 3. For example, the ground atom hp(0,0,0). is identified in the trie representation by

a(Z,X) vp(X,Y) vp
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2

3

2 0

0

1
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1
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2
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0
1
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a(Z,X) vp(X,Y) vp
0
1

a(Z,X) vp(X,Y) vp
0
1
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Figure 3: Data structure representation

its prefix, which corresponds to the path 0→ 0 from root node. In the leaf node, a linked list
indicates all values X such that hp(0,0,X). is a ground atom. Actually, there are only two values
(0, 1) that have been computed for hp with the prefix (0,0). To test whether or not hp(0,0,0).
has been previously computed without iterating through the whole linked list, we use the bitmap
for hp in the leaf node as well.

5.2 Classical Auxiliary Structures

A classical approach for solving a Datalog program is to use hash tables. Access in hash
tables is done in average, rather than worst-case, O(1) time. Moreover, hash tables have an
overhead for computing the hash related functions for every operation. If all keys are known in
advance, a perfect hash function can be used to avoid collisions. This enables having constant
time look-ups in the worst case. Even if perfect hash tables could be used in our context, since
keys are numbers (i.e., no need to use a hash function) and sizes of domains are known a priori,
our approach has two advantages. First, our structure is extremely compact, due to the fact that
the information is stored by prefixes, which allows memory to be managed in a very efficient
way; then, even if domain sizes are known, they are usually so large that they have to be managed
dynamically. Therefore, perfect hash tables cannot be used in practice, and regular hash tables
cannot assure constant access. Other solutions can be found in the literature, namely [LS02].
This describes a technique to design linked structures that support associative arrays in worst-
case O(1) access time with little space overhead for a general class of set-based programs. To
achieve this, it uses a representation of an arbitrary number of sets using a base. This approach
guarantees a worst-case O(1) access time, but it cannot efficiently manage large sparse domains.
Therefore, this structure does not scale for large instances of Datalog programs. Compared to
the data structure detailed in [LS09], our structure does not need to manage several sets for one
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domain since this information is propagated through the boolean variables. Moreover, our data
structure representation does not have the limitation to work with tuples with more than two
components. With the structure of [LS09], this would be very inefficient in terms of memory.
Finally, in comparison with the usage of tries in XSB [RRS+99], our data structure does not
make use of tries in the classical sense. XSB allows to use tries to represent Datalog’s tabled
subgoals and their answers, while we store dynamic lists and bitmaps to compute solutions to
the original Datalog specification in an efficient way.

6 Experimental Results

In this section, we compare an implementation of our novel evaluation strategies with standard
Datalog solvers by evaluating Andersen’s points-to analysis on the DACAPO 3 benchmark.

Prototype We have extended the DATALOG SOLVE [AFJV09] prototype, implemented in C,
with the new evaluation strategy encoded as BES. Facts are extracted by SOOT 4 from the
Java programs of the DACAPO benchmark with JDK 1.6. The extraction time varies between
115 seconds for the lusearch Java project and 315 seconds for the fop Java project. The
complete benchmark is processed by SOOT in 39 minutes and 36 MB. of facts are generated.
DATALOG SOLVE first parses (150 lines of C code) the facts, then calls a BES solver (550 lines
of C code) with an implicit description of the BES-based points-to analysis in terms of a succes-
sor function. This function is supported by our data structure representation that is connected to
the Judy5 library. Such an architecture brings the following advantages: constant access to check
if a solution has already been computed and to browse sets for new solutions; compact domains;
and lazy updating. In order to efficiently allocate the memory space that is strictly necessary for
the computation, our system is connected to a specific memory pool and set values are put in
contiguous memory positions in order to increase cache efficiency.

The new BES solver implements a very simple BES resolution algorithm based on a queue
and our data structure representation. The queue enables the resolution graph associated to
the Datalog program to be constructed on-the-fly, whereas our data structure representation is
used to store and retrieve the required information to create new boolean variables. Only the
boolean variables that are necessary to expand the successors are kept in the queue. The BES

algorithm starts with boolean variable X0 for which all successors are enumerated through the
successor function provided by DATALOG SOLVE. Each generated successor is checked in our
data structure representation to see if it has already been computed. If it is a new solution, then
it is added to the queue. Otherwise, it is ignored. Upon completion of the whole evaluation,
the DATALOG SOLVE tool extracts the inferred ground atoms from the computed boolean vari-
ables.We can remark that our simple BES solver is not specific to solve Datalog programs. It
can be used for any problem that can be represented in terms of a BES with a unique block of
conjunctive boolean formulas.

3 http://voxel.dl.sourceforge.net/sourceforge/dacapobench/dacapo-2006-10-MR2-xdeps.zip
4 http://www.sable.mcgill.ca/soot
5 http://judy.sourceforge.net
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Experiments We tested the efficiency and feasibility of our implementation by comparing it
to three state-of-the-art Datalog solvers BDDBDDB6, XSB 3.27 and the prototype of Liu and
Stoller8, which in the rest of the paper we will call TOPLAS. We also have implemented a pure
Python version of our DATALOG SOLVE prototype to compare it with the TOPLAS prototype
(also written in pure Python). This version of the prototype has been developed using built-in
types (dictionaries, lists and sets). Therefore, not all the techniques applied to our C prototype
have been applied to the Python version. Nevertheless, this allows us to highlight the direct
benefits of our new strategies. In Figure 4, performance results are presented in terms of eval-
uation user time (seconds) and memory consumption (MB.). All experiments were performed
on an Intel Core 2 duo E4500 2.2 GHz (only one core used), with 2048 KB cache, 4 GB of
RAM, and running Linux Ubuntu 10.04. DATALOG SOLVE and XSB solvers were compiled
using gcc 4.4.1. Python 2.6.4 was used for the TOPLAS solver. The measures do not include
the time needed by XSB to precompile the facts. BDDBDDB is executed with the best variable
ordering that we have found for the Andersen’s analysis example, namely: V V H H F. XSB

and BDDBDDB prototypes have been tested on both the original Andersen’s analysis with 4 rules
and the decomposed analysis with 6 rules. Since their execution time and memory consumption
were not better with the decomposed analysis, only experimental results for the original analysis
are presented in the figure. The analysis results were verified by comparing the outputs of all
solvers.
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Figure 4: Analysis time (sec.) (left) and memory usage (MB.) (right) on the DACAPO benchmark

DATALOG SOLVE evaluates the whole benchmark in only 3 seconds with a mean-time of 0.3
seconds per program. On the left part of Figure 4, where the y-axis (sec.) has a logarithmic
scale, we can observe that DATALOG SOLVE is an order of magnitude faster than TOPLAS,
two orders faster than BDDBDDB, and three orders faster than XSB. For the jython exam-
ple, XSB evaluated the points-to analysis in 482 seconds, BDDBDDB in 34 seconds, TOPLAS

in 10 seconds, DATALOG SOLVE (Python) in 5 seconds and DATALOG SOLVE in 0.406 sec-
onds. On the right part of Figure 4, where the y-axis (MB.) has a logarithmic scale, we can

6 http://bddbddb.sourceforge.net
7 http://xsb.sourceforge.net
8 Provided by the authors of [LS09]
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observe that DATALOG SOLVE consumes five times less memory than XSB and an order of mag-
nitude less memory than DATALOG SOLVE (Python), TOPLAS and BDDBDDB. For the lusearch
example, BDDBDDB required 326 MB. of memory to solve the analysis, TOPLAS 116 MB.,
DATALOG SOLVE (Python) 90 MB., XSB 34 MB, and DATALOG SOLVE 7 MB. It should be
mentioned that the memory results of the DATALOG SOLVE (Python) prototype can be highly
improved avoiding some of the built-in types to build the data structure representation. These
performance results show that our novel evaluation strategies scales really well for very large
programs in the context of Andersen’s points-to analysis.

7 Conclusions and Future Work

This paper presents new evaluation strategies to solve Datalog programs inspired by Liu and
Stoller [LS09]. These strategies are based on: the separation of the evaluation strategy from the
fixed point computation; an evaluation order over the predicates to avoid useless set operations;
and a sophisticated data structure with worst-case constant access and compact representation of
the underlying data. The first strategy is based on Boolean Equation Systems (BESs) to derive
a specialized bottom-up evaluation algorithm with time and memory guarantees for any Datalog
program. The algorithm can then be evaluated by independent optimized fixed-point solvers. The
second strategy extracts a topological order over the predicates based on the dependencies of the
Datalog program to simplify the BES. Finally, the third strategy exploits the features of prefix
tree structures, together with linked lists and bitmaps to enable efficient accesses to inferred
tuples whose values are sparse over the finite domains. The overall approach is faster and less
memory-consuming, by some orders of magnitude, than state-of-the-art Datalog solvers. It was
implemented in the DATALOG SOLVE tool and was successfully tested on the Datalog-based
Andersen points-to analysis of real Java projects.

An interesting future work would be to study the impact of our efficient data structure on
more complex applications, such as flow- and context-sensitive pointer analyses, where more
than 1014 contexts have to be stored and retrieved from memory during the evaluation of the
problem. Recently, DOOP9 became the new state-of-the-art framework for performing context-
sensitive pointer analyses of Java programs. It is based on a commercial Datalog solver, called
LogicBlox10. We would like to compare our prototype with DOOP/LogicBlox over such a set of
complex points-to analyses. Other Datalog applications are also foreseen, like model checking
and database benchmarks. We are also interested in the adequacy of the BES formalism to dis-
tribute the bottom-up Datalog resolution over interconnected machines. Several distributed BES

resolution algorithms exist in the literature and have been applied with success for formal verifi-
cation problems [JM06]. A promising alternative approach to explore would be to distribute the
workload directly at the Datalog level by using Map-Reduce-based algorithms such as [AU10].

Acknowledgements We are grateful to Annie Liu and Scott Stoller for providing us with the
generated Python code with guaranteed time and memory complexities for Andersen’s points-to
analysis example.

9 http://doop.program-analysis.org
10 http://www.logicblox.com
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