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Abstract: This paper presents some results from an industrial project to develop
high-integrity digital hardware by integrating formal methods with a more tradi-
tional informal approach. The ultimate goal of the project team was to produce
sythesisable VHDL that could be proven to meet given requirements for an embed-
ded controller. The burden was on the formal methods experts to integrate them-
selves into the team. This paper describes the formal approach that was developed
as a result.

Keywords: Refinement, VHDL, CSP, The B Method, CSP ‖ B

1 Introduction and Background

Integrating formal methods practitioners into teams comprising engineers from other disciplines
is a challenge because formal methods tend to demand complete allegiance from their users,
which is perhaps unrealistic in such a context. This paper presents firsthand experience of a
multi-discipline project to build an embedded controller. Digital hardware experts employed an
informal approach to write VHDL and, consequently, the formal methods experts were tasked to
verify the resulting code with respect to a set of informal requirements.

Because of the nature of the requirements, CSP [Hoa85] was chosen as the formal language.
A translation from VHDL to CSP is developed using the CSP ‖ B approach [ST05], which is
a combination of CSP and the B Method [Abr96]. In particular, traditional CSP ‖ B ‘lifting’
techniques [ST05] are employed to produce a CSP representation of the VHDL code via B.
The approach is repeatable, scalable and could be automated. Automation minimises the risks
involved in adopting such an approach by eliminating the need for a deep understanding of formal
methods.

1.1 Very High Speed IC Hardware Description Language (VHDL)

VHDL [IEE02] is a language for describing digital electronic circuits. The language is rich in
structure and other syntactic sugar. Elaboration removes the syntactic sugar to leave a set of
concurrent processes connected via signals. Each process typically includes signal assignment
statements that change the value of signals, and is accompanied by a sensitivity list of signals
which causes the process to react to changes to signals in the sensitivity list.

The semantics of elaborated VHDL code is based on the execution of the code during simula-
tion (as defined in [IEE02]). Each simulation cycle consists of two phases: a process execution
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phase and a signal update phase. The notion of a delta-delay distinguishes simulation cycles that
occur at the same global clock time. A simulation begins by initiating a process execution phase
in which every process is active. A process execution phase ends when all active processes have
suspended. Signal updates (arising from signal assignments) take place during the subsequent
signal update phase. Whenever a signal is updated with a new value, an event is said to have
occurred. A process reacts to such an event if the signal is present in its sensitivity list, and it
resumes its execution during the next process execution phase. In this way signal updates drive
the execution of processes, and the execution of processes drive the signal updates. Note, it
is possible for multiple processes to update the same signal during the same process execution
phase. This situation is resolved in VHDL with so-called resolution functions. Although this
does not arise in the example presented below, it is not precluded by the approach taken in this
paper.

For illustrative purposes, we shall consider a road junction controlled by traffic lights. The
VHDL controller can be in one of eight possible states:

• both red, in which all traffic lights are red.

• major ready, in which the major road traffic is forewarned that it can go.

• major go allows traffic on the major road to proceed.

• major end, in which the major road traffic is forewarned that it must stop.

• swap, in which control transfers from the major road to the minor road.

• minor ready, in which the minor road traffic is forewarned that it can go.

• minor go allows traffic on the minor road to proceed.

• minor end, in which the minor road traffic is forewarned that it must stop.

The process fsm is responsible for assigning values to the light signals. It is defined as a case
statement on the signal state. The (abbreviated) process is:

process fsm(state, ready_delay, grn_delay, end_delay)
begin

case (state) IS
when both_red =>

red_maj <= ’1’;
yel_maj <= ’0’;
grn_maj <= ’0’;
red_min <= ’1’;
yel_min <= ’0’;
grn_min <= ’0’;
next_state <= major_ready;

when major_ready =>
yel_maj <= ’1’;
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if (ready_delay = ’1’) then
next_state <= major_go;

end if;
when major_go => ...
when major_end => ...
when swap => ...
when minor_ready => ...
when minor_go => ...
when minor_end => ...

end case;
end process;

The when clauses delimit the cases, and signals are assigned using the <= operator. In addition
to the light signals, fsm updates the value of next state. This can depend on the value of
one of the delay signals (described below) as well as state. Consequently, the sensitivity list
of the process includes the signal state and the delay signals. Accompanying the process fsm
is the process new state:

process new_state(clock)
begin
if (clock’event and clock = ’1’) then

if (reset = ’1’) then
state <= both_red;

else
state <= next_state;

end if;
end if;

end process;

which is sensitive to changes to the signal clock. The process checks for a rising edge of
clock (i.e., a change from 0 to 1) and, depending on the synchronous reset, sets state to
both red or the value of next state.

The ready delay signal determines how long the controller waits in a ready state, and
end delay determines how long the controller waits in an end state. The following process
increments the signal yel count if one of the yellow signals is 1. The ready delay and
end delay signals are dependent on its value.

process yellow_counter(clock)
begin

if (clock’event and clock = ’1’) then
if (reset = ’1’) then

yel_count <= "000";
else

if (yel_maj = ’1’ or yel_min = ’1’) then
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yel_count <= unsigned(yel_count) + 1;
else

yel_count <= "000";
end if;

end if;
end if;

end process;

Note that yel count is defined to be a 3-bit bit vector. The ready delay and end delay
signals are assigned by the following (one line) processes:

ready_delay <= yel_count(1);

end_delay <= yel_count(2);

The ready delay signal is assigned to be the middle bit of the bit vector, and end delay
is assigned to be the leftmost bit. The final two processes are defined similarly, in which
grn delay (and grn count) determine how long the controller remains in a green state.

process green_counter(clock)
begin

if (clock’event and clock = ’1’) then
if (reset = ’1’) then

grn_count <= "0000000";
else

if (grn_maj = ’1’ or grn_min = ’1’) then
grn_count <= unsigned(grn_count) + 1;

else
grn_count <= "0000000";

end if;
end if;

end if;
end process;

grn_delay <= grn_count(6);

1.2 Communicating Sequential Processes (CSP)

The language of CSP has its own notion of process and event. A CSP process is a formal object
which interacts with its environment by performing atomic events. A notion of input and output
can be introduced by allowing structured events: the process c!v→ P outputs the value v on
channel c and then behaves as P, and the process c?x→ Px is prepared to input any value x (of
c’s type) and then behave as the process Px. Both input and output can occur within the same
event (as in the event d?x!y).

If P and Q are processes then P 2 Q is a process that behaves as P or Q (the choice is made by
the environment), and P |[A ]|Q is the parallel composition of P and Q such that they synchronise
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on the events in set A. The hiding operator removes events from a process interface: P \ A is
the process that behaves like P except the events in A are no longer visible. Event renaming also
changes the visible events of a process. Relational renaming [Sch99] uses a binary relation to
transform events: if P can perform an event a and R is binary relation that contains the pair (a,b)
then P[[R]] can perform b instead.

Many semantic models exist for CSP, but we focus on those associated with CSP’s model
checker FDR [For]: the traces model, the failures model and the failures-divergences model
(see [Hoa85]).

1.3 The B Method

The B Method is a formal approach to specifying, designing and implementing software. A
specification consists of one or more modular units called machines. Each machine comprises a
set of local state variables, an invariant which defines the properties of the variables, and a set of
operations which modify the variables. An INITIALISATION clause gives the variables their
initial values.

Various structuring mechanisms are available that allow machines to affect other machines
within a specification. A SEES clause gives read access to another machine, whilst INCLUDES
also allows a machine to change the values of another machine’s variables, but only via the
included machine’s operations.

1.4 CSP ‖ B

In CSP ‖ B the events of a CSP process trigger operation calls of a B machine. Structured
events are used to pass values between the controller process and the B machine. An event e!x?y
corresponds to an operation call y←− e(x) that inputs x and outputs a value y. A CSP ‖ B
specification can have multiple process/machine pairs [ST02].

CSP ‖ B primarily makes use of FDR for analysis. As we shall see in Section 3.3, to do so it is
often necessary to ‘lift’ state information from a B machine to a CSP process. In order to mimic
the behaviour of a B machine in CSP, we parameterise a process P with state information i, to
produce an augmented process Pi. Then the events of Pi are decorated with assertions that relate
i to their input values. For example, the assertion {x > i} in a decorated event e?x{x > i} of Pi

says the value input on e must be greater than i, otherwise the process diverges. The purpose
of such assertions is to expose problems in the original CSP ‖ B model by using FDR to find
behaviours that violate them.

2 Formalising Requirements

For small project teams, requirements engineers will typically have other roles in the implemen-
tation of the system and, hence, will have a preconceived bias towards a particular solution. This
will probably result in an overly prescriptive set of requirements. CSP is a good language for for-
malising such requirements because its operators give an explicit representation of control flow.
As an example, we construct a CSP specification of a traffic controller which simply describes
our everyday experience of traffic lights (in the UK):
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SPEC RR = both red to maj red yel→ SPEC MJRY(max rdy)

SPEC MJRY(0) = maj red yel to grn→ SPEC MJG(max grn)
SPEC MJRY(n) = tock→ SPEC MJRY(n−1)

SPEC MJG(0) = maj grn to yel→ SPEC MJE(max end)
SPEC MJG(n) = tock→ SPEC MJG(n−1)

SPEC MJE(0) = maj yel to both red→ SPEC SWAP
SPEC MJE(n) = tock→ SPEC MJE(n−1)

SPEC SWAP = both red to min red yel→ SPEC MNRY(max rdy)

SPEC MNRY(0) = min red yel to grn→ SPEC MNG(max grn)
SPEC MNRY(n) = tock→ SPEC MNRY(n−1)

SPEC MNG(0) = min grn to yel→ SPEC MNE(max end)
SPEC MNG(n) = tock→ SPEC MNG(n−1)

SPEC MNE(0) = min yel to both red→ SPEC RR
SPEC MNE(n) = tock→ SPEC MNE(n−1)

The constants max rdy, max grn and max end represent the delays in the sequence of traffic
light signals, and tock represents the passage of time [Sch99].

3 Formalising VHDL for Model Checking

By specifying desirable properties in a formal language and translating VHDL code to the same
language, we are able to check its behaviour with respect to the properties. Therefore, we would
like to translate the VHDL code to CSP so that it can be checked against the specification defined
above. To achieve this, we begin by translating the VHDL code to CSP ‖ B. Then we can use
traditional CSP ‖ B ‘lifting’ techniques to incorporate the B components into CSP. It should be
noted that this intermediate representation is presented here only to justify the resulting CSP
process definitions. It is not integral to the approach, and would be unnecessary in an automation
of the translation.

3.1 Translating VHDL into CSP ‖ B

In addition to translating the user-defined VHDL processes, we need to model VHDL’s simu-
lation semantics. There is a natural correspondence between VHDL and B. However, to model
signals using B variables it is necessary to model each VHDL signal as two B variables: one
representing the current signal value, and one representing the next signal value. The B oper-
ations that model signal assignments do so by assigning values to the next state variables, but
only via expressions that use current state variables. Hence the current state variables need to be
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Figure 1: CSP ‖ B architecture

seen by the next state B machines. An example of this structuring is shown in the two rows of B
machines at the bottom of Figure 1.

CSP is used to model VHDL’s signal update phase. CSP processes determine when all active
B operations have completed (i.e., the B operations modelling the active VHDL processes in any
given process execution phase). The CSP processes then synchronise to initiate the update of the
current state variables with the values held in the next state variables. This requires an additional
top-level B machine with write access to the current state B machines, and read access to all of
the next state B machines. This structure is shown in Figure 1.

The Top-level B machine is connected to the ‘current’ state B machines with a solid line
to indicate write access. It is connected to the ‘next’ state B machines with dashed arrows to
indicate read access. The dotted lines from the CSP controller processes to the ‘next’ state B
machines indicate their control over the operations within those machines. The solid line from
the CSP processes to the Top-level B machine indicates that the CSP controllers synchronise to
cause the update of the ‘current’ state B variables.
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3.2 Translating the Traffic Controller

The mapping from user-defined VHDL processes to B operations is straightforward. The op-
eration corresponding to the VHDL process fsm is as follows (only one case is shown to save
space, but the others are very similar):

fsm =̂ CASE s.state OF
EITHER all red THEN

red maj := 1 ‖ yel maj := 0 ‖ grn maj := 0 ‖
red min := 1 ‖ yel min := 0 ‖ grn min := 0 ‖
next state := major ready

OR major ready THEN
...

Note, we have prefixed the current state variable state with a unique identifier (s) to distin-
guish it from the other (next state) instance of the same variable. The translations of the other
VHDL processes follow a similar pattern with one or two subtleties. Consider the VHDL process
yellow counter:

yellow counter =̂ IF ( clock event = TRUE ∧ clock = 1 ) THEN
IF ( reset = 1 ) THEN

yel count := 0
ELSE

IF ( yel maj = 1 ∨ yel min = 1) THEN
yel count := y.yel count + 1

ELSE
yel count := 0

END
END

END

Rather than using a bit vector, the variable yel count is declared to be a natural number in the
range 0 to 7 in the B model. In order to prove that yellow counter maintains this typing in-
variant, it is necessary to add a precondition to say that the addition can happen only when
y.yel count is less than 7. Otherwise the operation could increment yel count outside its range.1

The precondition is generated automatically by taking the conjunction of the conditions that lead
to the increment of yel count.

yellow counter =̂
PRE

( clock event = TRUE ∧ clock = 1 ∧
reset = 0 ∧ ( yel maj = 1 ∨ yel min = 1 ) )⇒ y.yel count < 7

THEN
...

1 Alternatively, we could use the mod operator to model ‘wrap around’ behaviour.
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It is necessary to add a precondition to the B translation of green counter for similar reasons
but, in this case, grn count’s range is 0 to 127. The two one-line VHDL processes that update
ready delay and end delay are translated to (equally succinct) B operations. However,
we are obliged to give them names:

set ready delay =̂ ready delay := bit ( y.yel count, 1 );

set end delay =̂ end delay := bit ( y.yel count, 2 )

The function bit(x, y), which returns the yth bit of value x, is not part of the B language. Hence
it is necessary to define it within the B model.

In order to update the current state variables with their next state values, it is necessary to
define operations within the current state B machines. These have a uniform structure in which
the next state values are passed as input parameters, and the body of the operations are simple
assignments of these values to the current state variables. Also, a list of Boolean values are
output from the operation to indicate when the values of current state variables have changed.
This information can be used to model the sensitivity lists so that the appropriate B operations
are called in the next process execution phase. Consider the operation update fsm:

dymj, dgmj, dymn, dgmn←− update fsm ( rj, yj, gj, rn, yn, gn, ns ) =̂
PRE

rj ∈ Std Logic ∧ yj ∈ Std Logic ∧ gj ∈ Std Logic ∧
rn ∈ Std Logic ∧ yn ∈ Std Logic ∧ gn ∈ Std Logic ∧ ns ∈ State

THEN
red maj := rj ‖ yel maj := yj ‖ grn maj := gj ‖
red min := rn ‖ yel min := yn ‖ grn min := gn ‖ next state := ns ‖
dymj := bool ( yel maj 6= yj ) ‖ dgmj := bool ( grn maj 6= gj ) ‖
dymn := bool ( yel min 6= yn ) ‖ dgmn := bool ( grn min 6= gn )

END

where Std Logic is a B representation of VHDL’s Std Logic type and State is the B repre-
sentation of the controller state. Note, there are no outputs concerning changes to the red signals
because nothing is sensitive to such changes.

The Top-level B machine contains a single B operation called dd which calls all the cur-
rent state update operations with the necessary input parameters. It also accumulates all of the
Boolean outputs from these individual operations, and uses them as its own output. This sin-
gle operation is capable of updating all current state variables simultaneously and provides the
necessary information to say which variables have changed. The (abbreviated) definition of the
top level B machine is shown below. Note, the operation dd calls update fsm with the actual
values of the next state variables in NEXT FSM. (The other operation calls, input parameters,
and output parameters are not shown.)

MACHINE Top Level
SEES n.NEXT FSM, . . .
INCLUDES CURR FSM, . . .
OPERATIONS
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dymj, dgmj, dymn, dgmn, . . .←− dd =̂
BEGIN

dymj, dgmj, dymn, dgmn←− update fsm (n.red maj, . . . ) ‖ . . .

From Figure 1, we see that it is necessary to define CSP processes that control the calling of
the various B operations. The idea is to mimic the simulation cycle within the CSP processes.
Hence, each controller process begins by calling its associated next state B operation. On com-
pletion, the process is ready to call the Top-level B operation dd to update the current state B
variables. However, it must wait until all processes are prepared to call dd. When dd occurs,
each process can view the outputs from the dd operation to determine which variables’ values
have changed and, hence, whether it needs to call its associated next state B operation. If it does
not then it waits for the next dd operation call. Consider the CSP process FSM (other controller
processes are similar):

FSM = fsm→ FSM′

FSM′ = dd?bb1?...?bbn→ if (bbi1 or bbi2 or · · · or bbim) then FSM else FSM′

3.3 ‘Lifting’ the B Components into CSP

In order to use FDR, lifting is the way important state information is taken from B into CSP. This
entails, among other things, parameterising the CSP processes. The effects of the B operations
are then modelled as updates to the parameters.

The lifted B operation fsm comprises a choice of guarded processes to represent the case
statement(one process for each case):

FSM(st,rdly,gdly,edly,rmj,ymj,gmj,rmn,ymn,gmn,nst) =
(st = all red) &

let rmj′ = 1
ymj′ = 0
gmj′ = 0
rmn′ = 1
ymn′ = 0
gmn′ = 0
nst′ = major ready

within FSM′(st,rdly,gdly,edly,rmj′,ymj′,gmj′,rmn′,ymn′,gmn′,nst′)
2 (st = major ready) &

let ymj′ = 1
nst′ = if (rdly = 1) then major go else nst

within FSM′(st,rdly,gdly,edly,rmj,ymj′,gmj,rmn,ymn,gmn,nst′)
2 . . .

Note that the call to FSM′ in this definition is parameterised with signal values. This is necessary
to keep track of the values as they are distributed among the processes. In order to model the
sensitivity list, a conditional statement is introduced into FSM′ to check if the new values arriving
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on dd differ from the values held by the process. If so then FSM is called, otherwise control is
passed back to FSM′. Note, in the definition of FSM′ below we show the relevant arguments of
dd only. In this case, the values of state, ready delay, grn delay and end delay are
relevant because they appear in fsm’s sensitivity list.

FSM′(st,rmj,ymj,gmj,rmn,ymn,gmn,nst,rdly,gdly,edly) =
dd . . .?st′ . . .?rdly′?gdly′?edly′→

if (st′ 6= st or rdly′ 6= rdly or gdly′ 6= gdly or edly′ 6= edly) then
FSM(st′,rdly′,gdly′,edly′,rmj,ymj,gmj,rmn,ymn,gmn,nst)

else FSM′(st,rdly,gdly,edly,rmj,ymj,gmj,rmn,ymn,gmn,nst)

The VHDL process yellow counter is sensitive to changes in the clock signal. Like
most processes that are sensitive to the clock signal, the conditional statement within the process
checks for a clock edge (in this case a rising edge). Consequently, such conditional statements
will never evaluate to true unless they have been preceded by a signal update phase that changed
the clock signal. In our formal model, the signal update phase is modelled by the CSP event dd.
Hence, for YELLOW COUNTER (and the formalisation of other clock-sensitive processes) we
begin with the dd event.

The definitions of yellow counter and green counter in the B model included precondi-
tions that, when evaluated to false, result in unpredictable (divergent) behaviour. It is necessary,
therefore, to include these preconditions as diverging assertions in CSP in order to ‘lift’ the B
operations completely.

YELLOW COUNTER(yel count) =

dd . . .?yel maj?yel min? . . .


clock event = true∧ clock = 1 ∧
reset = 0∧ (yel maj = 1∨ yel min = 1)
⇒ yel count < 7

→
if (clock event) then

YELLOW COUNTER′(clock,reset,yel maj,yel min,yel count)
else YELLOW COUNTER(yel count)

YELLOW COUNTER′(clock,reset,yel maj,yel min,yel count) =
let

yel count′ = if (clock = 1) then
if (reset = 1) then 0
else if (yel maj = 1∨ yel min = 1) then yel count +1

else 0
else yel count

within
YELLOW COUNTER(yel count′)

The lifting technique is applied to the other B operations in a similar way.
This completes the lifting procedure. Unfortunately this is not in a form that can be accepted

by FDR. In particular, each process contributes relatively few arguments to the event dd, and the
eager manner in which FDR builds the transition graph means that the FDR compiler is over-
whelmed by enumerating all possible instances of dd prior to parallel composition. This effort is
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largely unnecessary because the parallel composition is such that very few of the instances will
be exercised during the analysis. Hence, optimisation steps are needed.

3.4 Optimising the CSP for Model Checking

We begin by merging each unprimed/primed process pair into single process definitions. This
results in processes with a uniform structure that will make optimisation easier. Consider the
lifted CSP process NEW STATE:

NEW STATE(state) =
dd . . .?clock event?clock?reset!state?next state . . .→

if (clock event) then NEW STATE′(clock,reset,state,next state)
else NEW STATE(state)

We can remove the conditional statement by pattern matching on clock event:

NEW STATE(state) =
dd . . .!true?clock?reset!state?next state . . .→ NEW STATE′(clock, . . .)

2 dd . . .!false?clock?reset!state?next state . . .→ NEW STATE(state)

We then incorporate the process NEW STATE′ by updating the parameter state in an appropriate
way. This results in an external choice of dd events:

NEW STATE(state) =
dd . . .!true!1!1!state?next state . . .→ NEW STATE(both red)

2 dd . . .!true!1!0!state?next state . . .→ NEW STATE(next state)
2 dd . . .!true!0? !state?next state . . .→ NEW STATE(state)
2 dd . . .!false? ? !state?next state . . .→ NEW STATE(state)

The first dd event handles the case when the clock is 1 and the reset is 1, and results in the
both red state. The second dd event handles the case when the clock is 1 and the reset is 0. This
replaces the current state with the value bound to the next state argument of dd. The remaining
cases keep the current state value.

If we transform YELLOW COUNTER and GREEN COUNTER in a similar manner, we have
to somehow incorporate the diverging assertions into the modified process definition. This is
done by pattern matching on the processes’ parameters. First recall the lifted definition of
YELLOW COUNTER:

YELLOW COUNTER(yel count) =

dd . . .?yel maj?yel min . . .


clock event = true∧ clock = 1 ∧
reset = 0∧ (yel maj = 1∨ yel min = 1)
⇒ yel count < 7

→
...

When the parameter yel count is not 7 the diverging assertion is true, and can be ignored. How-
ever, when it is 7 then the antecedent of the implication in the diverging assertion must be shown
to be false (i.e., we negate the antecedent and use it as a new diverging assertion):
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YELLOW COUNTER(7) =

dd . . .?yel maj?yel min . . .

{
clock event = false∨ clock = 0 ∨
reset = 1∨ (yel maj = 0∧ yel min = 0)

}
→

...

Once again, we incorporate YELLOW COUNTER′ to produce a process comprising an external
choice of unique dd events, but for each case we check whether the diverging assertion is true or
false and define the process’s subsequent behaviour accordingly:

YELLOW COUNTER(7) =
dd . . .!true!1!1 . . .? ? . . .→ YELLOW COUNTER(0)

2 dd . . .!true!1!0 . . .!0!0 . . . → YELLOW COUNTER(0)
2 dd . . .!true!1!0 . . .!1!0 . . . → DIV
2 dd . . .!true!1!0 . . .!0!1 . . . → DIV
2 dd . . .!true!1!0 . . .!1!1 . . . → DIV
2 dd . . .!true!0? . . .? ? . . .→ YELLOW COUNTER(7)
2 dd . . .!false? ? . . .? ? . . .→ YELLOW COUNTER(7)

The process DIV diverges immediately. Each branch that ends with this process begins with an
instance of dd whose arguments falsify the diverging assertion. There are three cases that cause
divergent behaviour, that would otherwise increment yel count out of bounds. The instance of
YELLOW COUNTER when yel count is not 7 is identical except the calls to DIV are replaced
by calls to YELLOW COUNTER(yel count + 1) (i.e., there is no divergent behaviour). There
are corresponding definitions for GREEN COUNTER.

The (abbreviated) definition of FSM shown below is the result of incorporating FSM′ into the
‘lifted’ definition of FSM. By pattern matching on the current state argument of dd we once
again get a process that is an external choice of unique instances of dd, each of which is followed
by a conditional statement to determine the next course of action. Note that each branch has the
same structure as the body of FSM′.

FSM(st,rmj,ymj,gmj,rmn,ymn,gmn,ns,rdly,gdly,edly) =
dd . . .!both red!rmj!ymj!gmj!rmn!ymn!gmn!ns?rdly′?gdly′?edly′→

(if (st 6= both red∨ rdly 6= rdly′∨gdly 6= gdly′∨ edly 6= edly′) then
FSM(both red,1,0,0,1,0,0,major ready,rdly′,gdly′,edly′)

else FSM(st,rmj,ymj,gmj,rmn,ymn,gmn,ns,rdly,gdly,edly))
2 dd . . .!major ready!rmj!ymj!gmj!rmn!ymn!gmn!ns!0?gdly′?edly′→

(if (st 6= major ready∨ rdly 6= 0∨gdly 6= gdly′∨ edly 6= edly′) then
FSM(major ready,rmj,1,gmj,rmn,ymn,gmn,ns,0,gdly′,edly′)

else FSM(st,rmj,ymj,gmj,rmn,ymn,gmn,ns,rdly,gdly,edly))
2 . . .

The delay processes (not shown) are transformed in a similar manner.
Now we are in a position to optimise the parallel composition of the above processes. The

solution adopted in this paper is to merge process definitions to reduce the number of processes
synchronising on dd and increase the number of arguments that individual processes contribute.
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We illustrate this by merging the NEW STATE process with the counter processes and delay
processes because, individually, these process contribute one argument each to dd; collectively,
they contribute six arguments. When merging processes, the divergent process DIV takes prece-
dence: if any single process diverges in a given state then the entire process diverges. Merging
preserves the structure of the processes derived in the previous step (i.e., an external choice of
dd events), so merging can be repeated as often as necessary. In this instance, we shall call the
resulting process NS YC GC DLY . In its most general form, the merged process is:

NS YC GC DLY(0,st,yc,gc,rdly,gdly,edly) =
dd!true!1!1!st? ? ? ? ? ? ? !rdly!gdly!edly→

NS YC GC DLY(1,both red,0,0,bit(yc,1),bit(gc,6),bit(yc,2))
2 dd!true!1!0!st? !1!1? ? ? ?ns!rdly!gdly!edly→

NS YC GC DLY(1,ns,yc+1,gc+1,bit(yc,1),bit(gc,6),bit(yc,2))
2 dd!true!1!0!st? !0!1? !0? ?ns!rdly!gdly!edly→

NS YC GC DLY(1,ns,0,gc+1,bit(yc,1),bit(gc,6),bit(yc,2))
2 dd!true!1!0!st? !1!0? ? !0?ns!rdly!gdly!edly→

NS YC GC DLY(1,ns,yc+1,0,bit(yc,1),bit(gc,6),bit(yc,2))
2 . . .

Note that, due to the merging of the counter processes and the delay processes, the count param-
eters (yc and gc) are no longer needed outside this process. Hence, they are removed from the
arguments of dd. There are three other (pattern matching) instances of this process that exhibit
some divergent behaviour.

4 Model Checking

Our controller can now defined as:

CONTROLLER = FSM(both red,1,0,0,1,0,0,major ready,0,0,0)
|[{| dd |} ]|NS YC GC DLY(0,both red,0,0,0,0,0)

The values of the parameters are the same values that would have been assigned by the next state
B operations. Hence, the initial state of CONTROLLER corresponds to the VHDL prior to its
first signal update phase.

We rename CONTROLLER so that we can use FDR to check that it refines SPEC RR. For ex-
ample, dd!true!1!0!both red!1!0!0!1!0!0!major ready? is renamed as both red to maj red yel.
If REN is the entire renaming then by hiding the remaining dd events we can perform a refine-
ment check in FDR:

assert SPEC RRvT CONTROLLER[[REN]] \ {| dd |}

which succeeds. It also succeeds if we perform the same check in the failures model. This
shows that the controller is as ’live’ as the specification that it implements. Another important
check is to determine whether it is possible for the controller to cause a divergence by reaching
a DIV state. This can be achieved by performing a livelock-free check on CONTROLLER. Note
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that we are not hiding any events, so if the check fails then it is by virtue of a DIV process. The
livelock-free check succeeds, and we conclude that the controller does not attempt to increment
one of its counters out of bounds.

5 Conclusion

The challenge that prompted this work was to combine formal and informal approaches to pro-
duce verified hardware. The proposed solution allows the hardware developers to continue to use
their informal approaches, but complements this with a method for translating VHDL to formal
notations for analysis. Of all the related work, perhaps the most relevant is [ZT05] (in combina-
tion with [BGR00]) which translates B specifications and existing VHDL to ACL2 for analysis.
However, in our case, the project requirements influenced the choice of formal approach con-
siderably. CSP was used because it is a good language to formalise requirements of this form.
The B Method was less suitable in this respect because, at its most abstract level, control flow is
implicit.

The language of the B Method is, however, very similar to VHDL, and translating from VHDL
to B is quite straightforward. CSP can also be used to provide the necessary control, which
motivates a CSP ‖ B approach. The ProB [LB03] tool is available to do trace refinement checks,
but other kinds of checks (such as those described in Section 4) are not available. The approach
presented here uses the existing CSP ‖ B techniques to ‘lift’ the B components into CSP in order
to use FDR. Another piece of work using CSP in a VHDL context is [CH97], but this focuses on
synthesis.

The problem with using FDR lies in its eager approach to building transition graphs. An opti-
misation technique has been proposed in this paper to circumvent this problem. In this respect,
ProB would be better because it uses a lazy approach. Scalability is always a key issue with for-
mal methods. The optimisation can be repeated as necessary, so it works for larger specifications
with more processes. Automation of the approach is ongoing work.

A lot of work has been done on the formal semantics of VHDL (including [FM95]). This
work provides useful insights into VHDL itself, but cannot be deployed in an industrial context
directly.

Acknowledgements: The author is very grateful to the anonymous referees and workshop
participants for their useful comments.
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