
Electronic Communications of the EASST
Volume 6 (2007)

Proceedings of the
Sixth International Workshop on

Graph Transformation and Visual Modeling Techniques
(GT-VMT 2007)

A Query Language With the Star Operator

Johan Lindqvist and Torbjörn Lundkvist and Ivan Porres

12 pages

Guest Editors: Karsten Ehrig, Holger Giese
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

ECEASST

A Query Language With the Star Operator

Johan Lindqvist and Torbjörn Lundkvist and Ivan Porres

{johan.lindqvist,torbjorn.lundkvist,ivan.porres}@abo.fi
TUCS Turku Centre for Computer Science

SoSE Graduate School on Software Systems and Engineering
Department of Information Technologies, Åbo Akademi University

Joukahaisenkatu 3-5A, FIN-20520 Turku, Finland

Abstract: Model pattern matching is an important operation in model transforma-
tion and therefore in model-driven development tools. In this paper we present a
pattern based approach that includes a star operator that can be used to represent re-
cursive or hierarchical structures in models. We also present a matching algorithm,
motivating examples and we discuss its implementation in a modeling tool.

Keywords: Visual languages, Model transformation, Graph query, Graph subgraph
matching

1 Introduction

In the context of model-driven software development, a query language is used to find parts
of a model that fulfill some given constraints. A query language is a fundamental element in
rule-based model transformation languages. Query languages are also used to define model
constraints, where a model is invalid if it does not satisfy the query. Finally, a query language
combined with different aggregation operators can be used to compute metrics.

We consider that query languages should be declarative, in the sense that they should state
what to search for in a model, but not how to perform the actual search. Also, we are interested
in expressive query languages that can define complex patterns in a succinct way. The Object
Management Group (OMG) proposes a standard for a model transformation language called
Query-View-Transform (QVT) [OMG05a], that contains a query language. The OMG Object
Constraint Language [OMG03] can also be used to query models.

In this article we explore the idea of a query language based on graph matching. Our ap-
proach can benefit from the fact that modeling languages and models are considered as graphs,
since the application of graph theory to computer science provides a solid foundation to model-
driven development tools, specially in the area of model transformations [Roz97]. Successful
approaches to graph transformation in the context of software development are presented for
example in [BH02, VVP02, ARS05].

Probably, the simplest graph matching approach is one based on subgraph isomorphism. A
software model and a query are represented as graphs and a match of the query is any subgraph
of the target model that is isomorphic to the query. However, this approach is not sufficient to
express many queries succinctly. Therefore, it has been extended to include negative application
conditions [HHT96] and multi-objects [SWZ99]. Still, these extended forms of graph pattern
matching may not be able to express many interesting queries. Many computer languages con-

1 / 12 Volume 6 (2007)

A Query Language With the Star Operator

tain hierarchical and recursive structures. Examples of these structures in UML [OMG05b] are
package containment hierarchies in class diagrams or state hierarchies in statecharts. As a con-
sequence, we often need to specify queries to match recursive structures where the number of
elements to match is not known a priori.

In this article, we propose a new query language that supports what we call the star operator.
This operator conceptually resembles the Kleene star operation over sets of strings. Used in
our query language, it can match against a subgraph that appears repeatedly zero or more times
in a graph representing a model. In our opinion, when we combine the star operator with the
isomorphism operator that denotes isomorphic matches and the negation operator, that denotes
the absence of a match, we can express complex queries by rather using short and intuitive
pattern.

We proceed as follows: In Section 2 we describe the basics of our query language and provide
some examples of queries for the UML language. Section 3 presents an overview of a matching
algorithm for this query language. The next section discusses the practical implementation of the
approach in an experimental modeling tool. Finally, we conclude in Section 5 with a description
of future work.

2 Regions in a Pattern

In this section we will describe the concept of regions in a pattern, and introduce three operators
that can be applied to regions: the isomorphic, star and negation operator.

A pattern consists of a of a typed and directed graph annotated with information necessary
to perform a query. The graphs in the patterns are constructed according to a metamodel. The
pattern graph can be compared against a target graph. A match occurs if all nodes and edges of
the pattern graph can be mapped to a subgraph of the target graph, with respect to the annotations
of the pattern graph. The result is a mapping of the pattern and target graphs, which allows the
nodes and edges of a pattern graph to be bound to the target graph.

In order to increase the expressiveness of a pattern based query, we have introduced the con-
cept of operators and regions in a pattern. A region is defined over a connected subgraph of a
pattern, such that a node belongs only to one region. In our approach we have defined a region as
the scope of a matching operator. As a consequence, a pattern consists of several non-overlapping
regions, where each region is associated with an operator. Edges can still connect nodes in sepa-
rate regions. Edges that cross the boundaries of a region are called connection points since they
connect two regions. These connection points can be computed from the pattern graph and are
used, depending on the operator associated with the region, to validate whether the region fulfills
the specific requirements of the operator associated with the region.

Next, we will describe the definition of the isomorphic, negation and star operator applied over
a region.

2.1 Isomorphic Regions

The semantics of an isomorphic region as part of a pattern graph, is that it is possible to find a
subgraph in the target model that is isomorphic to the region. A pattern graph can have several

Proc. GT-VMT 2007 2 / 12

ECEASST

isomorphic regions. However, if a pattern consists only of isomorphic regions, the regions could
be merged without affecting the result of the pattern matching process.

2.2 Negative Regions

The semantics of a negative region as part of a pattern graph, is that an occurrence of all nodes
and edges of a negative region in the target results in a failed match. Since the negation operator
is always defined over a region in the pattern, it is possible to model complex negative conditions
that involve several nodes and edges. A similar approach where the negation operator is defined
over regions can be found in [HHT96].

2.3 Star Regions

In order to be able to describe patterns with recursive or hierarchical structures, we have intro-
duced the concept of a star operator. The star operator in a pattern is conceptually similar to the
star operator in Kleene algebra [Koz91]. A pattern with a star region can be used to generate
a set of patterns where the contents of the star region is inserted an arbitrary number of times
and replaced by an isomorphic region. Analogous to the Kleene star operator, the generation of
patterns begins with a pattern where the subgraph is not inserted. We will discuss the constraints
that apply to valid star regions later in this section.

The structure of the subgraph represented in a star region must follow some specific require-
ments. This is necessary, as the patterns used for defining a query as well as new patterns that
are generated by expanding the star regions into several subgraphs must preserve the structure
defined by the metamodel. To ensure that the star region can be expanded, it needs to have at
least two connection points to other regions. This limitation only applies to star regions. These
connection points are called the ends of the star region, where one end is incoming and the other
end is outgoing with respect to the nodes in the star region. The connection points define the
position in the pattern graph where subgraphs generated from the star region are inserted. When
the star region is expanded, the outgoing end of each generated subgraph is connected to the
incoming end of the next.

Beside the two required ends, the star region may contain other connection points, which are
required to connect to the same nodes inside the region as the ends do. These additional con-
nection points are associated with either one of the ends and connect the last subgraph generated
in the direction of the associated end with another region. If zero subgraphs are generated, all
the connection points of the star region thus in effect connect the two regions on either side of
the ends of the star region.The star region can contain any number of nodes and edges which are
instantiated in each generated subgraph.

Figure 1 shows the generation of patterns based on a pattern with a star region in detail. In
the top part of the figure an example pattern G with two isomorphic regions R1 and R3 and a
star region R2 is shown. R2 consists of two interconnected nodes, 2’ and 3’. There are also two
directed edges with label m, one incoming edge from node 1’ in R1 to 2’ in R2 and one outgoing
edge from node 3’ in R2 to 4’ in R3. The bottom part of the figure shows three different patterns
that can be generated based on G. The generation of G1 is done by applying a production that
replaces R2 with the empty graph, and creates a new edge m from 1’ to 4’. The pattern G2 is

3 / 12 Volume 6 (2007)

A Query Language With the Star Operator

retrieved by replacing the previously rewritten edge m in G1 with an instance of the star region
R2 and the edges in the connection points are rewritten. Similarly, the pattern G3 is retrieved by
again replacing one of the rewritten edges with a new instance of the star region. To make the
figures clearer, all rewritten edges are drawn with a wider stroke. These patterns can now be used
to find a mapping to a target graph.

1':S

4':T2':T 3':S

R2

Pattern Graph G

m

mn

R1

R3

=

=

*

Pattern Graph G1

1':S

4':T

m

Pattern Graph G2

1':S

4':T2':T 3':S

m

mn

Pattern Graph G3

1':S

4':T

2':T

3':S

2'':T

3'':S m

m

n
m

n

Figure 1: (Top) A pattern graph formed by two isomorphic regions, R1 and R3, and one star
region R2. (Bottom) Three possible patterns that could be generated from pattern G in the top of
the figure.

Using this approach, it is possible to use a single pattern to describe recursive and hierarchical
structures by generating a set of patterns that can be compared to a target graph using subgraph
isomorphism.

A star region can be seen as an extension of the concept of multi-objects, or set nodes as
defined in PROGRES [SWZ99]. While a multi-object can express multiple instances of a single
node, the star region can express multiple instances of a subgraph. We have extended the concept
of multi-objects by defining star regions in the query graph, where all connections of the nodes
within or at the border of the region are explicit. This extension is also partly due to the fact
that a multi-object can have an edge to another multi-object, but it is unclear whether the edge
represents a single edge or multiple edges. Other related approaches are the works of graph
transformations with variables presented in [MHar, HJE06, Hof05]. Karsai and Agrawal present
in [KA03] an approach that allows cardinalities in individual nodes, but it is unclear whether this
approach supports whole regions.

2.4 Examples

In this section we present some examples that illustrate how the CQuery language can be used
to define queries to match common model structures in UML. We have chosen to display both
the patterns and matching model fragments using the abstract syntax, which is an object graph

Proc. GT-VMT 2007 4 / 12

ECEASST

StateMachine

StateVertex TransitionCompositeState

Generalizatio nClass

SimpleState

target

0..1 incoming

*

parent

0..1 specializatio n

*

outgoing

*source

0..1

stateMachine

0..1

top1

parent

0..1 subverte x

*

stateMachine

0..1

transitions*

child

0..1 generalization

*

context

0..1behavior

*

Figure 2: A simplified fragment of the UML 1.4 metamodel.

1’:Class 2’:Generalization 5’:Class
childparent

3’:Class 4’:Generalization
childparent

= * =

'5 : '2 : '1 : '4 : '3 : ClassGeneralizatio nClass Generalizatio nClass

parent parentchild child

'1 : '2 : '3 : ''3 : '4 : '5 : ''2 : Class Generalization Class Class Generalization ClassGeneralizatio n

parent parentchild child childparent

Figure 3: (Top) An example of a query with a star region defined over a class and a generalization
and the parent relation. (Center, Bottom) Two model fragments that matches the query defined
on the top, shown as object diagrams. The mapping is indicated with the corresponding numbers.

syntax similar to UML object diagrams, rather than the concrete syntax of the target modeling
language, since the concrete syntax hides information about relations between the objects. In
a tool environment, however, creating the queries using the concrete syntax of the modeling
language can be beneficial.

In the examples we will use a slightly simplified version of the UML 1.4 metamodel, which is
shown in Figure 2.

2.4.1 UML Generalizations

A sample query with two isomorphic regions and a star region is illustrated in the left part of
Figure 3. The star region is marked with a dashed rectangle with the ’*’ symbol, and the iso-
morphic regions with rounded rectangles and a ’=’ symbol. The connection points for the star
region are marked with circles at the border of region. The star region contains a UML Gener-
alization 2’ and a Class 3’. The Generalization is linked to the superclass 1’ and the subclass 3’
via a parent and a child relationship, respectively. These relations connect the star region to

5 / 12 Volume 6 (2007)

A Query Language With the Star Operator

1’:StateMachine2’:CompositeState

3’:CompositeState

4’:CompositeState 7’:CompositeState

5’:StateVertex 9’:Transition 8’:StateVertex

subvertex

subvertex subvertex

subvertexsubvertex

top

transitions

source target

*

* *

=

=

'2 :

'9 :

'8 : '5 :

'1 : CompositeState

Transition

SimpleStateSimpleState

StateMachine

transitions

top

subverte x

target

subverte x

source

'2 :

'8 :

'3 :

'5 :

'1 :

''7 :

'9 :

'7 :

CompositeState

SimpleState

CompositeState

SimpleState

StateMachine

CompositeState

Transition

CompositeState

source target

top

subverte x

subverte x

subverte x

s ubvertex

transitions

s ubvertex

Figure 4: (Left) An example of a pattern that illustrates how transitions are connected to states
and state machines. (Right) Two model fragments that matches the query.

the adjacent isomorphic regions. On the right hand side of the figure two different UML model
fragments in object diagram syntax are shown that are matches of the query on the left hand side.
Here, the mappings between the pattern and the target models are shown using corresponding
object names, i.e., 1’ in the pattern corresponds to ’1 in the target. The Generalization 2’ and
the Class 3’ in the star region were matched once in the first model fragment, and twice in the
second model fragment. The pattern can be matched to targets where the star region is mapped
to the empty set. This case is not illustrated in the figure. However, that particular case would
imply that Class ‘1 has exactly one subclass ‘5.

2.4.2 UML StateMachines

The second example in Figure 4 shows a pattern that can be used to query a UML model for a
state machine with a transition between two states, where the states are transitively owned by
any number of composite states. The state machine owns a composite state in StateMachine.top
that can transitively own other states in the CompositeState.subvertex slot. Transitions, however,
are always owned by the state machine, and have associations to two states in Transition.source
and Transition.target.

The pattern described here is rather complex, as we can identify three different star regions.
Each of the three star regions consists of one composite state and is connected to the other
regions using the CompositeState.subvertex relations to the other regions. This pattern describes
that the two states (5’ and 8’) that connect to the transition (9’ in the figure), can be nested in
an arbitrary number of common container composite states (star region with composite state 3’).
Additionally, each of the states can independently be contained by any number of composite

Proc. GT-VMT 2007 6 / 12

ECEASST

states (4’ and 7’). It must be noted, however, that there are three connection points in the star
region with composite state 3’ (one incoming and one outgoing edge). This is possible, since
a composite state can have any number of subvertices. When this star region is expanded to
two or more isomorphic regions, only one of these connection points is used to connect the next
occurence, as described in Subsection 2.3.

The right side of Figure 4 shows two model fragments that could be matched with patterns
generated from the pattern on the left. Due to the fact that each star region can individually
be expanded, it is possible to model all these different compositions for a state machine with
a transition in one single pattern. This query can be seen as a validation that a transition has
been inserted correctly in a statechart. Although the structure of state machines have changed
remarkably in UML 2.0, a relatively similar pattern with a larger amount of elements are required
for the UML 2.0 counterpart.

3 Matching Algorithm

In this section we will present a matching algorithm for patterns with isomorphic, star and nega-
tive regions.

We have discussed an intuitive interpretation of the query language where star regions are
expanded into regular graphs. In practice, the actual patterns are not expanded prior to matching
since an arbitrary number of possible patterns should be generated. Instead, the star regions are
expanded during pattern matching, and only as far as valid mappings against the target graph are
found.

The algorithm presented below is used to match the pattern against the target graph and expand
the star regions. To match individual regions, any traditional graph matching algorithm may
be used; we have used an algorithm based on CSP [Tsa93] and VF2 [CFSV01, CFSV04], as
presented in [Lil06].

The result of the matching algorithm is a set where each element is a mapping from the pattern
graph to the target graph. In every such mapping, each node in an isomorphic region in the pattern
is mapped exactly once, each node in a negative region exactly 0 times and each node in a star
region 0..n times. A node in the target graph can be mapped only once in each mapping.

The algorithm is split into two functions—query and matchRegion. Query initializes the
matching by selecting the region to start from, invokes the recursive matchRegion and lastly
discards any results where negative regions are successfully matched. Generally, the fewer map-
pings we find for the first isomorphic region matched, the faster the algorithm will work. There-
fore, we generally start from the largest isomorphic region in the pattern as we are likely to find
relatively few mappings for that region.

1 query (pattern, target):
2 r ← choose one isomorphic region in pattern
3 mappings ← matchRegion (r, {}, target, {})
4 for each negative region in pattern:
5 c ← a connection from a non-negative region to negative region
6 discard each mapping in mappings for which matchRegion (negative region, mapping, target, c) returns results
7 return mappings

7 / 12 Volume 6 (2007)

A Query Language With the Star Operator

The function matchRegion recursively traverses the regions in the pattern, attempting to ex-
pand the mappings found until all regions have been matched. When this function is called, we
either have the situation where no mappings have been passed, or where one or more neighbors
of the passed region have been matched in the inputMapping. In the first case (lines 2–3), the
function starts by finding all valid mappings for the passed region, in the second case (lines 5–
18), it identifies a set of candidate mappings for the partial pattern consisting of all previously
matched regions and the passed region, i.e. a set of mappings where the most recently matched
connection point of the passed region is satisfied (lines 5–11). The matching is done recursively
for star regions, implementing the pattern generation described in Subsection 2.3 (lines 12-16).

The function then checks that all other connection points to previously matched regions are
satisfied, thereby ensuring that the mapping is valid, i.e. that the topology of the candidate
mapping is consistent with that of the pattern (lines 17–18). At this stage we have identified all
valid mappings for the partial pattern matched so far and continue with the next region in lines
19–20.

A note on connection points: In this algorithm, we assume that each connection point consists
of two nodes in separate regions that are connected through an edge. A connection point is
satisfied by a mapping where the two nodes are mapped to nodes in the target graph that are
likewise connected. There is an implicit connection point between the two ends of a star region
which is dealt with on line 13 below. The connection point between the region to match and
the previously matched region is passed on to matchRegion as a parameter in order to identify a
starting node for matching.

1 matchRegion (region, inputMapping, target, connection):
2 if inputMapping is empty:
3 Mappings ← all valid mappings region → target
4 else:
5 Mappings ← {}
6 starting node ← the node in region connected through connection
7 find all mappings starting node → target node satisfying connection
8 for each target node in these mappings:
9 start with inputMapping plus a mapping starting node → target node

10 from there, find all valid mappings region → target
11 add these mappings to Mappings
12 if region is a star region:
13 c ← connection to next instance of star region to be mapped
14 for each Mapping in Mappings:
15 replace Mapping with M ← matchRegion (region, Mapping, target, c)
16 add inputMapping to Mappings
17 for each matched neighbor of region:
18 discard all Mappings where a connection between region and neighbor is not satisfied
19 for each connection c to a non-negative, unmatched neighbor of region:
20 replace each Mapping in Mappings with M ← matchRegion (neighbor, Mapping, target, c)
21 return Mappings

4 Validation and Applications

We have built an experimental modeling tool called Coral [?]. In this tool we have implemented
CQuery and a matching engine that supports the concepts we have discussed in this paper.

Proc. GT-VMT 2007 8 / 12

ECEASST

QueryElement

ElementPattern

Region

+ ignoreProperty : [*]+ isIsomorphic :

+ isNegative :

+ isStar :

+ isMaximal :

StringBoolean

Boolean

Boolean

Boolean

container

0..1

region

0..1 queryElement

*

abstractElement 1
pattern0..1

region*

Figure 5: The CQuery Metamodel

4.1 Validation

The main idea in the design of the CQuery language is that the base of the pattern is a model in
the target language. The CQuery language consists of elements that extend a modeling language
to include information to control a query. That is, the pattern consists of a model fragment in the
target language, annotated with query configuration in the CQuery language. Since the CQuery
language itself is separated from the modeling language of the target, the target language does
not have to be modified to support CQuery.

We have chosen this approach for two reasons: First, there is no need to have a separate
component that verifies that the patterns are possible to construct using the target metamodel,
since adherence to the metamodel is implicit. Second, we believe that the creation of patterns
is easier, since a significant part can be constructed as any other model in the target modeling
language. However, this approach does not prevent the queries being presented in any particular
syntax, including the concrete syntax of the target modeling language or a more general object
diagram syntax. A discussion on using the concrete syntax of a modeling language in model
transformation rules can be found in [BW06].

The CQuery metamodel is shown in Figure 5. The metamodel is rather small, containing only
3 metaclasses, where the Element can point to any abstract model element, and hence is not di-
rectly a part of the CQuery language. The base element is Pattern, which acts as the starting point
of a query. Each Pattern consists of a set of Regions and an abstract container element which
is an element in any modeling language. This element owns all model elements in the pattern
which are not annotations of CQuery. A Region is either an isomorphic, a negative or a star
region. This is indicated by the corresponding flags. However, only one of these flags can be set
for a particular region in a pattern. A Region consists of an arbitrary number of QueryElements.
The QueryElement contains information to control which attributes and outgoing edges should
be ignored when matching a single element. In a well-formed pattern, all abstract elements have
a corresponding QueryElement, and all QueryElements are owned by a Region.

The version of CQuery implemented in this tool is slightly different, but shares the same fea-
tures that have been discussed in this paper. In our tool it is possible to create a query using
the concrete syntax of the target modeling language. If the target language does not have a con-

9 / 12 Volume 6 (2007)

A Query Language With the Star Operator

crete syntax, it is still possible to create queries, but without the benefit of having diagrams. The
matching engine in CQuery is based on the algorithm described in Section 3 and [Lil06]. The
algorithm is based on the VF2 and CSP algorithms and facilitates search planning and backtrack-
ing.

All star regions can optionally set an isMaximal flag. This flag can be used to indicate whether
the matching engine should attempt to expand a star region a maximal number of times, instead
of attempting to match an adjacent region to a subgraph that could actually be seen as a match
to the star region. This feature can be very useful since an application that uses CQuery does not
need to evaluate all possible matches if the point of interest is only the maximal possible matches
of the star region. It must, however, be noted that although the isMaximal flag is set, this does
not rule out the possibility that a star region could match a target graph where the star region had
no occurrences.

4.2 Applications

The CQuery implementation is used by a variety of components and add-ons in the Coral tool.
The most straightforward application of CQuery is a model search facility. In this component it
is possible to load a set of query patterns defined in the Coral tool and search for occurrences of
a pattern in open modeling projects. The results of the CQuery based search are reported as a set
of mappings between elements in the query pattern and the target model.

We have also implemented a constraint evaluation component based on CQuery. This compo-
nent is an integral part of the Coral tool, and uses a set of CQuery patterns to detect if modeling
language constraints or well-formedness rules have been violated. This component is based on
an approach where user models are continuously checked for errors. If an error is detected, the
offending elements are reported along with an explanation, or a suggestion for correcting the
problem. An example of how this constraint evaluation component has been used in a domain-
specific language for System-on-Chip design called MICAS, can be found in [LLL+05].

Another application is a generic model to text transformation engine [Nym06], which uses the
CQuery language as the query facility. This application can e.g. be used for generating source
code or documentation based on UML models.

Perhaps the most ambitious use of CQuery is a transformation engine based on the double
pushout approach [Roz97]. The transformation rules are given as a pair of a left-hand side
(LHS) and a right-hand side (RHS), and an explicit mapping between the LHS and RHS. This
transformation engine uses CQuery for matching the LHS to an occurrence in a model, and
to specify the RHS. The transformation engine has support for negative, isomorphic regions
and star regions, and provides in-place transformation of models. The transformation engine is
extensively used in the Coral tool for defining the rules for editing models, e.g. inserting states
or transitions in a statechart, or classes and associations in class diagrams. We have found that
especially the star regions are necessary when defining model editing transformations in UML,
where complex hierarchies of model elements occur frequently. Using the star region, we have
been able to reduce the number of model transformation rules to define the editor.

The Coral tool, including CQuery and all components mentioned in this section are open
source and are available for download from http://mde.abo.fi/ .

Proc. GT-VMT 2007 10 / 12

ECEASST

5 Conclusions and Future Work

We have presented a query language for model-driven development applications that introduces
the concept of star regions to represent hierarchical and repetitive structures. This query language
has been implemented in a modeling tool and used successfully in different applications based
on UML and other domain-specific modeling languages.

There are two clear future directions. First, introduce new region operators, such as cardinality
or disjunction. However, the need for these new operators should arise from actual modeling
tools. Also, we are studying the application of our query language to model transformations. In
fact, a model transformation tool component based on CQuery has already been implemented
and we plan to present these results in the near future.

Bibliography

[ARS05] C. Amelunxen, T. Rötschke, A. Schürr. Graph Transformations with MOF 2.0. In
Giese and Zündorf (eds.), Fujaba Days 2005. September 2005.

[BH02] L. Baresi, R. Heckel. Tutorial Introduction to Graph Transformation: A Software
Engineering Perspective. In Corradini et al. (eds.), Proc. Graph Transformation
- First International Conf., ICGT 2002, Barcelona, Spain. LNCS 2505. Springer,
2002.

[BW06] T. Baar, J. Whittle. On the Usage of Concrete Syntax in Model Transformation
Rules. Technical report LGL-REPORT-2006-002, 2006.

[CFSV01] L. P. Cordella, P. Foggia, C. Sansone, M. Vento. An improved algorithm for match-
ing large graphs. In Proceedings of the 3rd IAPR-TC-15 International Workshop on
Graph-based Representations. Italy. Pp. 149–159. 2001.

[CFSV04] L. P. Cordella, P. Foggia, C. Sansone, M. Vento. A (Sub)Graph Isomorphism
Algorithm for Matching Large Graphs. IEEE Trans. Pattern Anal. Mach. Intell.
26(10):1367–1372, 2004.

[HHT96] A. Habel, R. Heckel, G. Taentzer. Graph grammars with negative application condi-
tions. Fundamenta Informaticae 26(3-4):287–313, 1996.

[HJE06] B. Hoffmann, D. Janssens, N. V. Eetvelde. Cloning and Expanding Graph Transfor-
mation Rules for Refactoring. Electr. Notes Theor. Comput. Sci. 152:53–67, 2006.

[Hof05] B. Hoffmann. Graph Transformation with Variables. In Formal Methods in Software
and Systems Modeling. Pp. 101–115. 2005.

[KA03] G. Karsai, A. Agrawal. Graph Transformations in OMG’s Model-Driven Architec-
ture: (Invited Talk). In Pfaltz et al. (eds.), AGTIVE. Lecture Notes in Computer
Science 3062, pp. 243–259. Springer, 2003.

11 / 12 Volume 6 (2007)

A Query Language With the Star Operator

[Koz91] D. Kozen. A Completeness Theorem for Kleene Algebras and the Algebra of Regu-
lar Events. In Logic in Computer Science. Pp. 214–225. 1991.

[Lil06] T. Lillqvist. Subgraph Matching in Model Driven Engineering. Master’s Thesis in
Computer Science, Department of Information Technologies, Åbo Akademi Uni-
versity, Turku, Finland, March 2006.

[LLL+05] J. Lilius, T. Lillqvist, T. Lundkvist, I. Oliver, I. Porres, K. Sandström, G. Sveholm,
A. Pervez Zaka. An Architecture Exploration Environment for System on Chip De-
sign. Nordic Journal of Computing 12(4):361–378, 2005.

[MHar] M. Minas, B. Hoffmann. An Example of Cloning Graph Transformation Rules for
Programming. Electronic Notes in Theoretical Computer Science, To appear.

[Nym06] M. Nyman. A Model-Based Approach to Text Generation from Software Models.
Master’s Thesis in Computer Science, Department of Information Technologies,
Åbo Akademi University, Turku, Finland, May 2006.

[OMG03] OMG. UML 2.0 OCL Specification. October 2003. Document ptc/03-10-14, avail-
able at http://www.omg.org/.

[OMG05a] OMG. MOF 2.0 Query / View / Transformation Final Adopted Specification.
November 2005. OMG Document ptc/05-11-01, available at http://www.omg.org/.

[OMG05b] OMG. UML 2.0 Superstructure Specification. August 2005. Document formal/05-
07-04. Available at http://www.omg.org/.

[Roz97] G. Rozenberg (ed.). Handbook of Graph Grammars and Computing by Graph
Transformations, Volume 1: Foundations. World Scientific, 1997.

[SWZ99] A. Schürr, A. J. Winter, A. Zündorf. The PROGRES Approach: Language and Envi-
ronment. Handbook of Graph Grammars and Computing by Graph Transformation:
Vol. 2: Applications, Languages, and Tools, pp. 487–550, 1999.

[Tsa93] E. Tsang. Foundations of Constraint Satisfaction. Academic Press, London and San
Diego, 1993.

[VVP02] D. Varró, G. Varró, A. Pataricza. Designing the Automatic Transformation of Visual
Languages. Science of Computer Programming 44(2):205–227, August 2002.
http://www.inf.mit.bme.hu/FTSRG/Publications/varro/2002/scp2002_vvp.pdf

Proc. GT-VMT 2007 12 / 12

