
Electronic Communications of the EASST
Volume 35 (2010)

Proceedings of the
10th International Workshop on

Automated Verification of Critical Systems
(AVoCS 2010)

Verification of Symmetry Detection using PVS

Shamim Ripon and Alice Miller

16 pages

Guest Editors: Jens Bendisposto, Michael Leuschel, Markus Roggenbach
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Verification of Symmetry Detection using PVS

Shamim Ripon1 and Alice Miller 2∗

1shamim@cs.york.ac.uk
Department of Computer Science, University of York, UK

2 alice@dcs.gla.ac.uk
Department of Computing Science, University of Glasgow, UK

Abstract: One of the major limitations of model checking is that of state-space
explosion. Symmetry reduction is a method that has been successfully used to alle-
viate this problem for models of systems that consist of setsof identical components.
In earlier work, we have introduced a specification language, Promela-Lite, which
captures the essential features of Promela but has a fully defined semantics. We used
hand proofs to show that a static symmetry detection technique developed for this
language is sound, and suitable to be used in a symmetry reduction tool for SPIN.
One of the criticisms often levelled at verification implementations, is that they have
not been proved mechanically to be correct, i.e., no mechanical formal verification
technique has been used to check the soundness of the approach. In this paper, we
address this issue by mechanically verifying the correctness of the symmetry detec-
tion technique. We do this by embedding the syntax and semantics of Promela-Lite
into the theorem prover PVS and using these embeddings to both check the con-
sistency of syntax/semantics definitions, and interactively prove relevant theoretical
properties.

Keywords: Symmetry, Semantics, Theorem Proving, PVS

1 Introduction

Promela-Lite[DM08] is a specification language that captures the core featuresof Promela -
the input language for the SPIN model checker [Hol03]. Unlike Promela, Promela-Lite has a
rigorously defined semantics, making it a suitable vehicle for proving correctness of verification
and state-space reduction techniques for Promela. The language was designed for proving correct
an automatic symmetry detection technique for Promela [DM08]. The technique involves the
derivation of state-space preserving automorphisms from the text of a Promela specification, to
be exploited during search to reduce the space and time requirements of model checking via
symmetry reduction[CEF+96, ES96, ID96]. This symmetry detection technique, based onstatic
channel diagram analysis, has been implemented as part of TopSPIN, a symmetry reduction
package for the SPIN model checker [DM06].

Model checking of a specification described in Promela involves the construction of an as-
sociated Kripke structure [CGP99], the size of which grows exponentially as the number of

∗ This work is funded by EPSRC grant EP/E032354

1 / 16 Volume 35 (2010)

mailto:shamim@cs.york.ac.uk
mailto:alice@dcs.gla.ac.uk

Verification of Symmetry Detection using PVS

components in the system increases. This phenomenon is known asstate space explosion. In
symmetry reduced model checking [CEF+96, ES96, ID96], a quotientstructure is checked in-
stead of the entire Kripke structure. The quotient structure, which is generally smaller than
the original Kripke structure, is constructed using the symmetry in the underlying model. An
automatic symmetry detection technique for Promela is presented in [DM08]. Promela-Lite is
defined to allow us to provide a formal proof of the techniquesused in this automatic symmetry
detection technique. A full grammar, type system, and a Kripke structure semantics of Promela-
Lite have been defined in [DM08] to support the proofs of symmetry detection techniques. These
proofs have been carried out by hand.

The soundness of model checking depends critically on the correctness of underlying algo-
rithms and reduction techniques. For example, an erroneoussymmetry detection method may
compute state-space permutations which are not structure-preserving, potentially resulting in
incorrect verification results. For this reason, it is highly desirable that correctness proofs for
model checking techniques, such as the proof by hand presented in [DM08], are mechanically
verified. Mechanical verification is widely used as a tool to verify the syntax and the semantic
models of a language. Verification of language properties may identify flaws in the language,
which can be remedied to give increased confidence in the language definition. Theorem provers
are heavily used as a tool to mechanically verify language properties. To do this, the language
and its semantic model must be embedded into the theorem prover.

Several theorem provers, such as PVS [ORS92], HOL [GM93], Coq [Be97] and Isabelle
[Pau94], have rich specification languages, automated support fordecision procedures, and
proof strategies tailored to their logics. PVS (Prototype Verification System) is an automated
framework for specification and verification. PVS supports higher order logic, allows abstract
datatypes to model process terms, and has strong support forinduction mechanisms.

In this paper, inspired by other successful attempts to embed specification languages into
PVS [Hel06, POS04, RB09], we show how the Promela-Lite syntax, type system and semantics
can be embedded into PVS, and use this embedding to interactively prove both consistency of the
syntax/semantics definitions, and language properties. Inparticular, we concentrate on proving
theorems related to automatic symmetry detection which have previously been proved only by
hand. By demonstrating how a particular formal technique can be mechanically verified, we lead
the way for mechanical proof to become standard in the development of such techniques.

The rest of the paper is organised as follows. Section2 gives a brief overview of the Promela-
Lite language and illustrates the language features using an example specification of a resource
allocation system. Section3 shows the embeddings of the Promela-Lite syntax, types, andthe
type system into PVS. In section4 we introduce the static channel diagram (SCD) associated
with a specification, and define the automorphism group of a Kripke structure and of anSCD.
We state the main theorem to be mechanically proved in this paper, namely the Correspondence
Theorem. The proof of this theorem is supported by a series oflemmas. We show how each
of these lemmas are proved in PVS and how they are used in the proof of the correspondence
theorem in Section5. After discussing related work in Section6, we give our conclusions in
Section7.

Proc. AVoCS 2010 2 / 16

ECEASST

2 Promela-Lite

A specification in Promela usually consists of a series of global variables and channel declara-
tions, and process type declarations, along with an initialisation process,init. Properties to
be verified are specified either by usingassert statements within specifications, or viaLTL
properties. Promela-Lite [DM08] includes some core features of Promela such as parameterized
processes, channels (first class) and global variables, butomits some types such as enumerated
types, records, arrays, and rendezvous channels. Unlike Promela, a full grammar and type system
along with a Kripke structure semantics of Promela-Lite have been defined.

The syntax of Promela-Lite (see Fig.1) is defined in [DM08] using the standard BNF form
(e.g. [ASU86]). A channel declarationchan c = [a] of {T} defines a buffered channel with
type chan{T} (whereT is a comma separated list of types). Note that all channels are static –
their names cannot be reassigned. A Promela-Lite proctype is a parameterized process definition.
A statement has the form:atomic {〈guard〉 ->〈update-list〉‘;’}, where〈guard〉 is a boolean
expression over variables and〈update-list〉‘;’ is sequence of updates of variables and channels
separated by semicolons. A special referencenull is defined to denote an undefined channel
reference and can be used as a default value. Theinit process consists of a sequence ofrun
statements within an atomic block. Note that in Fig.1 a list statement of the form〈foo-list〉‘∗’
consists of an∗-separated sequence of type〈foo〉, where∗ ∈ {‘;’ , ‘,’ , ‘::’}.

In Fig. 2 we present an example specification (from [DM08]) of a message passing system. It
consists of threeserverprocesses, sixclientprocesses and threeload-balancerprocesses. A par-
ticularclienthas been blocked by the system, indicated by the globalpid variableblocked client.
A load-balancerprocess continuously receives requests sent byclient processes. A request con-
sists of two parts: the identity of aclient (derived from its pid variable), and the input channel
of the client. If the message originates from the blockedclient then theload-balancerreturns
the value 0, indicating that the request has been denied. Otherwise theload-balancerforwards
the name of the input channel of the givenclient to theserverwith the shortest queue of incom-
ing messages (choosing non-deterministically betweenservers which share the shortest queue
length). On receiving aclient channel name, aserveruses it to send the value 1 to theclient.

3 Embedding Promela-Lite

We mechanise the language in two phases. First we define the types, syntax and type system
of the language. The PVS type checker checks the definition types of the language terms and
ensures that the type system is well-defined. We then define the semantics and other related
definitions that are needed for our major theorem. Finally, we define and prove this theorem in
PVS using these definitions and following the hand proofs published in earlier work [DM08].

3.1 Types

The language has primitive typesint (integers) andpid (process ids). The basic channel type has
the formchan{T}, whereT denotes a comma separated list of types. Intuitively, this definition
allows the channel type to be recursively defined as a list of types, including the channel type.

3 / 16 Volume 35 (2010)

Verification of Symmetry Detection using PVS

〈spe〉 ::= 〈hannel〉∗ 〈global〉∗ 〈protype〉+ 〈init〉
〈hannel〉 ::= 〈hantype〉 〈name〉 = [〈number〉 ℄ of { 〈type-list, `,'〉 } ;
〈global〉 ::= 〈type〉 〈name〉 = 〈number〉 ;
〈protype〉 ::= 〈name〉 (〈param-list, `;'〉?) { do 〈statement-list, `::'〉 od }
〈param〉 ::= 〈type〉 〈name〉
〈statement〉 ::= atomi { 〈guard〉 -> 〈update-list, `;'〉 }
〈init〉 ::= init { atomi 〈run-list, `;'〉 }
〈run〉 ::= run 〈name〉 (〈arg-list, `,'〉?) ;
〈guard〉 ::= 〈expr〉 ⊲⊳ 〈expr〉(where ⊲⊳ ∈ {==, !=, <, <=, >, >=})
| nfull (〈name〉)
| nempty (〈name〉)
| ! 〈guard〉
| 〈guard〉 && 〈guard〉
| 〈guard〉|| 〈guard〉
| (〈guard〉)

〈expr〉 ::= 〈name〉
| 〈number〉
| pid
| null
| len (〈name〉)
| (〈expr〉)
| 〈expr〉 ◦ 〈expr〉 (where ◦ ∈ {+, -, *})

〈update〉 ::= skip
| 〈name〉 = 〈expr〉
| 〈name〉 ? 〈name-list, `,'〉
| 〈name〉 ! 〈expr-list, `,'〉 〈arg〉 ::= 〈name〉

| 〈number〉
| null

〈name〉 ::= an alpha-numeri string
〈number〉 ::= a positive integer

Figure 1: Syntax of Promela-Lite.

To encode a language in PVS we must define the available types of the language. The primitive
types ofint andpid can be easily defined in PVS. However, due to the recursive nature of the
channel, all types are defined as aDATATYPE in PVS. The type syntax of Promela-Lite and the
PVS definition is shown in Fig.3. A type, Name, is defined to represent variable names. We
define a function to map a variable name to its type. It allows us to identify the type of a variable
and use an appropriate semantic definition.

3.2 Syntax

Proofs about a language with a BNF style syntax definition often require induction over the terms
of the language. The syntax definition can be directly encoded using abstract datatypes. PVS
generates an induction scheme for the abstract datatypes. Apropertyp on terms can be proved by
showing that it holds for all atoms and that it holds for all operators if it holds for the subterms.

First, we define a datatypes for an expression (expr) and for a guard (guard), each contain-

Proc. AVoCS 2010 4 / 16

ECEASST

chan se1 = [3] of {chan{int}};
chan se2 = [3] of {chan{int}};
chan se3 = [3] of {chan{int}};

chan lb1 = [1] of {pid,chan{int}};
chan lb2 = [1] of {pid,chan{int}};
chan lb3 = [1] of {pid,chan{int}};

chan cl1 = [1] of {int}; chan cl2 = [1] of {int};
chan cl3 = [1] of {int}; chan cl4 = [1] of {int};
chan cl5 = [1] of {int}; chan cl6 = [1] of {int};

pid blocked_client = 9;

proctype loadbalancer(chan{pid,chan{int}} in;
chan{int} client_link; pid client_id; int pc) {

do
:: atomic { pc==1 && nempty(in) -> in?client_id,client_link; pc = 2 }
:: atomic { pc==2 && client_id!=blocked_client -> pc = 3 }
:: atomic { pc==2 && client_id==blocked_client && nfull(client_link)

-> client_link!0; pc = 4 }
:: atomic { pc==3 && len(se1)<=len(se2) && len(se1)<=len(se3) && nfull(se1)

-> se1!client_link; pc = 4 }
:: atomic { pc==3 && len(se2)<=len(se1) && len(se2)<=len(se3) && nfull(se2)

-> se2!client_link; pc = 4 }
:: atomic { pc==3 && len(se3)<=len(se1) && len(se3)<=len(se2) && nfull(se3)

-> se3!client_link; pc = 4 }
:: atomic { pc==4 -> client_id = 0; client_link = null; pc = 1 }

od
}

proctype server(chan{chan{int}} in; chan{int} client_link; int pc) {
do
:: atomic { pc==1 && nempty(in) -> in?client_link; pc = 2 }
:: atomic { pc==2 && nfull(client_link) -> client_link!1; pc = 3 }
:: atomic { pc==3 -> client_link = null; pc = 1 }

od
}

proctype client(chan{int} in; chan{pid,chan{int}} lb; int response; int pc) {
do
:: atomic { pc==1 && nfull(lb) -> lb!_pid,in; pc = 2 }
:: atomic { pc==2 && nempty(in) -> in?response; pc = 3 }
:: atomic { pc==3 -> response = -1; pc = 1 }

od
}

init {
atomic {

run server(se1,null,1); run server(se2,null,2); run server(se3,null,3);

run loadbalancer(lb1,null,0,1); run loadbalancer(lb2,null,0,1);
run loadbalancer(lb3,null,0,1);

run client(cl1,lb1,-1,1); run client(cl2,lb1,-1,1); run client(cl3,lb2,-1,1);
run client(cl4,lb2,-1,1); run client(cl5,lb3,-1,1); run client(cl6,lb3,-1,1);

}
}

Figure 2: Promela-Lite specification of a load-balancing system.

5 / 16 Volume 35 (2010)

Verification of Symmetry Detection using PVS

〈type〉 ::= int
| pid
| 〈chantype〉

〈chantype〉 ::=
〈recursive〉?chan{〈type-list, ‘,’〉}

pid : TYPE={n:int|0<=n AND n<=MAX}
Types : DATATYPE
BEGIN

int(i:int): int?
pd(p:pid) : pid?
channel(chlen: int,

type_list:list[Types]): chan?
END Types

Name : TYPE
typeof : [Names -> Types]

Figure 3: Promela-Lite type syntax and PVS definition

ing constructors, accessors and recognizers. In theguard datatype, constructors are defined for
boolean operators, and relational operators. The definition for 〈expr〉 ⊲⊳ 〈expr〉 is divided into
two parts: one for (⊲⊳∈ {==,!=}), and another for (⊲⊳∈ {<,<=,>,>=}). Later in the type
system definition, we show how these two definitions are used separately. In the definition of
guard, two constructors are defined to check the status of a channel (nfull, nempty). An
update (update) consists of askip, an assignment, or a read/write from/to a channel (denoted
? and ! respectively). The PVS definitions ofexpr, guard andupdate are shown in Fig.4.
Note that we do not use the symbols “=” or “<” directly as they cause a typing conflict in PVS.

expr: DATATYPE
BEGIN
+(e1,e2: expr) : plus?
-(e1,e2: expr) : minus?

*(e1,e2: expr) : star?
name(n: Names) : name?
len(nm: Names) : len?

nul : nul?
num(n: int) : num?
pid(p: pid) : pd?

END expr

guard : DATATYPE
BEGIN
rel(e1,e2:expr): rel?
eq(e1,e2:expr) : eq?
Nt(g:guard) : not?
/\ (g1,g2:guard): and?
\/ (g1,g2:guard): or?
nfull(n:Names) : nfull?
nempty(n:Names): nempty?

END guard

update : DATATYPE
BEGIN
skip : skip?
assign(x:Names, e:expr) : assign?
cin(c:Names,namelist:list[Names]) : cin?
cout(c:Names, exprlist: list[expr]): cout?

END update

Figure 4: Syntax of expression, guard and update in PVS

3.3 Type System

Promela-Lite typing rules are defined following the notation used in [Car97] and ensure that the
language terms are well-formed. A Promela-Lite specification P is well-typed if its statements

Proc. AVoCS 2010 6 / 16

ECEASST

and declarations are well-formed according to these rules.Typing rules forexpr, guard and
update in PVS are shown in Fig5.

Each expression inexpr is type checked, ensuring it is well-typed according to the typing
rules. For example, the arithmetic expression+(e1,e2) returns anint value if the constituent
expressions,e1 ande2, are of typeint.

chktype_expr(e:expr,t:Types):RECURSIVE bool=
CASES e OF
+(e1,e2): EXISTS (t1:Types): int?(t1) AND

chktype_expr(e1, t1) AND
chktype_expr(e2, t1) AND int?(t),

...
nul: chan?(t),

pid(p): pid?(t),
num(num): int?(t),
name(n): (int?(types(n)) AND int?(t)) OR

(pid?(types(n)) AND pid?(t)) OR
(chan?(types(n)) AND chan?(t)),

len(nm): chan?(types(nm)) AND int?(t),
ENDCASES

MEASURE e BY <<

chktype_guard(g:guard) : RECURSIVE bool =
CASES g OF
rel(e1,e2): EXISTS (t:Types): int?(t)AND

chktype_expr(e1,t) AND
chktype_expr(e2,t),

eq(e1,e2) : EXISTS (t:Types):
chktype_expr(e1,t) AND
chktype_expr(e2,t),

Nt(g1) : chktype_guard(g1),
/\ (g1,g2) : chktype_guard(g1) AND

chktype_guard(g2),
\/(g1,g2) : chktype_guard(g1) AND

chktype_guard(g2),
nfull(n) : chan?(types(n)),
nempty(n) : chan?(types(n))
ENDCASES

MEASURE g BY <<

chktype_update(u:update) : bool =
CASES u OF
skip : TRUE,
assign(x,e) : EXISTS (t:Types):

chktype_expr(e,t) AND t = types(x) AND
NOT(chan?(types(x))),

cout(ch,explst): chan?(types(ch)) AND
compare_list(type_list(types(ch)),explst),

cin(ch,nmlist) : chan?(types(ch)) AND chlen(types(ch)) > 0 AND
notchan(name2type(nmlist)) AND

compare_list(type_list(types(ch)),nmlist) AND
cons?(nmlist) AND diff(nmlist)

ENDCASES

Figure 5: Typing rules for expression and guard and update statements in PVS

The typing rules forguard include bothexpr andguard and we use the type system of

7 / 16 Volume 35 (2010)

Verification of Symmetry Detection using PVS

expr in the definition. Two typing rules are defined for relationaloperators:rel(e1,e2)
where the only allowed type isint, andeq(e1,e2)where any type (T) is allowed.

The boolean functioncompare list is defined within the PVS channel write definition
(cout) to ensure that the types of the expressions to be written (e) to the channel are the same as
that of the channel. The functionsnotchan anddiff are defined for a channel read to ensure
that the variables (x) to be updated are different and not of typechan.

The other language terms can be defined using these definitions. For example, the type system
for a statement (〈guard〉 -> 〈update-list, ‘;’〉) can be defined using the type systems of both
guard andupdate.

4 The Automorphism Theorem

In this section we define a Kripke structure, a static channeldiagram and automorphism groups
of both. We then give the main theorem to be mechanically proved, namely the Correspondence
theorem, which relates these two automorphism groups (for agiven specification).

Definition 1 A Kripke structure is a tupleM = (S,S0,R) where:
• S is a finite set of states
• S0 ⊆ S is a set of initial states
• R⊆ S×S is a transition relation.

A path inM from a states∈ S is an infinite sequence of statesπ = s0,s1,s2, . . . wheres0 = s,
such that for alli > 0, (si−1,si) ∈ R. A states∈ S is reachableif there is a paths0,s1, . . . ,s, . . . in
M wheres0 ∈ S0. A transition(s, t) ∈ R is reachableif s is a reachable state.

Definition 2 Let M = (S,S0,R) be a Kripke structure. Anautomorphismof M is a permu-
tation α : S→ S which preserves the transition relation (R) and set of initial states. That isα
satisfies:

• For alls, t ∈ S, (s, t) ∈ R⇒ (α(s),α(t)) ∈ R
• α(s0) ∈ S0 for all s0 ∈ S0.

In fact, we will assume that there is only one initial state, i.e. S0 = {s0}.
The static channel diagram(SCD(P)) of a Promela-Lite specification (P) is a graphical

structure extracted by syntactic inspection of the specification and it can be seen as a static
approximation of the communication structure for the specification.

The static channel diagram is defined in PVS as a coloured graph consisting of a set of vertices
and a set of edges. The vertices consist of a set ofpids and a set of channels. The edges are
constructed by taking one vertex from each of these sets. We define a colouring function to add
colours to bothpids and channels so thatpids of the same proctype have the same colour and
channels of the same type have the same colour.

pidset: TYPE = set[pid]
chset: TYPE = set[chan]
vertices: TYPE+ = [pidset, chset]
edge: TYPE = [# pd: pid, ch: chan #]

Proc. AVoCS 2010 8 / 16

ECEASST

edges : TYPE = setof[edge]
graph: TYPE+ = [vertices, edges]
SCD: TYPE = {g: graph | FORALL (e:edge): g‘2(e) IMPLIES

(g‘1)‘1(pd(e)) AND (g‘1)‘2(ch(e))}

Definition 3 Let Γ = (V,E,ϒ) be a coloured digraph whereϒ is a colouring of(V,E) andα a
permutation ofV. Thenα is anautomorphismof Γ if the following conditions are satisfied:

• For all (u,v) ∈ E, (α(u),α(v)) ∈ E
• For allv∈ V, ϒ(v) = ϒ(α(v)).

An automorphism of the static channel diagram is an automorphism of a coloured graph. To
define the automorphism we define a bijection for the vertices. The vertices consist of bothpids
and channels and bijections are defined for them both.

p_perm: TYPE = (bijective?[pid, pid])
c_perm: TYPE = (bijective?[chan, chan])
Automorph(G): TYPE = {g: SCD | FORALL (p,c,eg):

G‘2(eg) AND pd(eg)=p AND ch(eg)=c IMPLIES
EXISTS (pp,cp):
g‘2((#pd := pp(p), ch := cp(c)#)) AND
color(p) = color(pp(p)) AND
color(c) = color(cp(c)) }

Alpha(p) : TYPE ={ p1: pid |
EXISTS (g:SCD, ag:Automorph(g),pp):
(g‘1)‘1(p) AND (ag‘1)‘1(p) AND p1 = pp(p)}

%%Similar definition is also defined for channel

Given an expressione, guardg, updateuand statementsof P, the permutationsα(e),α(g),α(u)
andα(s) are obtained by replacing each occurrence of static channelname andpid literal with
its respective permutations.

The automorphisms of a Kripke structureM form a group under the composition of mappings
denotedAut(M). In a model of a concurrent system with many replicated processes, Kripke
structure automorphisms typically involve the permutation of process identifiers throughout all
states of the model. There is a groupG which permutes the set of process identifiers, and an
action ofG on S. G partitions the state setS into equivalence classes calledorbits. A quotient
Kripke structureMG can be constructed by using a representative from each orbit. The state
space of the quotient model is usually smaller than the original state space making it convenient
to verify larger structures.

This paper does not concern symmetry reduction, rather the detection of symmetry (to be
later used in reduction). Symmetry reduction involves replacing sets of symmetrically equiva-
lent states by a single representative state. Details of thetechnique of symmetry reduction can be
found in [CEF+96, ES96, ID96]. Our symmetry detection technique is based on a correspon-
dence between the automorphisms of the static channel diagram and automorphisms of the un-
derlying Kripke structure. By showing this correspondencewe can establish that the symmetries
detected by analysing static channel diagram (using computational graph theoretic tools like, for
example, NAUTY [McK90]) infer the symmetries in the Kripke structure and these symmetries
can be used for reduced model checking. In this paper, we prove the following theorem:

9 / 16 Volume 35 (2010)

Verification of Symmetry Detection using PVS

Theorem 1 Let P be a Promela-Lite specification, andα ∈ Aut(SCD(P)) and letρ be the
permutation representation of Aut(SCD(P)). If α is valid forP thenρ(α) ∈ Aut(M).

Note that an automorphism is said to bevalid for P if it maps P to an equivalent speci-
fication, i.e. one that is identical up to ordering of (and within) statements. The proof of the
theorem uses four supporting lemmas. The mechanical proof relies upon giving definitions of
these lemmas in PVS, which are shown in the following section.

5 Proof Mechanisation

In this section we give a flavour of our proof mechanization. Note that for space reasons several
details are omitted e.g. the (rather complex) PVS definitionof a states, and the action of a static
channel diagram automorphismα on s, α(s), together with some subcases of lemmas. Full
details can be obtained from the authors.

5.1 Expressions

Let e be an expression in a proctypep. The result of evaluatinge for processi (of type p) at a
states is denotedevalp,i(s,e).

Lemma 1 Let α ∈ Aut(SCD(P)) and let e be an expression inP.
If e : int then

evalp,i(s,e) = evalp,α(i)(α(s),α(e))

and if e: pid or e: chan{T} then

evalp,i(α(s),α(e)) = α(eval(s,e))

To prove the lemma it is required to evaluate expressions of type int,pid or chan. The rules
for evaluating expressions are shown in Fig.6.

• evalp,i(s,x) = a if (x= a) ∈ s (i.e. x is a global variable)
• evalp,i(s,c) = c if c is a static channel name ornull
• evalp,i(s,a) = a if a∈ Z

• evalp,i(s, pid) = i
• evalp,i(s,len(c)) = k if c is a static channel and(c∈ s(0≤ k≤ cap(c))
• evalp,i(s,len(null)) = 0 (p[i].x= c) ∈ s
• evalp,i(s,e1 ◦e2) = evalp,i(s,e1)◦evalp,i(s,e2) (where◦ ∈ {+,−,∗}).

. . .

Figure 6: Promela-Lite expression evaluation

For expressions of typeint the proof of Lemma1 is a direct implication of permutation over
expressions. For arithmetic expressions the results hold by induction, e.g., whene= e1+e2, we
show that,

evalp,i(s,(e1+e2)) = evalp,α(i)(α(s),(α(e1)+α(e2)))

Proc. AVoCS 2010 10 / 16

ECEASST

We define a lemma for the addition operation for expressions of type int.

arith_lemma : LEMMA
evaluate(s,i)(+(e1,e2)) =

evaluate(alpha(s),alpha(i))(+(alpha(e1),alpha(e2)))

It is fairly straight forward to prove this lemma in PVS. However, the proofs forpid andchan
are more complex. The lemmas for other expressions are similar.

5.2 Guard Statements

In the following, the relations |=p,i g states that a guardg is satisfied for a processp(i) at the
states.

Lemma 2 If α ∈ Aut(SCD(P)) and g is a guard inP then

s |=p,i g ⇔ α(s) |=p,α(i) α(g)

Promela-Lite guards consist of a boolean combination of propositional formulas. The defini-
tion of the relations |=p,i g is shown in Fig.7.

• s |=p,i e1 ⊲⊳ e2 ⇔ evalp,i(s,e1) ⊲⊳ evalp,i(s,e2) (where⊲⊳ ∈ {==,!=,<,<=,>, >=})
• s |=p,i nfull(c)⇔ (c= [~a1,~a2, . . . ,~am]) ∈ sandcap(c)> m, wherec is a static channel
• s |=p,i nempty(c)⇔ (c= [~a1,~a2, . . . ,~am]) ∈ sandm> 0, wherec is a static channel
• s |=p,i nfull(x)/nempty(x)⇔ (p[i].x= c) ∈ sands |=p,i nfull(c)/nempty(c),
• s |=p,i !g iff s 6|=p,i g
• s |=p,i g1&&g2 iff s |=p,i g1 ands |=p,i g2

• s |=p,i g1||g2 iff s |=p,i g1 or s |=p,i g2

• s |=p,i (g) iff s |=p,i g.

Figure 7: Satisfaction of guards

The proof of this lemma uses the proof of Lemma1. We prove Lemma2 with PVS for each
type of guard statement. As an example, consider the caseg = e1 ⊲⊳ e2, wheree1 ande2 are
expressions of typepid. For such a guard, we formulate the following equation from Lemma2.

s |=p,i e1 ⊲⊳ e2 ⇔ α(s) |=p,α(i) α(e1) ⊲⊳ α(e2)

For a guard consisting of boolean operators, e.g.g = g1&& g2, we formulate the following
equation:

s |=p,i g1&&g2 ⇔ α(s) |=p,α(i) α(g1)&&α(g2)

Both guard statements are defined as follows:

eqlema : LEMMA
Guard?(eq(e1,e2))(i,s) =

Guard?(eq(alpha(e1),alpha(e2)))(alpha(i),alpha(s))
andlema : LEMMA

Guard?(/\(g1,g2))(i,s) =
Guard?(/\(alpha(g1),alpha(g2)))(alpha(i),alpha(s))

11 / 16 Volume 35 (2010)

Verification of Symmetry Detection using PVS

5.3 Update Statements

Hereexecp,i(s,u) denotes the result of applying an updateu to states. A statement is said to be
well-defined if the application condition of the statement is sufficient to ensure that the update
(or sequence of updates) results in a well-defined state.

Lemma 3 Let u be an update ofP, α ∈ Aut(SCD(P)) and s a state such that exec(s,u) is
well-defined. Then execp,α(i)(α(s),α(u)) = α(execp,i(s,u)).

To prove Lemma3, first we define the update execution rules. The update execution rules are
described in Table1. We prove Lemma3 by proving it for each type of update statement. The
proof forskip is immediate.

Table 1: Update execution rules

u Conditions on s Resulting state execp,i(s , u)

‘skip’ none s

‘x = e’ (var(x) = a) ∈ s
(

s \ {(var(x) = a)}
)

∪
{(var(x) = evalp,i(s , e))}

‘c!e1, e2, (c = [a1, a2, . . . , am]) ∈ s
(

s \ {(c = [a1, a2, . . . , am])}
)

∪
. . . , ek ’ s |=p,i nfull(c) {(c = [a1, a2, . . . , am , (evalp,i(s , e1),

evalp,i(s , e2), . . . , evalp,i(s , ek))])}
‘c?x1, x2, (c = [(a1,1, a1,2, . . . , a1,k),

(

s \ {(c = [(a1,1, a1,2, . . . , a1,k), a2, . . . , am]),
. . . , xk ’ a2, . . . , am]) ∈ s (var(x1) = b1), (var(x2) = b2), . . . ,

s |=p,i nempty(c) (var(xk) = bk)}
)

(var(xj) = bj) ∈ s ∪{(c = [a2, . . . , am]), (var(x1) = a1,1),
(1 ≤ j ≤ k) (var(x2) = a1,2), . . . , (var(xk) = a1,k)}

‘x!e1, e2, (p[i].x = c) ∈ s execp,i(s , ‘c!e1, e2, . . . , ek ’) (if well-defined)
. . . , ek ’
‘x?x1, x2, (p[i].x = c) ∈ s execp,i(s , ‘c?x1, x2, . . . , xk ’) (if well-defined)
. . . , xk ’

Rules interpreted in the context of processi, an instantiation of proctypep

Assignment: For an assignment statement of the form(x = e), wherex is a variable ande an
expression, we prove the following:

execp,α(i)(α(s),α(x= e)) = α(execp,i(s,x= e))

Following the update rule for an assignment statement in Table 1, we define a function for
update and the following lemma in PVS.

update_assgn : LEMMA
exec(alpha(s),alpha(i),alpha(assign(x,e))) =

alpha(exec(s,i,assign(x,e)))

Channel Write: Let e1,e2, . . . ,ek be the expressions whose values are to be written to a channel

Proc. AVoCS 2010 12 / 16

ECEASST

x in a states.

execp,α(i)(α(s), ‘α(x)! α(e1),α(e2), . . . ,α(ek)
′) = α(execp,i(s, ‘x! e1,e2, . . . ,e

′
k))

In PVS, we define the rules for writing to a channel and define the following lemma:

update_chwr : LEMMA
exec(alpha(s),alpha(i),alpha(c_nm),alpha(ex_lst)) =

alpha(exec(s,i, c_nm, ex_lst))

Channel Read:Let x1,x2, . . . ,xk be the variables to be assigned values reading from a channelx
in a states.

execp,α(i)(α(s), ‘α(x)?x1,x2, . . . ,x
′
k) = α(execp,i(s, ‘x?x1,x2, . . . ,x

′
k))

After defining the rules for reading from channel we define thefollowing lemma:

update_read: LEMMA
exec(alpha(s),alpha(i), alpha(c_nm), v_lst)) =
alpha(exec(s,i, c_nm, v_lst))

The following lemma shows the result of applying a sequence of update statementsu1,u2, . . . ,uk

in a states. This can be proved using Lemma3.

Lemma 4 Let u1,u2, . . . ,uk be updates ofP, α ∈ Aut(SCD(P)) and s be a state such that
execp,i(s,u1; u2; . . . ; uk) is well-defined. Then

execp,α(i)(α(s),α(u1); α(u2); . . . ; α(uk)) = α(execp,i(s,u1; u2; . . . ; uk))

Proof of Theorem1. According to Definition2, we must show that any automorphismα pre-
serves transitions and fixes the initial state.

If (s, t) ∈ R then there is a process with pidi such thatproctype(i) = p (for some proctype
p), and a statementz in p such that the guard ofz holds for processi at s, and execution of the
updates ofz by processi at s leads to statet. Sinceα(P) ≡ P the statementα(z) (possibly
re-arranged) also appears in proctypep. By Lemma2, the guard ofα(z) holds for processα(i)
atα(s), and by Lemma4, execution of the updates ofα(z) by processα(i) at α(s) leads to state
α(t). Therefore(α(s),α(t)) ∈ R. Proof thatα fixes the initial state is omitted here.

We define a transition involving apid variable and the transition preservation property in PVS:

step(s,t): bool = EXISTS (i : pid, z : Statement):
statement_in_proc(i)(z) AND
Guard?(guard(z))(i,s) AND
t = exec(s, i, updates(z))

Automorph: THEOREM
step(s,t) => step(alpha(s),alpha(t))

This property is proved by using Lemma2 and Lemma4.
Similar cases involving local variables and channels are omitted.

13 / 16 Volume 35 (2010)

Verification of Symmetry Detection using PVS

5.4 PVS vs other provers

The most difficult aspect of the presented work was that of embedding the language constructs
and semantics into the prover. There were various possibilities here, we chose a way that was
convenient for our particular proofs.

In any proof, one of the main purposes is to decompose the goalinto one or more simpler
subgoals and find suitable proof steps for each of them. We hadthe advantage of having access
to existing hand proofs, which indicated ways to decompose the proof of Theorem1. It would
have been feasible to use an alternative prover in a similar way. Each prover has its own way
of defining language terms automation facility. PVS provides automated support for combining
proof steps, which would have had to have been performed individually using other provers.

6 Related Work

Promela-Lite and hand proofs of the Automorphism Theorem are presented in [DM08]. No
previous work has been carried out to embed Promela-Lite in atheorem prover or mechanise
these proofs.

In [TBL10] the soundness of symmetry reduction for model checking is proved using the in
the B-Method [Abr96] and its associated tools. They do not consider symmetry detection as we
do, but their work represents one of the few examples where one formal technique is used to
verify another.

In [Hel06], the formal semantics of a specification language Ocsid is embedded into PVS. A
parallel approach is taken where the language is embedded byusing both shallow and deep em-
bedding. Language syntax and corresponding semantics are embedded using deep embedding.
A simple specification is embedded using shallow embedding.A correspondence proof is shown
between the two embeddings. The syntax is embedded using an abstract datatype mechanism
and semantics are defined recursively to return a value type.We use a similar approach.

The specification languageAg is a First-Order Dynamic Logic of Fork Algebra. In [POS04],
the semantics of the language is embedded into the PVS theorem prover allowing for the con-
struction of specifications and readable proofs of various properties of the specifications. The
steps taken to embed the syntax and the semantics, and the features of the theorem prover have
informed our work.

7 Conclusions and Future Directions

We have shown how a mechanical formal verification approach can be used in practice to verify
a formal method - a symmetry detection technique for model checking. Our purpose was to gain
confidence in our symmetry detection technique and to find a feasible mechanisation technique
with which to prove properties of a language, thereby minimising the need for hand proofs.

We have presented a case study, namely the proof of a correspondence theorem supported
by two significant lemmas for the modelling language Promela-Lite. With the strong datatype
support of PVS, such as abstract datatypes and predicate subtypes, we have succinctly defined
the syntax and type system of the language. The formulation of each lemma requires additional

Proc. AVoCS 2010 14 / 16

ECEASST

definitions and, crucially, a clear understanding of the related semantics. In the hand proof it
is easy to be imprecise about various definitions, and typingof the rules. The mechanisation
forces us to be strict about definitions and datatypes. Oftenthe process of performing a proof is
more instructive than getting a final yes/no answer. We have used the theorem prover as a proof
checker. To do this it is necessary to fully understand the reasoning steps of the theorem prover.

We have followed a systematic approach where we have defined the syntax, the type system
and the semantics of the language. Our embedding approach can be easily adapted to other
languages. The main challenge of defining any language in a theorem prover is to properly embed
the semantics. Our experience from this work suggests that the verification of such language
properties for a similar language can be achieved with a reasonable amount of effort.

Mechanical proof should be applied to check the soundness ofa verification implementation
during development. Our current goal is to use the structure of our mechanical proof to prove
the soundness of a symmetry detection technique for a new specification language for symmetric
probabilistic systems [PM10].

Bibliography

[Abr96] J. R. Abrial.The B-Book: Assigning Programs to Meanings. Cambridge University
Press, 1996.

[ARW10] Proceedings of the 17th workshop on Automated Reasoning (ARW 2010). London,
UK, March 2010.

[ASU86] A. V. Aho, R. Sethi, J. D. Ullman.Compilers – Principles, Techniques, and Tools.
Addison-Wesley, 1986.

[Be97] B. Barras, et al. The Coq Proof Assistant Reference Manual : Version 6.1. Technical
report 0203, INRIA, August 1997.

[Car97] L. Cardelli.The Computer Science and Engineering Handbook. Chapter Type Sys-
tems, pp. 2208–2236. CRC Press, Boca Raton, 1997.

[CEF+96] E. Clarke, R. Enders, T. Filkorn, , S. Jha. Exploiting symmetry in temporal logic
model checking.Formal Methods in System Design9(1–2):77–104, 1996.

[CGP99] E. M. Clarke, O. Grumberg, D. A. Peled.Model Checking. MIT Press, 1999.

[DM06] A. F. Donaldson, A. Miller. A Computational Group Theoretic Symmetry Reduction
Package for the Spin Model Checker. InAMAST’06. LNCS 4019, pp. 374–380.
Springer, 2006.

[DM08] A. F. Donaldson, A. Miller. Automatic Symmetry Detection for Promela.Journal of
Automated Reasoning41:251–293, 2008.

[Don07] A. Donaldson.Automatic Techniques for Detecting and Exploiting Symmetry in
Model Checking. PhD thesis, Department of Computing Science, University of
Glasgow, UK, 2007.

15 / 16 Volume 35 (2010)

Verification of Symmetry Detection using PVS

[ES96] E. Emerson, A. Sistla. Symmetry and model checking.Formal Methods in System
Design9(1–2):105–131, 1996.

[GM93] M. Gordon, T. Melham.Introduction to HOL: A Theorem Proving Environment for
Higher Order Logic. Cambridge University Press, 1993.

[Hel06] J. Helin. Combining Deep and Shallow Embeddings.ENTCS164(2):61–79, 2006.

[Hol03] G. J. Holzman.The SPIN model checker: Primer and Reference Manual. Addison-
Wesley, 2003.

[ID96] C. Ip, D. Dill. Better verification through symmetry.Formal Methods in System
Design9:41–75, 1996.

[McK90] B. McKay. nautyuser’s guide (version 1.5). Technical report TR-CS-90-02,Aus-
tralian National University, Computer Science Department, 1990.

[ORS92] S. Owre, J. Rushby, N. Shankar. PVS: A Prototype Verification System. In Kapur
(ed.),CADE’92. LNAI 607, pp. 748–752. Springer-Verlag, June 1992.

[OS93] S. Owre, N. Shanker. Abstract datatypes in PVS. Technical report SRI-CSL-93-9R,
SRI International, Menlo Park, CA, December 1993. Extensively revised June 1997.

[Pau94] L. Paulson.Isabelle: A Generic Theorem Prover. LNCS 828. Springer-Verlag, 1994.

[PM10] C. Power, A. Miller. An approach to probabilistic symmetry reduction. Pp. 32–33 in
[ARW10].

[POS04] C. L. Pombo, S. Owre, N. Shankar. A Semantic Embedding of the Ag Dynamic
Logic in PVS. Technical report SRI-CSL-02-04, SRI International, Menlo Park,
CA, Oct. 2004.

[RAM+93] R. Boulton, A. Gordon, M.J.C. Gordon, J. Herbert, J. van Tassel. Experience with
embedding hardware description languages in HOL. InTPCD’93. Pp. 129–156.
North-Holland, 1993.

[RB08] S. H. Ripon, M. J. Butler. PVS Embedding of cCSP Semantic Models and their
Relationship. In Calder and Miller (eds.),AVoCS’08. Pp. 128–142. 2008.

[RB09] S. H. Ripon, M. J. Butler. PVS Embedding of cCSP Semantic Models and their
Relationship.ENTCS250:103 118, 2009.

[SO99] N. Shankar, S. Owre. Principles and Pragmatics of Subtyping in PVS. In Bert et al.
(eds.),WADT ’99. LNCS 1827, pp. 37–52. Springer-Verlag, September 15-18 1999.

[TBL10] E. Turner, M. Butler, M. Leuschel. A Refinement-Based Correctness Proof of Sym-
metry Reduced Model Checking. InProceedings ABZ’2010. LNCS, pp. 231–244.
Springer-Verlag, 2010.

Proc. AVoCS 2010 16 / 16

	Introduction
	Promela-Lite
	Embedding Promela-Lite
	Types
	Syntax
	Type System

	The Automorphism Theorem
	Proof Mechanisation
	Expressions
	Guard Statements
	Update Statements
	PVS vs other provers

	Related Work
	Conclusions and Future Directions

