
Electronic Communications of the EASST
Volume 6 (2007)

Proceedings of the
Sixth International Workshop on

Graph Transformation and Visual Modeling Techniques
(GT-VMT 2007)

Adding Recursion to Graph Transformation.

Esther Guerra, Juan de Lara

14 pages

Guest Editors: Karsten Ehrig, Holger Giese
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

ECEASST

Adding Recursion to Graph Transformation.

Esther Guerra1, Juan de Lara2

1 eguerra@inf.uc3m.es
Dep. Ingenierı́a Informática

Universidad Carlos III de Madrid (Spain)
2 jdelara@uam.es

Escuela Politécnica Superior
Universidad Autónoma de Madrid (Spain)

Abstract: In this paper we define recursive rules in the double pushout approach
(DPO) to graph transformation. Classical DPO rules are extended with a base case
condition and a recursion condition. Mechanisms are provided to pass the match
from both conditions to the rule’s left hand side, and also between two consecutive
steps in the recursion. The approach is useful when recursive structures (such as in-
heritance hierarchies, nested component hierarchies, networks of functional blocks,
etc.) have to be processed. Although we present the recursion for DPO, it can
also be adapted to other approaches to graph and model transformation. We present
examples for model transformation, model simulation and model optimization in
different application domains.

Keywords: Graph Transformation, Double Pushout, Recursion.

1 Introduction

Graph transformation [Roz97] is becoming increasingly popular to express computations on
graphs due to its formal, declarative and graphical nature. One of the most popular formal-
izations of graph transformation is the double pushout approach (DPO) [EEPT06], which uses
category theory to model rules and derivations. Graph transformation has been used in many
application areas, such as modelling with visual languages [Min02], visual simulation [LV04],
model transformation [EGL+05] and refactoring [EJ04]. The manipulation of structures with
nested, iterated or recursive elements is common in many of these areas.

The formal nature of DPO graph transformation allows interesting analysis techniques, for
example to investigate confluence, termination and rule independence [EEPT06]. Moreover,
the categorical framework has lifted the results from graphs to any (weak) adhesive HLR cate-
gory [LS04, EEPT06] (short AHLR category). However, compared to other approaches [BV06,
KASS03, SWZ99, NNZ00], it lacks expressivity when handling complex structures involving
recursion, iteration or nesting. Processing such structures usually implies performing a certain
action in their different parts (e.g. copying all the attributes of a class to its children). Moreover,
sometimes the structure has to be traversed in a certain order (e.g. when propagating a change
in a network of logical gates). Having high-level constructs to process these kinds of structures
is interesting for model transformation, but as we show, it is also useful for other manipulations
such as optimization and simulation.

1 / 14 Volume 6 (2007)

Recursion in Graph Transformation

Usually, there are two options when processing a recursive structure with DPO rules. As each
element has to be consecutively processed, a solution is encoding helper control elements in the
graph, which guide the application of the rules. However, this is sometimes undesirable or im-
possible, as it implies modifying the meta-model (or type graph) of the model to be transformed.
Another possibility is to flatten the structure. For example, performing the transitive closure
(by adding ancestor edges) can flatten an inheritance hierarchy. Again, this solution implies a
modification of the type graph as well as pre- and post- processing phases.

In this paper we propose recursive rules, which enhance the expressive power of DPO rules
in order to make the recursive processing of structures easier. We extend classical DPO rules
with mechanisms for passing matching information between consecutive rule applications, and
to guide rule execution by traversing structures recursively, where the rule’s action is executed at
each step in the recursion. We present our approach in the AHLR framework, in such a way that
it becomes valid for any AHLR category. In particular, we show an instantiation for attributed
typed graphs. Our approach has several benefits. On the one hand, there is no need to add extra
elements to process the recursive structure. This usually leads to simpler and higher-level rules
as we abstract from “accidental details”, concentrating on the essence of the problem. On the
other hand, the execution of a recursive rule can be more efficient than several DPO simple rules,
as the matches are guided through the structure. Moreover, the framework can be adapted to
other graph and model-transformation approaches.

Paper organization. Section 2 gives an overview of transformation formalisms that consider
the processing of recursive structures. Section 3 introduces the DPO approach. Section 4 presents
our proposal for recursive rules. Section 5 shows additional examples for model simulation and
transformation. Finally, section 6 ends with the conclusions and future work.

2 Related Work

Some approaches to model transformation are found in the literature to handle recursive appli-
cations of a rule. Usually, they are based on the use of some control flow language that guides
the transformation execution. For example, GReAT [KASS03] provides hierarchical data flow
diagrams for control execution, where rules can be placed on blocks and participate in recursive
calls. Control flow in VIATRA [BV06] is specified by means of Abstract State Machine (ASM)
programs, while in Fujaba [NNZ00] it is done by means of story diagrams. In the OMG’s
QVT [OMG] specification, complex transformations can be implemented by using the Opera-
tional Mapping Language either in an imperative or in an hybrid approach.

Other model transformation languages embed control mechanisms in the rules. One example
is UMLX [Wil03], which provides rule encapsulation, thus allowing composition and some de-
gree of recursion. However, traversing a structure can be incomplete if a match of the rule is
not found in some recursion step. MOLA [KBC05] incorporates mainly loopings in the rules
as graphical control structure, and allows the transitive closure and the traversal of the recursive
structure in a single rule. However, the recursion semantics is not formally defined.

In addition to control languages, some approaches offer recursive mechanisms in the left hand
side (LHS) of the rules. These are conditions that can be recursively evaluated by traversing
certain structures in the graph. For example, PROGRES [SWZ99] and Fujaba provide path

Proc. GT-VMT 2007 2 / 14

ECEASST

expressions. Thus, given an initial match, edges can be matched by testing their existence or
by traversing them. Another example is VIATRA, where queries on graphs can be expressed
by generalized (recursive) graph patterns, which may contain a nesting of positive and negative
patterns of arbitrary depth. However, neither path expressions nor recursive patterns can guide
the rule execution. That is, they are expanded by a recursive evaluation, but the rule that contains
them is applied once. Consecutive rule applications require the use of a control language and a
mechanism to pass the elements matched in previous executions to the next execution step.

With respect to approaches based on DPO, there are some attempts to increase the expressive-
ness of DPO rules for refactoring [EJ04]. However, these do not consider recursive application
of rules. In parallel graph transformation [Tae96], standard DPO rules are extended by allowing
certain parts of the rules to be instantiated an arbitrary number of times, and providing synchro-
nization mechanisms controlling the way the matching should occur. Thus, the approach is a
way to describe in a concise way a (possibly infinite) number of rules in which a certain part is
replicated. Again, this is a mechanism for rule expansion, where the rule is applied once.

3 The Double Pushout Approach

In this section we give a brief overview of the double pushout approach (DPO) to graph trans-
formation. See [EEPT06, Roz97] for a more extensive presentation.

Graph grammars are made of rules with a left and right hand side (LHS and RHS). When
a rule is applied to a graph G (the host graph), an occurrence of the LHS (a matching mor-
phism) has to be found in G, which can be then substituted by the rule’s RHS. DPO uses cate-
gory theory to model rules and derivations, and its theory has been lifted from graphs to (weak)
AHLR categories [LS04, EEPT06]. These categories are based on a distinguished class M of
monomorphisms. Examples of AHLR categories are graphs, typed graphs, P/T nets (indeed a
weak AHLR category) and attributed typed graphs. Thus, not only graphs, but also objects in
any (weak) AHLR category (C,M) can be rewritten using DPO rules.

DPO rules are modelled using three components: L, K and R. L contains the necessary ele-
ments to be found in the object to which the rule is applied. K (the gluing object) contains the
elements that are preserved and R those that should replace the identified part in the object being
rewritten. Roughly, L−K are the elements that should be deleted by the rule application, while
R−K are the elements that should be added. We present these two concepts in the following
definitions, taken from [EEPT06].

Definition 1 (DPO rule) Given a (weak) AHLR category (C, M), a DPO rule p = (L l←K r→R)
consists of three objects L, K and R called left hand side, gluing object and right hand side
respectively, and morphisms l : K → L, r : K → R with l, r ∈M .

Definition 2 (DPO derivation) Given a DPO rule p = (L l← K r→ R), an object G, and a mor-
phism m : L→G called match. A direct derivation G

p,m
=⇒H from G to an object H is given by the

diagram to the left of Fig. 1, where (1) and (2) are pushouts. A sequence G0 ⇒ G1 ⇒ ...⇒ Gn

of direct derivations is called a derivation and is denoted as G0
∗⇒ Gn.

3 / 14 Volume 6 (2007)

Recursion in Graph Transformation

L
m
²²

(1)

Kloo r //

d
²²

(2)

R
m∗
²²

X

/ ..

p
Lxoo

m
²²

(1)

Kloo r //

d
²²

(2)

R
m∗
²²

G Dl∗oo r∗ // H G Dl∗oo r∗ // H

Figure 1: DPO Direct Derivation (left). Direct Derivation by DPO Rule with NAC (right).

Sometimes, rules are equipped with application conditions [EEPT06] constraining their ap-
plicability. For simplicity, we only deal with negative application conditions (NACs). These
have the form NAC(x), where x : L → X is a morphism. Morphism m : L → G satisfies NAC(x)
if there is no morphism p : X → G in M ′ with p ◦ x = m (see right of Fig. 1). M ′ is an addi-
tional class of distinguished morphisms than can be M if the latter is the class of all monomor-
phisms [EEPT06]. Next, we define the concepts of AHLR system, grammar and language.

Definition 3 (AHLR system, grammar and language) An AHLR system AHS = (C,M ,P)
consists of a (weak) AHLR category (C, M) and a set of productions P. An AHLR grammar
AHG = (AHS,S) is an AHLR system together with a distinguished start object S. The language
L of an AHLR grammar is defined by L = {G | ∃S ∗⇒ G}.

Example and Motivation. Fig. 2 shows some DPO rules in the category of typed graphs
GraphTG, where objects are tuples (G, typeG). The first element is a graph, and the second
one a typing function typeG : G → T G from G to a distinguished graph called the type graph.
The type graph in the example is taken from a Role Based Access Control system. It models
hierarchies of roles (through relation parent), which can be granted permission (relation perm)
to execute certain functions. The rules present together in a single graph the L, K, R and X
components. Elements in L−K are marked as “del”, elements in R−K as “new” and elements
in X−L as “NAC”. We follow a UML-like notation, where the types are shown after a colon.

Rules in the example are used to eliminate redundant permissions in role hierarchies. A per-
mission is redundant for a role if an ancestor already defines it. The rules first calculate the tran-
sitive closure of relation parent by adding helper edges of type anc. Rule createDirectAncestor
creates such edge to a direct parent. The iterated execution of rule createAncestor performs the
transitive closure. Rule removeRedundantPermission removes relation perm from a role if an
ancestor already has the same permission. We use an execution control structure for rules based
on layers. The three previous rules are assigned the layer one and are applied as long as possible.
Once no rule in this layer can be applied, the next layer is executed. The second layer contains
rule deleteAncestor, which deletes the helper anc edges (i.e. a post-processing step).

Note how, in order to detect redundant permissions, we need to add anc helper edges from
each role to all its ancestors. This is done because we do not know how long is the path of
parent edges starting from a given role. Without the helper edges one could build different rules
(similar to removeRedundantPermission) to eliminate the redundant permission when there is
a direct connection between two roles, when they are separated by a path of two, of three and
so forth. However, for arbitrary structures, this does not work as we may need arbitrarily many
rules. In addition, DPO simple rules only have information of nodes and edges matched by its
LHS. There is no control mechanism that allows moving through a given structure and pass the

Proc. GT-VMT 2007 4 / 14

ECEASST

: perm

: anc

: perm

: Function

{del}

Layer 1
removeReduntantPerm

: Role

: Role

: anc
{del}

Layer 2
deleteAncestor

: Role

: Role

: Role

Layer 1
createAncestor

:parent

: anc: anc : anc

{NAC} {new}

Role

Function

parentanc

Type Graph

perm

: Role

: Role

: parent
: anc: anc

createDirectAncestor
Layer 1

{new}{NAC}
: Role

: Role

Figure 2: Example DPO Rules.

matching information between consecutive derivations. Hence, control information has to be
encoded in the data or, as in this case, the recursive structure has to be flattened.

The solution of adding helper edges (anc in the example) is not optimal. First, we have to
modify the type graph (see Fig. 2). This is undesirable or even impossible in real applications,
if the type graph is a standard meta-model of some modelling language (such as UML), and is
being used by other users and tools. Moreover, if several computations have to be performed, it
is not feasible that each one of them adds different helper structures to the type graph. Second,
there is a pre-processing phase in which helper edges are explicitly added, and a post-processing
phase in which the edges have to be removed. These two phases produce a computation overload.
In the next section we propose a solution to alleviate these problems.

4 DPO Recursive Rules

In this section we extend DPO rules with several artefacts to model conditions for the base and
recursive cases, as well as a mechanism to pass part of the match between the base and recursive
cases, and between two consecutive steps in the recursion.

Definition 4 (DPO recursive rule) A DPO recursive rule pr = (L l←− K r−→ R, Ib, Ir,(I j i j←−
P j p j

−→ L) j∈{b,r},(I j i jr←− P jr p jr

−→ Ir) j∈{b,r}) is made of:

• A DPO rule L l←− K r−→ R, a base condition Ib and a recursion condition Ir.

• The relations between the base (j = b) and recursion (j = r) conditions and L by means of

their common elements (object P j), (I j i j←− P j p j

−→ L) j∈{b,r}, with i j, p j ∈M .

• The relation between the base and the recursion conditions by means of their common

elements (object Pbr), Ib ibr←− Pbr pbr

−→ Ir, with ibr, pbr ∈M .

• The relation between the recursion condition for two consecutive steps in the recursion by

means of their common elements (object Prr), Ir irr←− Prr prr

−→ Ir, with irr, prr ∈M .

with the constraint that Pb and Pr have to be preserved by the DPO rule application, that is, there
are morphisms a : Pb → K, b : Pr → K s.t. l ◦a = pb and l ◦b = pr, i.e. triangles (1) and (2) in
Fig. 3 commute.

5 / 14 Volume 6 (2007)

Recursion in Graph Transformation

Ib Pbiboo

pb
>>

ÂÂ>
>

a

¼¼
(1)

Pbr

ibr
{{

=={{

pbr
DD

!!DD

L K
loo r // R

Ir Priroo

pr
ÄÄ

??ÄÄ

b

DD
(2)

Prr

irr

??
prr

__

Figure 3: Formalization of a DPO Recursive Rule.

Fig. 4 shows a recursive rule that eliminates redundant permissions in role hierarchies, equiv-
alent to the set of standard DPO rules in Fig. 2. To the left, the rule is shown according to the
theory, to the right using a more compact and intuitive notation that will be used throughout the
paper.

: Role : Function

{del}: Roler2: Role
2

r1: Role
1

: Role
2

: Role
1

: Role
2

: Role
1

rb: Rolera: Role

rc: Role
2

P
r

: Role
2

: Role
1

P
rr

: Role
2

: Role
1

P
br

I
r

I
b

P
b

: perm

: perm

1

2
: parent

DPO Rule

: parent

1 3

(1, 1)
(2, 2)

(1, 1)
(2, 2)

(1, 1)
(2, 2)

(1, 1)
(2, 2)

(1, 1)

(2, 2)

(1, 1)
(2, 2)

(1, 1)
(2, 2)

(2, 3)
(1, 1)

removeRedundantPermissionRecursive

(a)

r2: Role
2

Next:
Recursion(r1, r2)

rb: Rolera: Role

rc: Role
2

Next:
Recursion(ra, rc)

: Role : Function

{del}: Role

r1: Role
1

: parent : parent

1 : perm

: perm

1

2

Recursion(ra, rb: Role)Base DPO Rule
removeRedundantPermissionRecursive

(b)

Figure 4: A DPO Recursive Rule Example (a) Theoretical Notation. (b) Compact Notation.

The base condition Ib (labelled “Base” in the compact notation) identifies two roles related
through a parent relation. The DPO rule specifies that if both roles have permission to the same
function, then the permission of the child is deleted. The recursion condition Ir (labelled “Re-
cursion(...)” in the compact notation) goes down the role hierarchy, maintaining the match of the
highest role in the hierarchy identified by the base case. As we will see later, the DPO rule will
be applied for each step in the hierarchy identified by consecutive matchings of Ir. The following
shortcut is used in the compact notation for recursive rules: elements Pb and Pr are hidden, but
can be calculated from the numeric labels. In this way, Pb (resp. Pr) is the intersection of the
numeric labels in Ib (resp. Ir) and the rule. Morphisms pb and pr identify elements with the same
numbers. On the other hand, the relation between Ib and Ir (and between two recursive cases) in
the compact notation is given by means of the call after “Next:” in the base case. Thus, Pbr (and

Proc. GT-VMT 2007 6 / 14

ECEASST

therefore ibr) is given by the actual parameters of the recursion call from the base case (that we
depict using the identities of nodes and edges, shown before the colon). Note also that morphism
pbr is given by the assignment of the formal parameters in the recursive condition (i.e. ra and
rb). In a similar way, Prr (and irr) is given by the actual parameters of the recursion call from
the recursive case and prr by the assignment of the formal parameters in the recursive condition
(i.e. ra and rb). Note how some formal parameters of the recursion may become unused by one
of the two recursive calls, and in this case they are just ignored.

4.1 Derivation by DPO Recursive Rule

A DPO recursive rule derivation is made of three steps, each composed by several sub-steps.
First step. The rule is executed for the base case (see Fig. 5). A match eb : Ib →G (called base

match) has to be found for the base condition Ib, identifying the starting point in the recursive
structure to be processed. Then, a rule match mb

1 : L → G is sought for L, such that eb ◦ ib =
mb

1 ◦ pb, and which has to make (Pb, ib : Pb → Ib, pb : Pb → L) the pullback of (G,eb : Ib →
G,mb

1 : L → G), as square (1) in Fig. 5 shows. Then, rule L l←− K r−→ R is applied once in G,
yielding graph H1. As Proposition 1 shows, match eb still exists in H1. If a match mb

2 : L → H1
is found such that square (2) in Fig. 5 is pullback, we apply again the rule at that match. The
operation is repeated until no match from L is found making Pb a pullback object. The output
of this step is the base match eb, together with graph Hn, obtained as a result of the repeated
applications of the DPO rule. The execution of the recursive rule finishes if @eb such that (1) is
pullback. The execution continues at step 2 even if the DPO rule is not applied.

Pb

ib
¢¢

¡¡¢¢
pb

;;

ÀÀ;;

(1)

Pb

(2)

ib
¢¢

¡¡¢¢
pb

<<

ÀÀ<<

Ib

eb
==

ÁÁ=
=

L
mb

1

££

¢¢££

K
loo r //

k1²²

R
r1

MMMMM

&&MMMM

Ib

eb
==

ÁÁ==

L
mb

2

££

¡¡££

K
r //loo

k2²²

R
r2
²²

· · ·

G D1
f1oo g1 // H1 D2

f2oo g2 // H2 · · ·Hn

Figure 5: Application of Recursive Rule. Step 1: Base Case.

Second step. The rule is executed for the first step in the recursion. Thus, a match er
1 : Ir →Hn

(called recursive match) is sought such that square (1) in Fig. 6 commutes (i.e. eb ◦ ibr = er
1 ◦ pbr)

and makes Pbr a pullback object. As in the base case, a rule match mr
1,1 : L → Hn is sought for

L such that er
1 ◦ ir = mr

1,1 ◦ pr and makes Pr a pullback object, as square (2) shows. If match
mr

1,1 satisfies the constraints given by Proposition 2 (which guarantee the preservation of eb),
the DPO rule is executed at that match yielding Hn+1. As Proposition 1 shows, match er

1 still
exists in Hn+1. If an additional match mr

1,2 : L → Hn+1 is found such that square (3) in Fig. 6
is pullback (and that satisfies Proposition 2), we apply the rule at that match. The operation is
repeated until no such rule match is found. In addition, the process is repeated for additional
recursive matches e′r1 commuting with eb and making Pbr a pullback object. This can be done as
eb is preserved by the DPO rule applications. The output of this step is a graph Hm resulting from
the DPO rule executions, together with the set of recursive matches: {er

1,e
′r
1 , ...}. The execution

7 / 14 Volume 6 (2007)

Recursion in Graph Transformation

of the recursive rule stops if @er
1 such that (1) is pullback. Even if the DPO rule is not applied,

the recursive rule continues in step 3.

Pbr

ibr
¦¦

££¦¦
pbr
::

ÀÀ::

(1)

Pr

ir
§§

££§§
pr
55

½½5
5

(2)

Pr

(3)

ir
££

¡¡££
pr

;;

ÀÀ;
;

Ib

eb
LLLL

%%LLL
L

Ir

er
1²²

L
mr

1,1
ttt

zzttt

K
loo r //

kr
1,1²²

R
rr

1,1

KKK

%%KKK
K

Ir

er
1

<<

ÁÁ<<

L
mr

1,2
¤¤

¢¢¤¤

K
r //lroo

kr
1,2²²

R
rr

1,2²²

· · ·

Hn Dn+1
fn+1oo gn+1 // Hn+1 Dn+2

fn+2oo gn+2// Hn+2 · · ·Hm

Figure 6: Application of Recursive Rule. Step 2: First Recursive Call.

Third step. We execute the following steps in the recursion. The idea is similar to step 2,

but starting from Ir irr←− Prr prr

−→ Ir instead of Ib ibr←− Pbr pbr

−→ Ir. Recursive step i + 1 is applied
for each recursive match provided by previous recursive step, {er

i ,e
′r
i , ...}. Each DPO rule appli-

cation must preserve all these matches, thus each rule match mr
i+1, j must satisfy the conditions

of Proposition 2 for each match provided by previous recursive step. The recursive steps are
executed as long as a match er

j+1 is found for the next step in the recursion such that square (1)
in Fig. 7 is pullback.

Prr

irr¥¥

££¥¥
prr
==

ÁÁ==

(1)

Pr

ir
¤¤

¢¢¤¤
pr
77

¾¾77

(2)

Pr

(3)

ir
ÄÄ

ÄÄÄÄ
pr

>>

ÂÂ>
>

Ir

er
i

LLLL

%%LLL
L

Ir

er
i+1²²

L
mr

i+1,1
ttt

yytt

K
loo r //

kr
i+1,1²²

R
rr

i+1,1

LLL

%%LL

Ir
er

i+1

ÁÁ>
>>

L
mr

i+1,2
¢¢

¡¡¢¢

K
r //loo

kr
i+1,2²²

R
rr

i+1,2²²

· · ·

Hm Dm+1
fm+1oo gm+1 // Hm+1 Dm+2

fm+2oo gm+2// Hm+2 · · ·Hp

Figure 7: Application of Recursive Rule. Step 3: Successive Recursive Calls.

Definition 5 (DPO recursive rule derivation) Given a DPO recursive rule pr = (L l←− K r−→
R, Ib, Ir,(I j i j←−P j p j

−→L) j∈{b,r},(I j i jr←−P jr p jr

−→ Ir) j∈{b,r}), an object G, and a morphism eb : Ib→
G. A DPO recursive rule derivation G

pr,eb
+3 Hp is built as follows:

1. The first step is given by the diagram in Fig. 5, yielding graph Hn and base match eb.

(written G
(eb,mb

1)+3 H1
∗ +3 Hn).

2. The second step is given by the diagram in Fig. 6, yielding graph Hm and (a possibly

empty) set of recursive matches {er
1,e

′r
1 , ...} (written Hn

(er
1,m

r
1,1)+3 Hn+1

∗ +3 · · ·Hk
(e′r1 ,m′r

1,1)+3 · · ·Hm)

3. The third step is given by the diagram in Fig. 7, for each recursive match coming from the
previous application {er

j,e
′r
j , ...}, yielding graph Hp and a (possibly empty) set of recursive

matches {er
j+1,e

′r
j+1, ...} (written Hm

(er
j,m

r
j,1)+3 Hm+1

∗ +3 · · ·Hs
(e′rj ,m′r

j,1)+3 · · ·Hp)

Proc. GT-VMT 2007 8 / 14

ECEASST

This third step is repeated until the set of newly found recursive matches is empty.

Remarks: The recursive rule execution starts at a unique match eb. However, in each recursive
step, the execution considers all morphisms e′rn . In a recursive step, the match is passed between
Ib and Ir, and between Ir and Ir. This is because we want to continue the traversal of the
structure, even if no rule match for L is found at some step. As the DPO rule is executed as long
as possible in every step, and as we seek er

i+1 morphisms as long as possible1, it is possible to

have non-terminating derivations, written G
pr,eb

+3 ∞ . The DPO recursive rule is applied if the
DPO rule is applied at least once.

Definition 3 is modified in a straightforward way, by allowing productions in set P to be either
standard DPO rules, or DPO recursive rules. In a derivation, each step can be given by a standard
derivation or a recursive one.

Next, we show that morphism eb can be extended to the resulting graph of applying the DPO
rule. The discussion for morphism er is similar, so we only present the case for eb.

Proposition 1 (Morphism Extension for Recursive Rule) Given the diagram in Fig. 8(a) (with
(1) pullback, (3) and (4) pushouts, ib, pb, l and r ∈M), morphism eb can be extended to H1.

Pb

ib
ÄÄ

ÄÄÄÄ
pb

>>

ÂÂ>
> a

OOOOO

''OOO
OOO

(1)

Pbidoo

a
²²

(2)

Ib

eb
@@

ÂÂ@
@

e′b

;;

L
mb

1

ÄÄ

ÄÄÄÄ
(3)

K
(4)

loo r //

k1²²

R
r1
²²

G D1
f1oo g1 // H1

(a)

Pb

idkkkkk

uukkkkk u
HH

$$HH
a

²²
Pb

ib
GG

##GG
pb

²²

X
ckkk

uukkkkkkkk

d

²²
Ib

eb

²²

K
lkk

kk

uukkkkkkk k1
HH

$$
L

mb
1

HH

$$HH
D1

f1
jjjjj

uujjjjj
G

(b)

Pb

u
~~

ib

¢¢

k1◦a

||

Ib

eb

²²

Xcoo

d
²²

G D1f1oo

(c)

Figure 8: (a) Extension of eb Morphism. (b) Showing that (3) is a van Kampen Square. (c)
Universal Pullback Property.

Proof: First, note that (2) is a pullback. In order to show the existence of a morphism e′b : Ib→
H1, we use the fact that pushout (3) is a van Kampen square. For that purpose, we build a
cube taking (3) at the bottom, and pullbacks (2) and (1) as back-left and front-left faces (see
Fig. 8(b)). We close the cube by calculating the pullback of eb : Ib → G and f1 : D1 → G, given
by (X ,c : X → Ib,d : X → D1). By the universal property of pullbacks (see Fig. 8(c)), there is
a unique arrow u : Pb → X (as eb ◦ ib = f1 ◦ k1 ◦a). Pb is the pullback object of k1 and d by the
pullback composition and decomposition lemma. The four lateral faces are pullbacks, and (3)
is a pushout along M (l, f1 ∈M), and therefore a van Kampen square by definition of AHLR

1 Due to the possible presence of cycles in the graph to be traversed. This can be controlled with NACs in the
recursive condition, see the end of the section, and the last example in the paper.

9 / 14 Volume 6 (2007)

Recursion in Graph Transformation

category. Thus the top square is a pushout as well. In particular c : X → Ib is an isomorphism as
the oposite arrow is also an isomorphism. Therefore, we obtain e′b = g1 ◦d ◦ c−1 2

Note that in the first and successive recursive steps, the DPO rule can be applied as long as
possible. Moreover, after such rule applications, an additional match e′ri is sought in order to
repeat the rule applications. Therefore, a DPO rule application in the first recursive step has
to preserve eb (see Figure 6). In a similar way, in recursive step i + 1 a DPO rule application
has also to preserve match er

i (see Figure 6) as well as the set of matches output by previous
recursive step. The conditions for this preservation are stated in next proposition. We only show
the preservation of the base morphism eb in the first recursion step, as the other cases are similar.

Proposition 2 (Preservation of Base Match in First Recursive Step) Match eb : Ib → Hn is
preserved after a standard rule application through match mr

1,1 : L→ Hn (as Figure 9(a) shows)
if ∃br : P→Pr where (P,bb : P→ Ib,bl : P→ L) is the pullback of eb : Ib →Hn and mr

1,1 : L→Hn

(as Figure 9(b) shows).

Pbr
ibr

¢¢££
££ pbr

ÁÁ>
>>

>>

(1)

Pr

ir
¤¤

¢¢¤¤
pr

88

¿¿88
(2)Ib

eb
NNNN

&&NNN
N

e′b

::

Ir

er
1²²

L
(3)mr

1,1
rrr

yyrrr

K
loo r //

kr
1,1²²

R
rr

1,1
²²

Hn Dn+1
fn+1oo gn+1// Hn+1

(a)

P
bb

bl

¶¶

br
==

ÁÁ==

Pbr

ibr¢¢££
££ pbr

ÁÁ>
>>

>>

(1)

Pr

ir
¤¤

¢¢¤¤
pr

88

¿¿88
(2)

b

»»
Ib

eb
NNNN

&&NNN
N

Ir

er
1²²

L
mr

1,1
rrr

yyrrr
(3)

K
loo

kr
1,1²²

Hn Dn+1
fn+1oo

(b)

Figure 9: (a) Extension of eb in Recursive Step One. (b) Condition for Standard Rule Derivation.

Proof: Using the fact that (3) is a van Kampen square, by using the pullback square spawned
by P as front left face, taking b ◦ br : P → K, and then following the construction shown in
Proposition 1. 2

Remarks: In the general case P is not isomorphic to the pullback object of pbr : Pbr → Ir and
ir : Pr → Ir. If the conditions stated in this proposition are not satisfied, then the DPO rule cannot
be applied.

Example. Fig. 10 shows a derivation of the DPO recursive rule shown in Fig. 4. First, a match
of the base condition Ib is identified in G. The match is given by the elements labelled with the
same numbers as in Ib, which in addition are coloured. Next, a match of the LHS is sought in G
through the elements identified by Ib (i.e. the roles matched by the base condition are the ones
used in the math of the LHS). One match is found for which the rule is applied, yielding graph
H1. The rule deletes a permission for a role if its parent already defines it (as the base condition
identified). Since no other match of the LHS is found in the graph for the base condition, the
first recursive step starts. A match of Ir in the graph is found that maintains the match for the
role labelled as “1”, and identifies the role labelled as “2” with its direct child. Next, a match

Proc. GT-VMT 2007 10 / 14

ECEASST

Application
DPO rule

Case I r
Recursive

Case I r
Recursive

Application
DPO rule

through I r

LHS
Match

Application
DPO rule

through I r

LHS
Match

: Function

: Role

: Role

: Role

: Role
: Function2

1

: perm

: perm

: perm

G

: parent

: parent

: parent

: perm : perm

: Role

: Role

: RoleMatchb
Base

: perm

: perm

: parent

: parent

: parent

2

H2

: perm

: Role : Function

: Role

: Role

: Role

: Function

1

: perm

: perm

: parent

: parent

: parent

2

H3

through I

LHS

Case I

: Role

: Function

: Function2

1
: perm

: parent

: parent

: parent

H1

: perm : perm

: perm

: Role

: Role

: Role

: Role

: Function

: Function2

1

: perm

: perm

: perm

G

: parent

: parent

: parent

: perm : perm

b

: Role

: Role

: Role

: Function

: Role

: Function

1

: perm

: perm

: parent

: parent

: parent

H1

2

: perm : perm

: Role : Function

: Role

: Role

: Role

: Function

1

: perm

: perm

: parent

: parent

: parent

H1
2

: perm : perm

: Role : Function

: Role

: Role

: Role

: Function

1

: perm

: parent

: parent

: parent

H1
2

: perm : perm

: perm

: Role : Function

: Role

: Role

: Role

: Function

1

: perm

: perm

: parent

: parent

: parent

2

H2

: perm

: Role : Function

: Role

: Role

: Role

: Function

1

Figure 10: A DPO Recursive Derivation.

of the LHS is sought on the graph through the roles newly labelled “1” and “2”, but none is
found. Thus, a new step in the recursion starts. A new match of Ir is searched in the graph that
maintains the match for role “1” and identifies role “2” with its direct child. Now, two matches
of the LHS are found (i.e. the parent role has two permissions which role “2” also defines). In a
first application of the DPO rule, one of the permissions is deleted yielding graph H2. A second
application of the DPO rule at the other match deletes the second redundant permission yielding
graph H3. Since neither matches of the LHS nor matches of the recursive condition are found,
the derivation concludes.

Application Conditions. Previous derivation has started in the top-most role in the hierarchy.
However, the initial match eb could also have identified other roles as base condition. In order to
identify the top-most role, we need a NAC associated to Ib, which forbids the match if the role
has some parent. We extend recursive rules with NACs for Ib, Ir and the DPO rule.

Definition 6 (DPO recursive rule with NACs) A recursive rule with NACs pr = (L l←− K r−→
R,NACL, Ib,NACIb , Ir,NACIr ,(I j i j←− P j p j

−→ L) j∈{b,r},(I j i jr←− P jr p jr

−→ Ir) j∈{b,r}) is made of a

a recursive rule (L l←− K r−→ R, Ib, Ir,(I j i j←− P j p j

−→ L) j∈{b,r},(I j i jr←− P jr p jr

−→ Ir) j∈{b,r}) and
three sets NACJ = {(XJ,xJ

i : J → XJ
i)} (for J ∈ {L, Ib, Ir}) of NACs for L, Ib and Ir.

Previous definition modifies the concept of derivation in the following way. A valid match
eb : Ib → G has to satisfy NAC(xIb

j), ∀(X Ib

j ,xIb

j) ∈ NACIb , and similar for Ir and L.

11 / 14 Volume 6 (2007)

Recursion in Graph Transformation

5 Additional Examples

This section shows further examples in the category of attributed typed graphs [EEPT06] (also
an AHLR category). In this category, objects are typed graphs, with edge and node attribution.

Model Transformation. Transforming class diagrams into relational data base models is a
common case study when studying the expressivity of model transformation languages [EGL+05].
It requires handling complex structures such as inheritance hierarchies. This transformation im-
plies mapping each persistent class to a table, and all its attributes and associations to columns
in this table. However, only top-most classes in the inheritance hierarchy have to be mapped
into tables; additional attributes and associations of subclasses result in additional columns of
the top-most classes. For the present example, we only consider this excerpt of the problem and
restrict to transformation of attributes with a primitive data type.

: c2t

: Table

name = n

: parent

: c2t: Table

: Class

{new}

{NAC}

{NAC}
(non−recursive rule)Class2Table

t1: Table

c1: Class

1

2
: c2t

Next:
Recursion(t1, c1)

c2: Class

c: Class t: Table

1

2

: parent

Next:
Recursion(t, c2)

: Table

: Class
: Attribute

name = n

: Primitive

name = t

 DataType

{NAC}

2

: attrs
1

: type

: cols

: a2c

: Column

name = n
type = t {new}

: a2c

: Column

DPO RuleBase Recursion(t: Table, c: Class)
(recursive rule)PrimitiveDataTypeAttribute2Column

: Class

name = n
is_persistent = true

Figure 11: DPO Recursive Rules for Model Transformation.

Using standard DPO rules to perform the transformation would possibly imply the flattening
of the hierarchy (see the solutions proposed in [EGL+05]). This is not optimal as it requires
modifying the type graph (the meta-model), together with pre- and post-processing rules. We
can avoid this flattening by using a DPO recursive rule as the one shown in Fig. 11. The first rule
in this figure is a DPO standard rule that creates a table for each top-most class in the hierarchy.
The second rule is recursive. The base condition identifies a top-most class in the hierarchy (the
one with an associated table). The DPO rule maps a column to each attribute of this class, if
such column has not been created before. The column is added to the table mapped to the class.
The recursive condition goes down the class hierarchy, maintaining the match of the table. In
this way, the application of the rule in the recursive steps creates a column in the table for each
attribute of the descendant classes of the base class.

Model Simulation. Fig. 12 shows a recursive rule that updates a network of two-input logical
gates when one of the inputs changes. The network of gates can be seen as a recursive structure,
which must be traversed to update the output of the gates in each step. The type graph contains
a node Bit, connected to a Gate by relations in and out. Bits have a self-loop to indicate that
their value has been changed externally, and an attribute value of type bit. Gates have attribute
operation, an enumerate type with values or and and, indicating the operation it performs.

In the DPO recursive rule, the base condition looks for a bit that has been changed (i.e. it has
a self-loop). The DPO rule updates the output of the gate2. An application condition makes the
DPO rule applicable only if the value of the output bit has to be updated. We add this attribute
2 “value=[c, op(a,b)]” denotes that “value” changes from “c” to “op(a,b)” due to the DPO rule application.

Proc. GT-VMT 2007 12 / 14

ECEASST

Recursion(bi: Bit)

: Gatebi: Bit
: Gate

operation = op
: Bit

value = b

value = a

bo: Bit

: Bit

value = c

CONDITION: c != op(a,b)

: out: in

: in
: in

: out

1

Next:
Recursion(bo)

b: Bit

1

Next:
Recursion(b)

Base

: Bit

value = a

: Bit

value = b

: Gate

operation = op

: Bit

value =
 [c, op(a,b)]

DPO Rule

CONDITION: c != op(a,b)

: in
: in

1

: out

propagateChange

Figure 12: DPO Recursive Rule for Model Simulation.

condition as we may have loops in the network, so the rule must not be applicable if a bit has
already the correct value. The recursive condition advances through the network of gates and has
a condition which prohibits finding a match if the output gate already has a correct value. Thus,
rule application ends when all the bits dependent on the changed bit are updated.

Solving this problem using DPO simple rules would probably imply encoding control ele-
ments in the graph to guide rule application. These control elements have to mark the bits to be
recalculated, and take care that this calculation occurs in the right order.

6 Conclusions and Future Work

We have presented a novel approach for modelling recursive rules in the DPO approach. The
main idea is to provide DPO rules with base and recursive conditions, together with mechanisms
to pass the matching between successive recursion steps. The execution mechanism performs a
width-first traversal of the recursive structure, while guaranteeing its preservation by the DPO
rule applications. We have shown the utility of the approach for structures that can be recursively
dealt with, such as inheritance hierarchies, networks of components, etc. We have presented
several examples in the areas of model simulation, model optimization and model transformation.
The solution of the presented problems using DPO simple rules would imply either the flattening
of the structure by adding helper edges, or encoding control elements in the host graph to guide
rule execution. As we showed, both solutions are not optimal as they imply modifying the type
graph and defining pre- and post-processing rules. We believe our DPO recursive rules are a
solution to this problem. Moreover, the presented techniques may serve as the basis for a formal
rule execution control language with parameter passing.

There are several useful extensions to this approach. The first one is having more than one
recursive condition (i.e. more than one Ir). This is useful if the structure to be traversed is not
uniform, but it is made of different edge types. The second one is having more than one DPO
rule in a recursive rule. This is useful if slightly different actions have to be performed at each
step in the recursion, and allows for indirect recursion. It is also worth studying termination
and conflicts of DPO recursive rules, as well as different execution policies. Moreover, given a
recursive rule, we are investigating the construction of a (possibly infinite) set of standard DPO
rules, such that the execution of one of them is equivalent to the execution of the recursive rule.

Acknowledgements: This work has been partially sponsored by the Spanish Ministry of Ed-
ucation and Science with projects MOSAIC (TSI2005-08225-C07-06) and MODUWEB (TIN

13 / 14 Volume 6 (2007)

Recursion in Graph Transformation

2006-09678). The authors gratefully thank the referees for their useful suggestions.

References

[BV06] A. Balogh, D. Varró. Advanced Model Transformation Language Constructs in the
VIATRA2 Framework. In Proc. ACM SAC’06. Pp. 1280–1287. 2006.

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer. Fundamentals of Algebraic Graph Trans-
formation. Springer, Berlin, Heidelberg, New York, 2006.

[EGL+05] K. Ehrig, E. Guerra, J. de Lara, L. Lengyel, T. Levendovszky, U. Prange, G. Taentzer,
D. Varró, S. Varró-Gyapay. Model Transformation by Graph Transformation: A
Comparative Study. In MTiP 2005, (Satellite Event of MoDELS 2005). 2005.

[EJ04] N. V. Eetvelde, D. Janssens. Extending Graph Rewriting for Refactoring. In Proc.
ICGT’04. LNCS 3256, pp. 399–415. Springer, 2004.

[KASS03] G. Karsai, A. Agrawal, F. Shi, J. Sprinkle. On the Use of Graph Transformation in
the Formal Specification of Model Interpreters. JUCS 9(11):1296–1321, 2003.

[KBC05] A. Kalnins, J. Barzdins, E. Celms. Model Transformation Language MOLA: Ex-
tended Patterns. In Proc. DB&IS’2004. Volume 118, pp. 169–184. IOS Press, 2005.

[LS04] S. Lack, P. Sobocinski. Adhesive Categories. In Walukiewicz (ed.), FoSSaCS.
LNCS 2987, pp. 273–288. Springer, 2004.

[LV04] J. de Lara, H. Vangheluwe. Defining visual notations and their manipulation through
meta-modelling and graph transformation. JVLC 15(3-4):309–330, 2004.

[Min02] M. Minas. Concepts and realization of a diagram editor generator based on hyper-
graph transformation. Sci. Comput. Program. 44(2):157–180, 2002.

[NNZ00] U. Nickel, J. Niere, A. Zündorf. The FUJABA environment. In Proc. ICSE ’00.
Pp. 742–745. ACM Press, 2000.

[OMG] OMG. QVT Specification at:http://www.omg.org/docs/ptc/05-11-01.pdf.

[Roz97] G. Rozenberg (ed.). Handbook of graph grammars and computing by graph trans-
formation: volume I. foundations. World Scientific Publishing Co., Inc., 1997.

[SWZ99] A. Schürr, A. J. Winter, A. Zündorf. The PROGRES approach: language and envi-
ronment. World Scientific Publishing Co., Inc., 1999.

[Tae96] G. Taentzer. Parallel and Distributed Graph Transformation. Formal Description and
Application to Communication-Based Systems. Shaker Verlag, 1996.

[Wil03] E. D. Willink. A concrete UML-based graphical transformation syntax: The UML to
RDBMS example in UMLX. Metamodelling for MDA, York, England, 2003.

Proc. GT-VMT 2007 14 / 14

