
Electronic Communications of the EASST
Volume 35 (2010)

Proceedings of the

10th International Workshop on

Automated Verification of Critical Systems

(AVoCS 2010)

Checking Consistency Between Message Choreographies And Their
Implementation Models

Vitaly Kozyura, Andreas Roth, Sebastian Wieczorek and Wei Wei

15 pages

Guest Editors: Jens Bendisposto, Michael Leuschel, Markus Roggenbach
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Checking Consistency Between Message Choreographies
And Their Implementation Models

Vitaly Kozyura, Andreas Roth, Sebastian Wieczorek and Wei Wei

SAP Research CEC Darmstadt, SAP AG, Bleichstr. 8, 64283 Darmstadt, Germany
[v.kozyura|andreas.roth|sebastian.wieczorek|wei01.wei]@sap.com

Abstract: Applying the concepts of Service-Oriented Architectures (SOA)
has already become a mainstream in industry. The development of business
applications according to these principles implies a layered design and imple-
mentation. This paper describes an industrial approach to the verification of
a consistency relation between such layers. In our case service choreographies
defined by Message Choreography Models (MCM) and their corresponding
implementation models represented as Business Objects are examined. By
translating both into Event-B specifications we are able to prove the con-
sistency relation between them. A number of case studies with realistic in-
dustrial software models were carried out which showed the solidness of our
verification technique. Apart from giving details about our concrete realiza-
tion, this paper also discusses general challenges that have to be faced when
developing a verification approach applicable for the real-world systems.

Keywords: SOA, Modeling, Choreography, Industrial

1 Introduction

Service-oriented architectures (SOA) provide frameworks and methods to compose single
services in order to realize complex business scenarios. At the lower end, a single service
is described as a set of operations and message types. Its functions usually rely on a sim-
ple request-response pattern, which can be specified using standards like XML, SOAP,
and WSDL. At the service integration level, more complicated specifications are needed
to capture not only the formats of messages, but also the orders and dependencies among
exchanged messages, in particular, both control-flow and data-flow dependencies. Thus,
the challenge of the SOA-based development lies in the integration of different services
according to the defined business processes. Choreography languages were introduced to
describe the interaction protocols between service components communicating over mes-
sage channels from the perspective of a global observer. Further, choreography languages
also allow the specification of the communication behavior of local components.

SOA adoption is gaining pace toward becoming a mainstream [3]. Being a leader in
the area of business software, SAP delivers SOA via its service-enabled software (e.g.,
SAP Business ByDesign1, SAP Business Suite2) and its open technology platform SAP

1 http://www.sap.com/sme/solutions/businessmanagement/businessbydesign
2 http://www.sap.com/solutions/business-suite

1 / 15 Volume 35 (2010)

mailto:[v.kozyura|andreas.roth|sebastian.wieczorek|wei01.wei]@sap.com
http://www.sap.com/sme/solutions/businessmanagement/businessbydesign
http://www.sap.com/solutions/business-suite

Checking Consistency Between Choreographies And Implementation

NetWeaver3. In a model-driven fashion, the enterprise SOA developed at SAP utilizes
many different types of models for business objects, deployment units, service compo-
nents, service interfaces, integration scenarios, business process variants, and service
choreographies [4].

The development of business applications according to the SOA principles implies a
layered design and implementation. In precursory work we have shown how consistency
can be verified for two layers of message choreography models: between global choreo-
graphy models and local partner models [6]. The work presented in this paper focuses on
another consistency problem: the one between message choreographies (more precisely,
local partner models) and their implementation models. Implementation models are not
final implementation code. Even though very close to actual implementation details, they
specify only the aspects relevant to the changes of internal life cycles of business objects
in terms of state transition graphs. Therefore, our work is not concerned with source code
analysis. Like our previous approach in [6], we check consistencies through a translation
into Event-B [1], a formal specification language supported by the Rodin platform [9].
This work has been carried out in the context of SAP software developments, and we
will report on the experience we gained from it.

Section 2 gives an overview of layered development and explains the motivation of
ensuring consistency between different layers from an industrial perspective. Section 3
briefly discusses the choreography modeling language MCM and its verification. Sec-
tion 4 introduces the basic concepts of implementation models used at SAP. Section 5
describes the transformation of implementation models to Event-B. How these formal
representations are used for enforcing consistency and application specific properties is
shown in Section 6. Section 7 concludes the paper and discusses the lessons learnt.

2 Industrial Context

Our modeling approach is based on a three-layer architecture. In this paper we focus on
the consistency relation between the last two layers. (1) Global Choreography Mod-
els (GCMs) describe a high-level view of the conversation between components. Based
on labeled transition systems, they define every allowed sequence of messages as observed
by a global observer. (2) Local Partner Models (LPMs) specify the communication-
relevant behavior for each participating component. Each LPM has the same control
structure as the GCM, and may have extra constraints on its local transitions. There is
also a channel model (CM) describing the characteristics of the communication channels
on which messages are exchanged between service components. (3) Implementation
Models (IMs) are used as close abstractions of the final implementation code for busi-
ness objects contained in local service components. They are described in terms of
communicating UML state machines.

GCMs are used as a part of user requirements, and therefore we need to maintain
the consistency between GCMs and IMs in order to guarantee that the implementation
fulfills the requirements. There are various ways to define consistency relations between

3 http://www.sap.com/platform/netweaver

Proc. AVoCS 2010 2 / 15

http://www.sap.com/platform/netweaver

ECEASST

models [10]. Considering our application domain, we define consistency in terms of
trace inclusion. This paper presents a formal approach to keep GCMs, LPMs and IMs
consistent, by stepwise checkings between adjacent abstract layers as follows.

The consistency between GCMs and LPMs can be enforced by two approaches [2]:
a generative approach where consistent LPMs are generated from GCMs, or a checking
approach where GCMs and LPMs are created separately and their consistency is after-
ward verified. While the first ensures that global and local views are always consistent,
it makes changes to the local models considerably less flexible and more difficult. The
latter approach allows for such “asymmetric” changes, but requires manual effort to up-
date the global view when changes to the local models are made. In [6] we described a
mixed approach that takes best of both worlds.

The consistency between LPMs and IMs is the main concern of this paper. We
use the Event-B specification language [1] and the Rodin platform [9] to rigorously ver-
ify the consistency between LPMs and IMs. Consistencies are expressed in terms of
event refinements in Event-B, and can be verified using either theorem proving or model
checking (by ProB [7]).

Besides consistency, we also consider model specific properties such as absence of dead-
locks and other safety properties. In order to check these properties, we either formulate
them as additional invariants and prove their correctness, or express them in LTL for-
mulas which are then validated by the ProB model checker.

3 Global Choreography and Local Partner Models

A message choreography model (MCM) [11, 13, 12] complements the static information
of communication interfaces with dynamic information on message exchanging sequences
and dependencies. Due to limited space, we are unable to give a detailed description of
the MCM language. We use an example model from [11] to briefly introduce the modeling
elements in MCM.

Two service components, a buyer and a seller, negotiate a sales order. The buyer starts
the communication by sending a Request message that will be answered with a Confirm
message by the seller. The buyer afterward has the choice of either to send a Cancel
message that rolls back the previous communication and allows to restart the negotiation
or to send an Order message that successfully concludes the ordering process. We assume
a (reliable) communication channel that is not necessarily preserving the message order.
Because of this a Cancel message can be delivered after a new negotiation process already
started.

Figure 1 shows the MCM model for the above example, which consists of one GCM,
two LPMs, and a channel model. In the GCM at the top of Figure 1, the arrows la-
beled with an envelope depict the interactions Request, Confirm, Cancel, Order, and
Cancel(deprecated)4 which are ordered with the help of the states Start, Request, Re-

4 Deprecated here means that the message is out-dated and no-longer relevant as the negotiation has
been restarted.

3 / 15 Volume 35 (2010)

Checking Consistency Between Choreographies And Implementation

served, and Ordered. The states connected with a filled circle, i.e. Ordered and Start are
so-called target. Only in these states, the communication between the partners is allowed
to terminate.

Global
Start

Cancel

Reserved

Order

Ordered

Request

Offer

Cancel
(deprecated)

Cancel
(deprecated)

Requested

Cancel
(deprecated)

buyer
seller

Buyer
Start

Cancel

Reserved

Order

Ordered

Request

Offer

Requested

receive
send

Seller
Start

Cancel

Reserved

Order

Ordered

Request

Offer

Cancel
(deprecated)

Cancel
(deprecated)

Requested

Cancel
(deprecated)

receive
send

EO
Channel

Figure 1: GCM (top) of the choreography and LPMs of the buyer (left) and the seller
(right)

The LPM of the buyer partner of our example is depicted in the lower left part of
Figure 1. It is a structural copy of the GCM, but the interaction symbols now represent
send or receive events of the buyer. Moreover some send-events are ”inhibited” by special
local constraints. It is for example inhibited that a Cancel(deprecated) is ever sent (thus
these send-events have been erased) and that a Request is sent in the Reserved state.
However, due to possible message overtaking on a channel that does not guarantee to
enforce the message order during transmission, receiving a deprecated Cancel is possible
on the seller side. The LPM of the seller is depicted in the lower right part of Figure 1
with the exact structure as the GCM.

MCM can be naturally translated into Event-B: interactions are simply represented as
events, and the consistency between GCM and LPMs is expressed by Event-B refinement.
The translation was already implemented, and also easily integrated with other tools,
such as an MCM editor, thanks to the extensibility of the Eclipse-based Rodin platform.

Proc. AVoCS 2010 4 / 15

ECEASST

The details of the translation can be found in [11]. Here, we sketch the translation as
follows.

For each transition in the GCM we generate exactly one event. For representing the
states we define global status variables. In the local model we generate events represent-
ing sending and receiving of messages. Depending on the viewpoint either the send or the
receive event can be defined to be a refinement of the corresponding interaction in GCM.
The global status variable is duplicated for each LPM. In receive events, local variables
(parameters) are used in order to obtain some message from a channel. A channel is
defined as a global variable of type P(T), where T is a set of possible message types,
denoting the set of messages being exchanged. It is initialized with ∅. Typically, we
have two partners P1 and P2 and two sequencing contexts (exactly once (EO) and exactly
once in order (EOIO)). In that case we obtain four possible channels in the model (two
in each direction).

The purpose of the verification procedure is to prove local enforceability property
for choreographies. In [13] we have defined a notion of local enforceability as a trace
inclusion: Traces of the local model must be a subset of traces of the global model.
Trace inclusion can be proved by showing that the local model is a refinement of the
corresponding global one, with the help of the translation to Event-B.

In [5] it is shown how to generate automatically the gluing invariants between global
and local models, which are for the practical examples usually enough in order to prove
the refinement relation without adding any additional invariants.

4 Implementation Model

Business objects (BO) are basic units of business data and logic, which are contained in
service components. Their life cycle states can be influenced by inter-BO communication
described in choreography models. In this paper, we model the life cycle of business
objects as implementation models. These can be considered as refinements of their com-
munication interfaces (i.e., local partner models), as illustrated in Figure 2. A business
object contains a number of nodes organized in a tree-like structure. The changes made
to each business node can be modeled using a UML State Diagram [8].

Figure 2: Refinement relations

We define implementation models as model “templates” from which many model in-

5 / 15 Volume 35 (2010)

Checking Consistency Between Choreographies And Implementation

stances can be generated, which satisfy further constraints specified in templates. Due
to limited space, we only give an intuitive introduction to implementation models using
the example in Figure 3.

Figure 3: Example of an implementation model

An implementation model contains (1) a set of node types such as Root and Item

in the example; (2) one single root node type (Root in our example); and (3) a set
of node relation types such as Items that associates the root with a set of Item nodes.
Furthermore, there are two sets of constraints: (1) The first set specifies how many nodes
of each type are allowed for any BO instance, which is abbreviated by the number in
the up-right corner of the corresponding node type. In our example, there can be only
one Root node per BO instance (as indicated by the number 1) and an arbitrary number
of Item nodes per BO instance (as indicated by “n”). (2) The second constraint set
specifies the multiplicity of each node relation type. In our example, the Items relation
is a one-to-many mapping, i.e., an arbitrary number of Items can be associated with the
root with respect to this relation.

Our variant of state machines is demanded by the great complexity of business process
logic in the application context of the implementation models. Every node type has a
state machine that contains a set of concurrent regions. Each region is an orthogonal
part of the state machine that runs in parallel to other regions. Each region reflects the
independent update of some system attribute. For example, the state machine of Root
has two regions reg1 and reg2. Each region has a set of states with one single initial
state. Unlike traditional UML state machines, a transition in our variant state machine is
no longer a simple pair of source and target state. First, a transition may be either active
or passive. An active transition can be fired as long as its firing condition is satisfied.

Proc. AVoCS 2010 6 / 15

ECEASST

On the contrary, a passive transition can only be invoked by other transitions. Active
transitions are graphically denoted as solid lines, and passive transitions are dotted lines.
Second, the firing condition of a transition may be very complex in the sense that it may
reference states across region boundaries or even node boundaries. Moreover, the effect
of a transition may enforce the firing of transitions in other regions or in other state
machines.

We need the following vocabulary to reference states and transitions of other state
machines. Let this refer to the current node being considered. If n is a node, then
n.parent refers to the parent of n. If f is a relation type, then n. f is the set of children
nodes of n associated with n via the relation f . Moreover, n.reg represents the region reg
in n, whose current state is represented by n.reg.st. Finally, n.reg.t refers to the transition
t in reg.

A transition has a firing guard, a set of (prei,si) pairs that selects the next state si

according to a certain pre-condition prei, and a sequence of transitions that must be
invoked in order. In our example, Start is an active transition, whose guard is that the
current state must be s1. When it is fired, the next state is s2, and it will enforce the
transitions Begin in all Item nodes to be taken. The transition End is a passive transition,
and can be fired only if it is invoked by the Finish in one of the Item nodes. It ends
up in two possible next states: (1) If the regions reg5 in all Item nodes are in state s10,
then the next state is s4; (2) Otherwise, the next state is s3. The firing of End does not
enforce any other transitions to be fired. Note that since the execution of a transition
may invoke executions of other transitions, there is no guarantee for termination. One
has to prove that the execution of any active transition indeed terminates.

5 Translation of Implementation Models to Event-B

In this section we describe a translation of IMs (node structures and state machines) into
Event-B (For more information on EventB see [1]). The translation is a challenging task
because the translation should not only be sound, concise, and well-structured, but also
allow as many properties to be automatically proved as possible. In Section 5.3 we show
how the translation can be optimized in order to simplify Event-B representations and
proofs and in Section 6.3 we compare results obtained by optimized and non-optimized
translations.

5.1 Translation of model structure

We first show how to translate the tree structure of an implementation model into Event-
B. The example in Figure 3 is a simplified version of the example in Figure 4. We
consider the more complex version of the example in Figure 4 only in Section 5.1 in
order to demonstrate some aspects of the translation of a tree-structure. In Section 5.2
and further we will continue with the simplified version in Figure 3.

For a node type, if it may have only one node of this type per BO instance, such as the
Root node in the example, there is no need to explicitly represent this node in Event-B.
Otherwise, we use an abstract carrier set to denote all its node instances, which is the

7 / 15 Volume 35 (2010)

Checking Consistency Between Choreographies And Implementation

Figure 4: Example of a node structure

case for node types Item and Info. For these carrier sets, we need additional constraints
stating that they are non-empty.

carrier sets: Item, In f o
axioms:

ax1 : Item 6= ∅
ax2 : In f o 6= ∅

Given a node relation r that associates nodes of type t1 with their children nodes of
type t2, we need to distinguish the following two cases. In the first case, there is only
one instance of type t1, say, the node n1. If r is a one-to-one mapping, we do not need
to explicitly represent r since there can be only one node of type t2 associated with its
parent n1 through r. Otherwise, if r is one-to-many, then we can represent r as the set of
all children nodes of n1 such that they are associated with n1 through r. In the second
case in which there are multiple nodes of type t1, we denote r using its inverse relation
r−1, which maps each node of type t2 to its parent of type t1 such that they are related by
r. This is because r−1 is a function and results in simpler Event-B representations and
proofs. When all parents of t2-nodes are of type t1, r−1 is a total function. Otherwise,
it is a partial function. Moreover, if r is one-to-one, then r−1 is injective. The following
shows how node relations in Figure 4 are translated in Event-B.

variables: root in f o,root item, item item, item in f o

invariants:
inv1 : root in f o ∈ In f o
inv2 : root item ∈P(Item)
inv3 : item item ∈ root item 7→ Item\ root item
inv4 : item in f o ∈ In f o� Item

In our example, an Item node can be associated with a child Item node, which we
refer to as a sub-item (Sub-items do not have further sub-items) 5.

5 Sometimes we may need sequences of item-item relations of arbitrary length. In this case, we can
introduce the transitive closure, for example, we can reuse the definition of transitive closure from the
Event-B mathematical toolkit [9].

Proc. AVoCS 2010 8 / 15

ECEASST

The following shows how variables denoting node relations are initialized. They are
initialized non-deterministically in order to cover all possible model instances. There are
also additional constraints: For example, the constraint root item′∩dom(item item′) = ∅
says that the set of items related to the root is disjoint from the set of items related to
other items.

init
begin

act1 : item in f o,root in f o :|
item in f o′ ∈ In f o� Item ∧ root in f o′ ∈ In f o ∧
root in f o′ /∈ dom(item in f o′) ∧ root in f o′ ∪dom(item in f o′) = In f o

act2 : root item, item item :|
root item′ ∈P(Item) ∧ item item′ ∈ Item 9 Item ∧
root item′ ∩dom(item item′) = ∅ ∧
root item′ ∪dom(item item′) = Tasks

end

5.2 Translation of state machines

In this section we describe a translation of state machines, and show the necessity of
introducing optimizations of the translation.

We define an abstract carrier set for the states of each region. For a node type that
may have only one node instance, we use a variable for each region of the node to denote
the current state of the region. For a node type with multiple instances, we define
a function for each region that maps each node instance to the current state of the
region in that particular node. As examples, the current state of reg1 in Figure 3 is
translated to a variable reg1.st ∈ reg1.States; and the current state of reg3 is a function
reg3.st ∈ Items→ reg3.States.

Now we show how transitions are translated. Let t be an active transition with a
guard g and a set of pairs (pre1,s1), . . . ,(pren,sn) defining the next state. Furthermore,
t enforces a sequence of transitions t1, . . . , tm to be taken. For simplicity reason, each
enforced transition ti has a guard true, a set of pairs (prei1,si1), . . . ,(preiki

,siki), and does
not further enforce other transitions. The transition t is translated as follows:

EventT
when

grd1 : g
then

act1 : st,st1, . . . ,stm :|
((pre1 ∧ st ′ = s1) ∨ . . . ∨ (pren ∧ st ′ = sn)) ∧
. . .
((prei1 ∧ st ′i = si1) ∨ ... ∨ (preiki ∧ st ′i = siki)) ∧
. . .

end

In the above code we use st and st1, . . . ,stm to denote the current states of those regions
that contain transitions t and t1, . . . , tn, for readability reason. Note that the effects of

9 / 15 Volume 35 (2010)

Checking Consistency Between Choreographies And Implementation

enforced transitions are specified together with the effect of the transition enforcing them
in one Event-B event. This guarantees that the enforced transitions are indeed executed.
Since passive transitions can only be invoked by others, their translations are always
included in the Event-B events of some active transitions.

As an example, we show how transitions in Figure 3 are translated. The relation Items

is represented as a subset of all Item nodes since there is only one Root node.

Start
when

grd1 : reg1.st = s1
then

act1 : reg1.st := s2
act2 : reg3.st := Items×{s6}

end

Run
any node
where

grd1 : node ∈ Items
grd2 : reg4.st(node) = s7
grd3 : reg3.st(node) = s6

then
act1 : reg4.st(node) := s8

end

Finish
any node
where

grd1 : node ∈ Items
grd2 : reg5.st(node) = s9
grd3 : reg4.st(node) = s8

then
act1 : reg5.st,reg2.st : |
(reg5.st ′(node) = s10) ∧
(∀n ∈ Items ∧n 6= node⇒ reg5.st ′(n) = reg5.st(n)) ∧
(((∀n ∈ Items⇒ reg5.st ′(n) = s10) ∧ reg2.st ′ = s4) ∨
((∃n ∈ Items⇒ reg5.st ′(n) 6= s10) ∧ reg2.st ′ = s3))

end

Note how complex the translation can be even for a relatively simple transition such
as Finish, since the effect of the transition as well as the effects of all enforced tran-
sitions must be specified within one Event-B event. In particular, all effects of Finish
are specified in one Event-B action act1. Unfortunately, act1 cannot be broken into
several smaller actions, because the next state of reg2 depends on the next state of reg5
in Item nodes. Such high complexity of the translation may significantly reduce the
readability and provability of the translated model. Thus, in the next section we explore
two possibilities of optimizing the translation of transitions.

5.3 Optimizations

Using implications in specifying preconditions of next states. A transition
may have several potential next states, each depending on a certain precondition. The
straightforward translation specifies the choice of the next state using disjunctions (see
the previous section). However, this results in complex and less readable Event-B action,
and also makes automated provers to become less effective. As a solution6, we may

6 We thank Michael Buttler for his suggestions and discussions for this optimization solution.

Proc. AVoCS 2010 10 / 15

ECEASST

express the dependencies between preconditions and next states using implications in
Event-B guards instead of using disjunctions in Event-B actions. This can be illustrated
by the optimized translation of the transition Finish in Figure 3 as shown below. Two
new variables st5 and st2 are introduced to express the dependencies of preconditions
and next states for the regions reg5 and reg2. Their values are then used in the update
of the next states of the regions.

Finish
any node,st5,st2
where

grd1 : node ∈ Items
grd2 : reg5.st(node) = s9
grd3 : reg4.st(node) = s8
grd4 : st5 ∈ (Item→ reg5.States)
grd5 : st2 ∈ reg2.States
grd6 : st5(node) = s10
grd7 : ∀n ∈ Items ∧n 6= node⇒ st5(n) = reg5.st(n)
grd8 : (∀n ∈ Items⇒ st5(n) = s10)⇒ st2 = s4
grd9 : (∃n ∈ Items⇒ st5(n) 6= s10)⇒ st2 = s3

then
act1 : reg5.st,reg2.st := st5,st2

end

Using set operators. In the above model, there are a few guards containing quanti-
fiers (see grd7, grd8 and grd9). This may result in difficulties for automated provers to
discharge proof obligations that make use of these guards as hypotheses. The reason is
that the quantifiers in these guards need to be instantiated with concrete values during
the proof, which requires the automated provers to make a choice in case several concrete
values are available for instantiation. As a potential solution, we may consider to trans-
form these guards into quantifier-free forms that use set operators. The advantage of
using set operators is that the provers can now apply simplification rules for sets without
facing choice of instantiations. As an example, the guard grd7 can be rewritten as below,
where C− is domain subtraction:

grd7 : {node}C− st5 = {node}C− reg5.st

In a similar manner, the guards grd8 and grd9 can be written as

grd8 : ran(st5) = {s10}⇒ st2 = s4

grd9 : st5B−{s10} 6= ∅⇒ st2 = s3

In our experiments we did witness more automatically discharged proof obligations
after eliminating quantifiers by set operators. However, using set operators is not always
helpful, especially when an automated prover employs such a proof strategy that trans-
lates set operators back to their quantifier-based versions. In future work we still need
to assess how effective such quantifier elimination may improve the performance of auto-
mated provers, and which proof tactics should be used to better exploit the advantages

11 / 15 Volume 35 (2010)

Checking Consistency Between Choreographies And Implementation

of set operators. We will also design an automated procedure to translate guards to their
quantifier free versions.

6 Analysis of Implementation Model

Using Event-B translations, we show how to check the consistency between local partner
models and implementation models, and how to verify application specific properties for
implementation models. We will also briefly describe how we conduct our experiments
and discuss our experiences.

6.1 Checking Consistency Relation

The main purpose of our work is to check the consistency between message choreography
models and their implementation models. As the consistency between GCM and LPMs
can be verified [5], it suffices to show that each LPM is consistent with its implementation
model. This means that all behavior of the IM can be also observed in the LPM, which
corresponds to proving in Event-B that the IM is a refinement of the LPM.

In Event-B, the refinement between two machines is defined using gluing invariants
that describe the relations between abstract variables and concrete variables. In [5] we
presented an automated gluing invariant construction method for proving consistency
between GCM and LPMs. For the time being, constructing gluing invariants for the
consistency between LPMs and IMs is done manually with MCM tool support, using
expert knowledge of specific models. A typical gluing invariant relates the states in
a local partner model to the states in the corresponding implementation models. An
example would be that, if the LPM is in state s, then some region in a state machine in
the IM must be in one of the states s1, . . . ,sn. Then, we have to prove that each transition
in the IM results in a change of states that preserves the gluing invariants with respect
to the change of states by the transition in the LPM which it refines.

The consistency between an LPM and its IM can be verified using either the ProB
model checker [7] or the Atelier B provers [9]. The advantage of model checking is that
it is fully automated. However, it suffers from the state space explosion problem. As
a solution, we may set bounds for integer variables and set sizes in ProB to reduce the
explored portion of the state space. This, however, cannot assure the consistency beyond
the bounds that we set.

On the contrary, theorem proving does not need to explore the state space of a model.
But it often requires human assistance to discharge proof obligations for large complex
models. Besides, we may need to manually introduce auxiliary lemmas. For example, for
the IM in Figure 3 we need the following additional invariant which says that if the root
machine has not started then no items connected to the root has started their work.

(Root.reg1.st = st1)⇒ (∀item ∈ Items⇒ item.reg3.st = s5).

Proc. AVoCS 2010 12 / 15

ECEASST

6.2 Checking Application Specific Properties

We can verify application specific properties for implementation models such as deadlock
freedom or other general safety and liveness properties. For example, we can check the
following properties for the IM in Figure 3 expressing relations between states in the root
node and in item nodes:

(Root.reg1.st = s1)⇒ (∀item ∈ Items⇒ item.reg3.st = s5)

(∀item ∈ Items⇒ item.reg5.st = s10)⇒ (Root.reg2.st = s4)

These properties can be expressed as invariants in the Event-B translation, and can
be checked by either model checking or theorem proving. In ProB, we can also formulate
and check LTL-expressible properties.

6.3 Experimental Results

We built an IM editor based on EMF (Eclipse Modeling Framework), and an automated
translator from IMs to Event-B, in which translation optimization can be optionally
enabled. The translation from LPMs to Event-B was already implemented in earlier work
[11]. Using these tools, we conducted several case studies using real-life software models
from the SAP ByDesign development environment. Due to confidentiality reasons, we
are unable to disclose the details of the models that we use in experimentation.

We first used the ProB model checker to check both consistency and application specific
properties. ProB is powerful enough to verify these models of considerable sizes, with the
texts of some actions produced by the translation each spanning one or two full pages
in print form. For a typical IM, its Event-B translation contains 25 events, and it took
only 2 – 3 seconds for ProB to complete the checking.

Using the automated theorem provers for verification is only possible after applying
the translation optimizations (see Sec. 5.3). The average number of proof obligations
(PO) in our experiments was 150. Without optimization only a few of them could be
proven automatically. After applying the optimization, 135 POs (90% of the total)
were automatically discharged. We successfully proved consistency and checked certain
application specific properties for all models.

The main difficulty here was the introduction of auxiliary invariants, which is an
iterative process requiring expert knowledge of the models. The average number of
invariants for one system was 27 with 11 type invariants, 7 gluing invariants and 9
auxiliary invariants describing the internal behavior of IMs. In the future we will design
some automated procedures to assist in discovering auxiliary lemmas.

7 Conclusion

One advantage of layered designs is that assuring consistency between message choreo-
graphies and implementation models can be broken down into checking consistencies
between adjacent layers. As our previous work examines the adherence between global

13 / 15 Volume 35 (2010)

Checking Consistency Between Choreographies And Implementation

choreography models and local partner models, this paper shows how to check consis-
tencies between local partner models and implementation models through automated
translations into Event-B. We have also shown that application specific properties (e.g.,
deadlock freedom) can be verified at the level of implementation models. Practical eval-
uations with real-life models show a promising applicability of our approach on the in-
dustrial development of business applications.

Bibliography

[1] J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge
University Press, 2010. To appear. See also http://www.event-b.org.

[2] Gero Decker and Mathias Weske. Local enforceability in interaction Petri Nets.
In Proceedings of the 5th International Conference on Business Process Manage-
ment (BPM’07), volume 4714 of Lecture Notes in Computer Science, pages 305–319.
Springer, 2007.

[3] Randy Heffner. Across all vertical industry groups, the majority of SOA users are
expanding its use. Research report, Forrester Research, May 2009.

[4] Stefan Kätker and Sabine Patig. Model-driven development of service-oriented busi-
ness application systems. In Business Services: Konzepte, Technologien, Anwendun-
gen, volume Band 1, pages 171–180. Österreichische Computer Gesellschaft, 2009.

[5] Vitaly Kozyura and Andreas Roth. Generation of gluing invariants for checking local
enforceability of message choreographies. In Michael Jastram, Linas Laibinis, Felix
Lösch, and Manuel Mazzara, editors, Proceedings of Deploy Technical Workshop
2009. Newcastle University, Technical Report, 2009.

[6] Vitaly Kozyura, Andreas Roth, and Wei Wei. Local enforceability and inconsum-
able messages in choreography models. In Proceedings of 4th South-East European
Workshop on Formal Methods (SEEFM). IEEE Computer Society, 2009.

[7] Michael Leuschel and Michael J. Butler. ProB: an automated analysis toolset for
the B method. STTT, 10(2):185–203, 2008.

[8] OMG. Omg unified modeling language (omg uml), superstructure version 2.2.

[9] RODIN. http://www.event-b.org/. accessed 2010-04-08.

[10] R.J. van Glabbeek. The linear time-branching time spectrum. In in Proceedings
of Theories of Concurrency: Unification and Extension (CONCUR’90). Springer,
1990.

[11] Sebastian Wieczorek, Vitaly Kozyura, Andreas Roth, Michael Leuschel, Jens
Bendisposto, Daniel Plagge, and Ina Schieferdecker. Applying model checking to
generate model-based integration tests from choreography models. In Proceedings

Proc. AVoCS 2010 14 / 15

ECEASST

of the 21st IFIP Int. Conference on Testing of Communicating Systems (TEST-
COM’09), LNCS. Springer, 2009.

[12] Sebastian Wieczorek, Andreas Roth, Alin Stefanescu, and Anis Charfi. Precise steps
for choreography modeling for SOA validation and verification. In Proceedings of
the IEEE 4th International Symposium on Service-Oriented Software Engineering
(SOSE’08), pages 148–153. IEEE Computer Society, 2008.

[13] Sebastian Wieczorek, Andreas Roth, Alin Stefanescu, Vitaly Kozyura, Anis Charfi,
Frank Michael Kraft, and Ina Schieferdecker. Viewpoints for modeling choreo-
graphies in service-oriented architectures. In Proceedings of the 8th IEEE/IFIP
Conference on Software Architecture (WICSA’09). IEEE Computer Society, 2009.

15 / 15 Volume 35 (2010)

	Introduction
	Industrial Context
	Global Choreography and Local Partner Models
	Implementation Model
	Translation of Implementation Models to Event-B
	Translation of model structure
	Translation of state machines
	Optimizations

	Analysis of Implementation Model
	Checking Consistency Relation
	Checking Application Specific Properties
	Experimental Results

	Conclusion

