
Electronic Communications of the EASST
Volume 41 (2011)

Proceedings of the
Tenth International Workshop on

Graph Transformation and
Visual Modeling Techniques

(GTVMT 2011)

Distributed Port Automata

Christian Krause

14 pages

Guest Editors: Fabio Gadducci, Leonardo Mariani
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Distributed Port Automata

Christian Krause∗

christian.krause@hpi.uni-potsdam.de
Hasso Plattner Institute (HPI), University of Potsdam, Germany

Abstract: Dynamic reconfigurations are a powerful approach for the adaption of
component-based or service-oriented software systems at runtime. Important issues
in this area are the problems of state transfer and state consistency, i.e., to determine
the system state after a reconfiguration and to ensure that it is valid. To deal with
these problems, we introduce distributed port automata in this paper. Distributed
port automata combine structural and behavioral system properties and therefore al-
low to reason about dynamic reconfigurations. In our approach, we use an automata-
based model for describing the behavior of the primitive building blocks in a sys-
tem, and a graph-based model for describing its structure in terms of a network. We
demonstrate how to derive the system semantics of a distributed port automaton and
show that it is compositional. We consider an encoding of the coordination language
Reo and show a new result on compositionality of flattening for distributed graphs.

Keywords: dynamic reconfiguration, distributed graph transformation, Reo

1 Introduction

A common approach in component-based and service-oriented software is to divide the system
model into two orthogonal aspects: (i) the computation performed by a set of (black-boxed) com-
ponents or services, and (ii) their coordination using some kind of ‘glue code’. The specification
of the components or services is usually based on a behavioral, e.g. an automata-based, model.
However, the composition and coordination of these functional building blocks is often done
using graphical models, e.g. Petri nets or Reo connectors [Arb04]. Dynamic reconfigurations of
such systems involve structural changes to these models at runtime. However, it is non-trivial to
verify the impact of these structural modifications on the execution of the system. Specifically,
when performing dynamic reconfigurations, two issues have to be dealt with: (i) the structural
and logical integrity of the system has to be maintained, and (ii) it must be ensured that the sys-
tem is in a consistent state after the reconfiguration (state transfer and consistency). For instance,
it should be guaranteed that the reconfiguration is not performed within a critical section (e.g. a
transaction), and that the system is not brought into a deadlock state.

In this paper, we introduce distributed port automata – an integrated structural and behav-
ioral model for service and component coordination. We specify primitives using so-called port
automata and combine them in a structural model based on distributed graphs. Specifically,
we use the framework of distributed graph transformation [Tae99, EOP06], which enables us to
model reconfigurations using algebraic graph transformation based on the double pushout ap-
proach [CMR+97]. We then derive a semantics functor and show that it is compositional. For
∗ Supported by the research school in ‘Service-Oriented Systems Engineering’ at the Hasso Plattner Institute (HPI).

1 / 14 Volume 41 (2011)

mailto:christian.krause@hpi.uni-potsdam.de

Distributed Port Automata

this purpose, we show that the flattening functor for distributed graphs is cocontinuous, i.e., it
preserves colimits, which are the basis for gluing operations of (distributed) graphs. As applica-
tions, we consider a distributed port automata encoding of Reo and discuss a number of problems
in the area of dynamic reconfigurations.

The work in this paper is a generalization of the approach in [Kra09]. Specifically, we replace
the ad hoc connector model in [Kra09] by distributed graphs.

Organization: The rest of this paper is organized as follows. Section 2 recalls the basics of
distributed graph transformation and includes a new result regarding flattening. Section 3 con-
tains a brief introduction to Reo and the semantical model of port automata. Section 4 introduces
distributed port automata and includes a discussion on composition and dynamic reconfiguration.
Finally, Section 6 and 7 contain related work and conclusions.

Acknowledgements: The author of this paper is very grateful to Erik de Vink and Ulrike Golas
for their proofreading.

2 Distributed graph transformation

We use the framework of distributed graph transformation, as introduced by Taentzer [Tae99],
and later generalized to a notion of transformation of distributed objects by Ehrig et al. [EOP06].
In this section, we recall the basic notions of this framework and present a new result on compo-
sitionality of the flattening functor for distributed graph transformation.

Distribution of graphs can be described by adding a second layer of abstraction, namely by
modeling the topology of a system using a so-called network graph. The nodes in a network
graph consist of local graphs and the edges are morphisms of local graphs. The idea is that
a node models a physical or logical location of a local graph, whereas an edge indicates an
occurrence of the source graph in the target graph. In particular, multiple outgoing edges from
one local graph model the fact that the source graph is shared among the target graphs.

We consider directed graphs G = (V,E,s, t) with s, t : E→V source and target functions, and
componentwise morphisms. Then, a distributed graph is defined as follows.

Definition 1 (distributed graph) A distributed graph (N,D) consists of a graph N, called the
network graph, and a commutative functor D : N→Graph, where N is interpreted as a category.

The network graph N describes the topology of the system. The functor or diagram D associates
to every node n in N a local graph D(n) and to every edge n e−→ n′ in N a graph morphism
D(e) : D(n)→ D(n′). Following [EOP06], this functor is required to be commutative, i.e., for
any two paths p1, p2 : n ∗−→ n′ in N, it must hold that D(p1) = D(p2). This arises from the
assumption that the morphisms associated with edges represent the sharing of the local graphs.
We now recall the definition of morphisms for distributed graphs.

Definition 2 (distributed graph morphism) For two distributed graphs (N1,D1) and (N2,D2),
a morphism f = (fN , fD) : (N1,D1)→ (N2,D2) consists of a graph morphism fN : N1→ N2 and
a natural transformation fD : D1→ D2 ◦ fN .

Proc. GTVMT 2011 2 / 14

ECEASST

For brevity, we will just write f for the network mor-
phism fN . By definition, the natural transformation fD

assigns to every node n of the network graph N1 a graph
morphism fn : D1(n)→ D2(f (n)) which is called the
local graph morphism of n. Furthermore, for every
edge n e−→ n′ in N1 the following diagram commutes.

D1(n)
D1(e) //

fn

��

D1(n′)

fn′
��

D2(f (n))
D2(f (e)) // D2(f (n′))

(1)

Distributed graphs and their morphisms form the category Dis(Graph). Due to the categorical
definition, the concept of distribution can be generalized to other structures by considering func-
tors D : N→C into a category C, giving rise to a category Dis(C) of distributed objects [EOP06].

Flattening of distributed graphs The flattening operation for distributed graphs glues to-
gether all local graphs along their shared subgraphs. It is a well-known fact that the flattening
of a distributed graph or object (N,D) can be achieved by considering the colimit of D [Tae99]
and that this extends to a functor F : Dis(C)→ C, assuming C is cocomplete [LT05]. This def-
inition is rather elegant since it defines flattening in terms of a universal property, and not by an
algorithm or referring to an operational semantics.

Considering flattening of distributed graphs or objects is in particular interesting when distri-
bution is used for representing a logical partitioning of an otherwise flat system. The distributed
model can be interpreted as a more high-level view on a flat structure. In this perspective it is
crucial to know whether flattening interacts well with composition. Composing two distributed
objects in Dis(C) and flattening the result should yield the same outcome as first flattening both
distributed objects and then composing them in C. Formally, we need to show that the flattening
functor F preserves pushouts, or more generally, colimits.

Theorem 1 (flattening preserves colimits) Let C be a cocomplete category. The flattening
functor F : Dis(C)→ C has a right adjoint and is therefore cocontinuous.

Proof. A detailed proof is given in the appendix.

Distributed graphs or, more generally, distributed objects can be used to describe a logical par-
titioning of an otherwise flat structure. Due to Theorem 1, composition and transformation of
distributed objects can be transparently implemented on the underlying flat structure. This result
will also be crucial for the compositional semantics of distributed port automata in Section 4.

3 Channel-based coordination with Reo

Reo [Arb04] is a channel-based coordination language, with applications in component-based
and service-oriented software systems. Channels in Reo are entities that have exactly two ends,
which can be either source or sink ends. Source ends accept data into, and sink ends dispense
data out of their channel. Channels may impose constraints on the data flow at their ends. For
instance, the communication through channels can be (a)synchronous and (un)buffered.

For the scope of this paper, we consider only a small set of primitives, summarized in Table 1.
The Sync channel consumes data items at its source end and dispenses them at its sink end.
The I/O operations are performed synchronously and without any buffering. Thus, the channel

3 / 14 Volume 41 (2011)

Distributed Port Automata

Sync FIFO1 Merger Replicator

Graphical
notation

A B A B
A

B
C A

B

C

Port
automaton

/0

{A,B}
{A}

{B}

/0 /0

{A,C}

{B,C}

/0

{A,B,C}

/0

Table 1: Graphical notation and port automata for some basic Reo primitives

blocks if the party at the sink end is not ready to receive data. The FIFO1 channel is a directed,
asynchronous channel with a buffer of size one. It reads a data item from its source ends, buffers
it, and releases it again at its sink end. Channels in Reo can be joined together using nodes, which
read data items from sink ends and write data items to source ends of channels that coincide in it.
Nodes behave as non-deterministic Mergers on the sink ends and as (synchronous) Replicators
on the source ends. This means that a node non-deterministically reads a data item from one of
the incoming sink ends and replicates it to all outgoing source ends without buffering it.

3.1 Building connectors

In Reo, channels and nodes are joined together to build so-called connectors which act as
glue code between components or services and essentially enforce a communication protocol
among them. This coordination of components and services is performed from outside and with-
out their knowledge, which is, therefore, referred to as exogenous coordination.

An important aspect of Reo is that nodes do not buffer data items and, thus, allow synchrony
to propagate through the connector. For instance, a sequence of n Sync channels joined together
using nodes has the same qualitative behavior as a single Sync. Note also that Reo allows an
arbitrary mixing of synchrony and asynchrony, which is also indicated by our first example.

Example 1 We consider a simple instant messenger application, shown in Figure 1. Two Client
components exchange messages via a connector. Messages are sent into FIFO1 channels and are
thus buffered. When they leave the buffer, they are synchronously replicated by the node behind
the FIFO1 and sent to both clients. This can succeed only when both clients are ready to accept

Figure 1: Instant messenger application modeled in Reo

Proc. GTVMT 2011 4 / 14

ECEASST

data. In a nutshell, this connector ensures that clients get –as an acknowledgment– a copy of
their own message when the other client has successfully received it. In Figure 1, a message,
depicted as a green token, is already buffered in the upper FIFO1 and is about to be sent to both
clients. This synchronous dataflow is indicated by the blue highlighted parts of the connector.
Note that the nodes X and Y are Replicators, whereas B and C act as Mergers.

3.2 Port automata semantics

Port automata [KC09] are the most basic semantical model for Reo. Although they cannot model
data constraints, port automata already capture some of the key concepts required for defining
channels and other primitives, i.e., synchrony, mutual exclusion and state. Port automata come
equipped with a join-operator for composition, which allows to compute the semantics of a
connector given the semantics of the primitives it is comprised of. Port automata have been
introduced in [KC09] as an abstraction of constraint automata [BSAR06] and offer, because of
their conciseness, the possibility of better comparison with other semantical models, such as Reo
automata [BCS09]. In the following we define port automata formally.

Definition 3 (port automaton) A port automaton PA = (Q,N,T,q0) consists of a set of states Q,
a set of port names N, a transition relation T ⊆ Q×2N×Q, and an initial state q0 ∈ Q.

We usually write transitions as p S−→ q with p,q ∈ Q source and target states, S ⊆ N the set of
synchronously firing ports. The port automata for the primitives are given in the lower part of
Table 1. We see immediately that the Sync channel as well as nodes (modeled using Merger and
Replicator primitives) are stateless, i.e., they have only one state. Note that Replicators basically
synchronize all ends, whereas Mergers essentially implement mutual exclusion of the incoming
ends. Note that the port automata for the primitives include explicit τ-transitions via the empty
set of port names.

4 The category of port automata

To establish a categorical framework suitable for applying graph transformation methods, we
introduce a notion of simulations for port automata in the following. A port automata simulation
essentially consists of a mapping of states and transitions, and an inverse mapping of port names.
We ensure consistency of firing events using a condition on the transitions of the port automata.

Definition 4 (port automata simulation) Let PA1 = (Q1,N1,T1,q1
0) and PA2 = (Q2,N2,T2,q2

0)
be two port automata. A simulation f = (fQ, fN , fT) consists of functions fQ : Q1 → Q2, fN :
N2→ N1 and fT : T1→ T2, such that:

• fQ(q1
0) = q2

0

• fT
(
q1

S1−→ p1
)

=
(
q2

S2−→ p2
)

implies q2 = fQ(q1), p2 = fQ(p1) and S2 = f−1
N (S1)

Note that port names are mapped in the opposite direction and that the condition S2 = f−1
N (S1)

ensures consistency of firing events on all shared port names. We now consider an example.

5 / 14 Volume 41 (2011)

Distributed Port Automata

Example 2 An example of a port automata simulation is depicted in Figure 2. States q0,q2 are
both mapped to p0, and q1 is mapped to p1. The port name function is the inclusion map in the
opposite direction. The transition via {B,C} in the source is mapped to the transition via {B}.
The transition via {C} corresponds to the τ-step in the target automaton.

q0 q1

{A}

q2
{B,C}{C}

p0 p1

{A}

{B}

/0

Figure 2: a port automata simulation

Note that mapping a normal, i.e., non-empty
transition to a τ-step essentially allows us to
model interleaved semantics. Intuitively, the
source automaton performs an (observable)
step, whereas the target automaton takes a
(silent) τ-transition. We define composition
and identity of port automata simulations com-
ponentwise. The following lemma states that
port automata and simulations form a category.

Lemma 1 (category of port automata) Port automata and port automata simulations give rise
to a category, denoted by PA.

Proof. We verify the consistency condition of firing events for the identity: S = id−1
N (S). Simi-

larly, for the composition of f : PA1→ PA2 and g : PA2→ PA3 it holds that:

(g◦ f)−1
N (S1) = g−1

N

(
f−1
N (S1)

)
= g−1

N (S2) = S3

The port automaton with one state, an empty port name set and a τ-transition is the final object
in PA, denoted by 1. If there is a morphism between two port automata PA1 and PA2, we may
also write PA1 � PA2 for short. Similarly, if there exists a (categorical) isomorphism, we denote
this by PA1 ∼= PA2. Note that this notion of behavioral equivalence is stronger than standard
equivalences based on, e.g., bisimulation [Mil89].

We define the composition of port automata now using pullbacks in PA. Note that since we
model τ-steps explicitly, the composition is based on mere synchronization only. Interleavings of
actions are modeled by synchronizations of an action and a τ-transition in the other automaton.

Theorem 2 (pullbacks of port automata) PA has pullbacks which can be constructed compo-
nentwise. For a cospan PA1→ PA0← PA2 the pullback object is PA3 = (Q3,N3,T3,q3

0) with:

• Q3 = Q1×Q0 Q2 (pullback in Set)

• N3 = N1 +N0 N2 (pushout in Set)

• q3
0 = 〈q1

0,q
2
0〉, and

• T3 defined by the following rule:

PA0 PA1
f1oo

PA2

f2

OO

PA3

g1

OO

g2oo

X

h1

]]

h2

dd
h

aa

f1,T
(
q1

S1−→ p1
)

= f2,T
(
q2

S2−→ p2
)

S0 = f−1
1,N(S1) = f−1

2,N(S2) S3 = S1 +S0 S2

〈q1,q2〉
S3−→3 〈p1, p2〉

(2)

Proc. GTVMT 2011 6 / 14

ECEASST

Proof. Due to the componentwise construction in Set, we only need to show that g1,g2 and h
are valid PA-morphisms, i.e., we need to check the consistency condition for the firing ports.
For g1 we have by construction: g−1

1,N(S3) = g−1
1,N(S1 +S0 S2) = S1, and analogously for g2. For h,

assume there is a transition via S in X that is, w.l.o.g., mapped to a transition via Si in PAi with
i = 1,2. We need to show that there is a corresponding transition via S3 in PA3. Since the hi are
by assumption valid PA-morphisms, we have: h−1

i,N(S) = Si. Moreover, f1 ◦h1 = f2 ◦h2 and thus:
f−1
1,N(S1) = f−1

2,N(S2). Therefore, the premise of rule (2) is fulfilled and the transition exists. Since
hi = gi ◦h we also know that h−1

N (S) = S3. Thus, the consistency condition holds also for h.

Note that f1,T (q1
S1−→ p1) = f2,T (q2

S2−→ p2) implies f1,Q(q1) = f2,Q(q2) and f1,Q(p1) = f2,Q(p2).
Port automata pullbacks generalize the join operator for constraint automata of [BSAR06], since
they allow to join two automata not just over a set of shared port names, but over a whole
automaton, which can be seen as a shared context. The semantics of the original join operator is
a special case where PA0 is stateless, i.e., it has only one state. Note also that the new composition
operator is derived from our notion of simulation and phrased in terms of a universal property.

Example 3 An example of a port automata pullback is depicted in Figure 3(b). The state maps
are indicated by state names. Note that the resulting automaton in the bottom right actually
includes more states which are suppressed here since they are unreachable. The automata in
this pullback can be modeled using FIFO1 channels. In fact, the automata correspond to Reo
connectors and the whole pullback corresponds to a structural gluing of these connectors, as
shown in the pushout of Reo graphs in Figure 3(a).

(a) connector graph pushout

q1 p1

q2 p2

{A}

{B,C}

{B}

{B}

{C} {C}pq
{A}
{A,C}

{B}
{B,C}

{C}{C}

q1

q2

p1

p2

{C}

{A}

{B}

{A,C}
{C}

{A}

q11 p21

q22

{C}

{A}

{B}

(b) port automata pullback

Figure 3: categorical composition of connectors and port automata

We use the default notation for pullbacks of port automata, i.e., PA3 = PA1×PA0 PA2. Note
that we have indirectly shown that PA has general limits, since it has pullbacks and a final
object. The categorical construction using pullbacks furthermore includes the morphisms into
the original port automata and thereby relates them with the result using simulations, which will
be helpful in the context of dynamic reconfigurations.

7 / 14 Volume 41 (2011)

Distributed Port Automata

5 The category of distributed port automata

Example 3 in the previous section already indicated a connection between the graph-based model
of Reo connectors and the semantical counterpart in the category of port automata. We now pro-
vide a categorical model which integrates the structural aspects, i.e., the topology of a connector
or network, and the semantics of the primitives it is comprised of. We use the theory of dis-
tributed graph transformation as in Section 2. Specifically, we consider the following category.

Definition 5 (category of distributed port automata) The category of distributed port automata
is defined as Dis(PAop).

Note that we consider Dis(PAop) and not Dis(PA) since the PA-semantics is contravariant to the
graph structure of networks, as indicated also in Example 3 where a pushout of Reo connectors
is mapped to a pullback of the corresponding port automata. However, before investigating the
properties of Dis(PAop), we first show how to encode Reo into this model.

5.1 Reo connectors as distributed port automata

To encode Reo in Dis(PAop) we map every primitive in a connector to its corresponding port
automaton (cf. Table 1), and every node X to a stateless port automaton with one transition via X
and one via the empty port name set. Note again that Mergers have to be modeled explicitly.
The port automata for primitives and nodes are now considered as vertices in a network graph N.
For every pair of a node and a connected primitive we create an edge between the corresponding
vertices in the network graph. The edge points towards the port automaton of the primitive.
However, it corresponds to the PA-simulation in the opposite direction which maps all transitions
of the primitive that involve the connected node X to the self loop transition that includes X , and
all other transitions to /0. The reason for inverting the edges is, formally, the fact that we consider
the category Dis(PAop). Informally, it can be motivated by arguing that the edges in the network
graph represent primarily structural mappings of the node names, which are contravariant for
port automata simulations.

Example 4 Figure 4 depicts the distributed port automaton for the instant messenger in Exam-
ple 1. For simplicity, we have modeled the Replicator nodes X and Y using a single port and
omitted the port automata for the nodes B and C, and all τ-transitions. Note also that the edges
in the distributed port automaton correspond to inverse simulations. This is due to the fact that
the edges model, primarily, structural mappings of ports.

5.2 Composing distributed port automata

Our goal is to use double pushout graph transformation [CMR+97] for realizing reconfigurations
of connectors modeled using distributed port automata. In essence, we are aiming at applying
the theory of distributed graph transformation to our automata-based framework for component
connectors. To enable composition and reconfiguration in our setting, we need to ensure that the
category of distributed port automata, as defined above, has pushouts. We do this in the following
lemma.

Proc. GTVMT 2011 8 / 14

ECEASST

{A}

{X}
{A}

{B1}

{B2}
{B1,B}

{B2,B}

{X ,B1}

{Y,B2}

{X}

{Y}

{X ,C1}

{Y,C2}

{D}

{Y}

{C1}

{C2}

{D}

{C1,C}

{C2,C}

Figure 4: instant messenger modeled as distributed port automaton

Lemma 2 The category Dis(PAop) is cocomplete.

Proof. PA is complete since it has pullbacks and a final object. Hence, PAop is cocomplete. If C
is (co)complete, then so is Dis(C) [EOP06]. Thus, Dis(PAop) is cocomplete.

In Figure 3(a) we have shown how pushouts can be used to glue Reo networks along a common
subconnector. Note that this gluing is of a pure structural nature. In Section 5.1 and in particular
in Figure 4 we have seen how Reo connectors can be encoded as distributed port automata. An
important aspect of this encoding was that the topology of the network is modeled by the network
graph of the distributed port automaton. Moreover, the local port automata model each primitive
in the network.

Since Dis(PAop) is cocomplete, we can compose distributed port automata using pushouts.
Usually, the semantics of primitives is fixed. Therefore, the local morphisms (port automata
simulations) are isomorphisms. This is, for instance, the case for Reo networks, but also for Petri
nets. In this situation, the primitive port automata in the network nodes are not changed when
composing two distributed port automata using pushouts. Thus, the composition is performed
only on the network level and is of purely structural nature. The case where a local port automata
morphism is not an isomorphism has applications as well. Essentially, it allows to model a
refinement of primitives, e.g. refining a buffer with bag semantics to one with FIFO semantics.

5.3 Semantics of distributed port automata

Distributed port automata capture the semantics of each primitive and the topology of the connec-
tor. The semantics of a connector modeled as a distributed port automaton (N,D)∈Dis(PAop) is
given by the port automaton that corresponds to the colimit of the diagram D. This colimit glues
together all node names and, since we have reversed the arrows, corresponds to a limit in PA.

As discussed in Section 2, the colimit over a distributed graph or object can be interpreted as
a flattening operation, which, moreover, extends to a flattening functor F : Dis(C)→ C. In the
case of distributed port automata, i.e., in the category Dis(PAop), the flattening using colimits
can, thus, be used to define the composite behavior of connectors in terms of a semantics functor.

9 / 14 Volume 41 (2011)

Distributed Port Automata

Definition 6 (semantics functor) Let F : Dis(PAop) → PAop the flattening functor for dis-
tributed port automata. By reverting the arrows, this induces the following contravariant functor:

Sem : Dis(PAop)→ PA

which is called the semantics functor for distributed port automata.

The following lemma states that the semantics of distributed port automata is compositional, i.e.,
it is compatible with composition of distributed port automata using pushouts, or more generally,
with colimits.

Lemma 3 (compositional semantics) The semantics functor Sem : Dis(PAop)→ PA is compo-
sitional, i.e., it maps colimits of distributed port automata to limits of port automata.

Proof. This holds since the flattening functor is cocontinuous (cf. Theorem 1).

Thus, we have shown that a structural gluing of connectors in Dis(PAop) which is realized as
a pushout of the network graphs has a corresponding semantical join operation, i.e., a pullback
of the respective port automata. Furthermore, Theorem 1 shows that structure and semantics of
distributed port automata form a pair of adjoint functors.

5.4 Towards dynamic reconfigurations

Since distributed port automata integrate the structure and semantics of, e.g., Reo connectors and
Petri nets, they can be used for problems occurring in the area of dynamic reconfigurations. An
important issue is to determine the state of the system after a reconfiguration, which we refer to
as the problem of state transfer. Moreover, it is crucial to ensure that the new system state is
indeed a valid one, which we refer to as the problem of state consistency.

Distributed port automata provide means for reasoning about state transfer and state consis-
tency. To illustrate this, we revisit Example 3 which shows how a pushout of Reo networks at the
structural level (Figure 3(a)) corresponds to a pullback of port automata at the semantical level
(Figure 3(b)). We now interpret this as an application of a simple reconfiguration rule which
adds a full FIFO1 between the matched nodes C and A. Essentially, we assume that Figure 3(a)
is the right part of a DPO diagram. In this view, the corresponding pullback of port automata can
be seen as an application of a ‘semantical reconfiguration rule’ in the category of port automata.

In such an approach, we can deduce the effect of an application of a purely structural re-
configuration rule on the connector semantics. For instance, assume that the connector to be
reconfigured (lower left automaton in Figure 3(b)) is in its initial state q1, in which both FIFO1s
are empty. The image in the left-hand side of the rule (upper left automaton) is state q. Moreover,
we assume that the FIFO1 to be added by the rule is initially full, i.e., the selected state in the
right-hand side of the rule is q1. This information is sufficient to deduce the state of the connec-
tor after the reconfiguration. The pullback construction given in Theorem 2 yields as new target
state q11 in the resulting automaton. Thus, we can determine the state after a reconfiguration,
which provides us with a means to solve the problem of state transfer.

Now assume that before the reconfiguration, the FIFO1(A,B) and FIFO1(B,C) are already
full, i.e., the automaton in the upper right part is in state p1 and the automaton in the lower left

Proc. GTVMT 2011 10 / 14

ECEASST

part is in state p2. Both states are mapped to state p in the upper left automaton, and therefore
correspond to state p12 in the lower right automaton, which is not shown because it is unreachable
from the initial state. In this particular state, all three FIFO1s are full and the connector would
run into a deadlock. Therefore, it is crucial to check in which state the connector currently is,
before reconfiguring it. In essence, this is the problem of state consistency. In the distributed
port automata approach, we can characterize reconfigurations which yield consistent connector
states by demanding that the target state of the reconfigured connector must be reachable from
the initial (or the current) state.

6 Related work

Constraint automata [BSAR06] are a compositional model for Reo [Arb04]. Our port automata
are an abstraction of constraint automata where data constraints are ignored. The composition-
ality result in [BSAR06] says that the semantics of a connector can be computed out of the
semantics of its constituent primitives. Our notion of compositionality is more general since
it works with arbitrary gluings of connector graphs. In fact, we generalize the join operation
of [BSAR06] by allowing to join two automata along a common context automaton.

Graph transformation based reconfigurations for Reo are considered in [KMLA11]. Reasoning
about dynamic reconfigurations is accomplished by modeling both the execution and the recon-
figuration semantics as graph transformations. This enables state space generation and analysis
using model checking. However, the approach is not compositional, since graph grammars in
general are not compositional.

A model for distributed connectors and their reconfigurations is suggested in [KAV09]. Sim-
ilar to the approach in this paper, the distributed connector model is based on distributed graph
transformation. However, the semantics of connectors is not considered and, thus, dynamic re-
configurations cannot be modeled.

A basic logic for reasoning about connector reconfigurations in Reo, including a model check-
ing algorithm is the topic of [Cla08]. Different than the work in this paper, the author uses
a formalization of connectors, which is particularly not a graph model. Moreover, the recon-
figuration operations are rather low-level and provide no means for a rule-based definition of
reconfigurations.

We also mention some related work on Petri nets. A marking graph semantics of Petri nets
is considered in [PER01]. Similarly to our approach the authors show compositionality of this
semantics using a pair of adjoint functors. A compositional semantics for open Petri nets based
on deterministic processes is considered in [BCEH05]. A categorical approach to automata-
based semantics for Petri nets is considered in [DS02]. However, this approach is more restrictive
than our port automata model, since concurrent actions imply interleaved semantics.

7 Conclusions

We have presented distributed port automata – a model for component-based software systems,
which uses (i) an automata-based model for specifying the semantics of the primitives, e.g. chan-
nels and components, and (ii) a graph-based model to describe the structure of the system in

11 / 14 Volume 41 (2011)

Distributed Port Automata

terms of a connector or a network. We have shown that the flattening functor for distributed
graphs can be used to derive the semantics of distributed port automata and, moreover, that it is
compositional. For this purpose, we have shown that the flattening functor has a right-adjoint.

As future work, we plan to extend our approach to exploit the full theory of algebraic graph
transformation. Since our model is based on distributed graph transformation, we expect to be
able to apply existing results for this purpose.

Bibliography

[Arb04] F. Arbab. Reo: a channel-based coordination model for component composition.
Mathematical Structures in Computer Science 14:329–366, 2004.
doi:10.1017/S0960129504004153

[BCEH05] P. Baldan, A. Corradini, H. Ehrig, R. Heckel. Compositional semantics for open
Petri nets based on deterministic processes. Mathematical Structures in Computer
Science 15:1–35, 2005.

[BCS09] M. Bonsangue, D. Clarke, A. Silva. Automata for context-dependent connectors. In
Coordination Models and Languages. LNCS 5521, pp. 184–203. Springer, 2009.

[BSAR06] C. Baier, M. Sirjani, F. Arbab, J. Rutten. Modeling component connectors in Reo by
constraint automata. Science of Computer Programming 61(2):75–113, 2006.
doi:10.1016/j.scico.2005.10.008

[Cla08] D. Clarke. A basic logic for reasoning about connector reconfiguration. Fundamenta
Informaticae 82(4):361–390, 2008.

[CMR+97] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, M. Löwe. Handbook
of Graph Grammars and Computing by Graph Transformation. Chapter Algebraic
approaches to graph transformation I: Basic concepts and double pushout approach,
pp. 163–245. World Scientific, 1997.

[DS02] M. Droste, R. M. Shortt. From Petri nets to automata with concurrency. Applied
Categorical Structures 10(2):173–191, 2002.
doi:10.1023/A:1014305610452

[EOP06] H. Ehrig, F. Orejas, U. Prange. Categorical foundations of distributed graph trans-
formation. In ICGT’06. LNCS 4178, pp. 215–229. Springer, 2006.
doi:10.1007/11841883

[KAV09] C. Koehler, F. Arbab, E. de Vink. Reconfiguring distributed Reo connectors. In
WADT’09. LNCS 5486, pp. 221–235. Springer, 2009.
doi:10.1007/978-3-642-03429-9

[KC09] C. Koehler, D. Clarke. Decomposing port automata. In SAC’09. Pp. 1369–1373.
ACM, New York, NY, USA, 2009.
doi:10.1145/1529282.1529587

Proc. GTVMT 2011 12 / 14

http://dx.doi.org/10.1017/S0960129504004153
http://dx.doi.org/10.1016/j.scico.2005.10.008
http://dx.doi.org/10.1023/A:1014305610452
http://dx.doi.org/10.1007/11841883
http://dx.doi.org/10.1007/978-3-642-03429-9
http://dx.doi.org/10.1145/1529282.1529587

ECEASST

[KMLA11] C. Krause, Z. Maraikar, A. Lazovik, F. Arbab. Modeling dynamic reconfigurations
in Reo using high-level replacement systems. Science of Computer Programming
76(1):23–36, 2011.
doi:10.1016/j.scico.2009.10.006

[Kra09] C. Krause. Integrated structure and semantics for Reo connectors and Petri nets. In
ICE’09. EPTCS 12, p. 57. 2009.

[LT05] J. de Lara, G. Taentzer. Modelling and analysis of distributed simulation protocols
with distributed graph transformation. In ACSD’05. Pp. 144–153. 2005.
doi:10.1109/ACSD.2005.27

[Mil89] R. Milner. Communication and concurrency. Prentice Hall International, 1989.

[PER01] J. Padberg, H. Ehrig, G. Rozenberg. Behavior and realization construction for Petri
nets based on free monoid and power set graphs. In Unifying Petri Nets, Advances
in Petri Nets. LNCS 2128, pp. 230–249. Springer, 2001.

[Tae99] G. Taentzer. Distributed graphs and graph transformation. Applied Categorical
Structures 7:431–462, 1999.
doi:10.1023/A:1008683005045

A Proof for Theorem 1

Proof. We consider the functor G : C→ Dis(C) which maps an object X ∈ C to the distributed
object (1,(1 7→ X)) ∈ Dis(C) and a morphism f : X → X ′ to (id1,(f)), where 1 is the terminal
object in Graph. We have F a G since there is a bijective correspondence:

ΦX ,Y : homC(FY,X)→ homDis(C)(Y,GX)

that is natural in X ∈C and Y = (N,D) ∈Dis(C). The flattening functor F associates the colimit
to a distributed object. Thus, FY is the colimit of the diagram D together with C-morphisms
(yn : D(n)→ FY)n∈N . Now, for a C-morphism h : FY → X we have the Dis(C)-morphism
ΦX ,Y (h) = (!N ,(h◦yn)n∈N) : Y →GX where !N : N→ 1 is the terminal map for N in Graph. The
mapping ΦX ,Y is bijective since all Dis(C)-morphisms Y → GX are of the above form.

Now let f : X → X ′ a C-morphism and g : Y ′→ Y a Dis(C)-morphism. The morphism Gf :
GX→GX ′ is given as above. Fg : FY ′→ FY is the unique morphism into the colimit object FY .
Now we need to show the following naturality condition:

Gf ◦ΦX ,Y (h)◦g != ΦX ′,Y ′(f ◦h◦Fg) : Y ′→ GX ′

We write Y ′ = (N′,D′) and g = (gN′ ,(gm)m∈N′). Moreover, let (y′m : D′(m) → FY ′)m∈N′ the
C-morphisms into the colimit of Y ′. We now exploit the componentwise composition of Dis(C)-

13 / 14 Volume 41 (2011)

http://dx.doi.org/10.1016/j.scico.2009.10.006
http://dx.doi.org/10.1109/ACSD.2005.27
http://dx.doi.org/10.1023/A:1008683005045

Distributed Port Automata

morphisms:

Gf ◦ΦX ,Y (h)◦g = (id1,(f))◦ (!N ,(h◦yn)n∈N)◦
(
gN′ ,(gm)m∈N′

)
=

(
id1◦ !N◦gN′ ,(f ◦h◦ ygN′ (m) ◦gm)m∈N′

)
=

(
!N′ ,(f ◦h◦ ygN′ (m) ◦gm)m∈N′

)
=

(
!N′ ,(f ◦h◦Fg◦ y′m)m∈N′

)
(3)

= ΦX ′,Y ′(f ◦h◦Fg)

Equality (3) holds since Fg is the unique morphism into the colimit FY .

Proc. GTVMT 2011 14 / 14

	Introduction
	Distributed graph transformation
	Channel-based coordination with Reo
	Building connectors
	Port automata semantics

	The category of port automata
	The category of distributed port automata
	Reo connectors as distributed port automata
	Composing distributed port automata
	Semantics of distributed port automata
	Towards dynamic reconfigurations

	Related work
	Conclusions
	Proof for Theorem 1

