
Electronic Communications of the EASST
Volume 38 (2010)

Proceedings of the Fifth International Conference on
Graph Transformation - Doctoral Symposium

(ICGT-DS 2010)

Efficient Implementation of Automaton Functors for the Verification of
Graph Transformation Systems

Christoph Blume

15 pages

Guest Editor: Andrea Corradini
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Efficient Implementation of Automaton Functors for the Verification
of Graph Transformation Systems

Christoph Blume∗

Abteilung für Informatik und Angewandte Kognitionswissenschaft,
Universität Duisburg-Essen, Germany

christoph.blume@uni-due.de

Abstract: In this paper we show new applications for recognizable graph languages
to invariant checking. Furthermore we present details about techniques we used for
an implementation of a tool suite for (finite) automaton functors which generalize
finite automata to the setting of recognizable (graph) languages. In order to develop
an efficient implementation we take advantage of Binary Decision Diagrams (BDDs).

Keywords: graph transformation, recognizable graph languages, invariants, imple-
mentation of automaton functors, binary decision diagrams

1 Introduction

The theory of regular languages is the basis of a number of analysis techniques, such as regular
model checking [6], termination analysis [14] and reachability analysis [13]. The notion of
regularity has been straightforwardly generalized to regular graph languages – which are also
called recognizable graph languages – in different ways [2, 10, 7, 8], but all leading to the same
notion of recognizability. Very roughly, one can say that a property (or language) of graphs is
recognizable whenever it can be derived inductively via an arbitrary decomposition of the graph.
In addition the size of the information “transported” over an interface in the decomposition must
be bounded by a function which is dependent only on the size of the interface. Alternatively
recognizability can be defined via a family of Myhill-Nerode style congruences of finite index,
i.e., congruences with finitely many equivalence classes.

In this paper, we use the notion of recognizability by Bruggink and König [8] which is based
on a categorical definition of recognizability in terms of so-called automaton functors, which are
a generalization of non-deterministic finite automata. An advantage of this automaton-oriented
notion of recognizability is that many familiar constructions on finite automata, such as the
determinization, minimization as well as closure properties under boolean operations, can be
straightforwardly generalized to automaton functors.

The paper is structured as follows: In Section 2 we briefly define recognizable graph languages,
automaton functors, and the category-theoretic notions at the heart thereof. In Section 3 we show
some new examples of our invariant checking technique developed in [4]. In Section 4 we present
our implementation techniques we have used for starting to develop an automaton functor tool
suite. In Section 5 we give a conclusion and point out new links for further research topics.

∗ Research partially supported by the DFG project GaReV.

1 / 15 Volume 38 (2010)

mailto:christoph.blume@uni-due.de

Efficient Implementation of Automaton Functors for the Verification of GTSs

2 Preliminaries

In this section we briefly recall some concepts of category theory and recognizable graph lan-
guages. We presuppose a basic knowledge of category theory and order theory.

2.1 Category Theory and Recognizable Graph Languages

The category which has sets as objects and relations as arrows is denoted by Rel. The subcategory
which has total functions as arrows is denoted by Set. The composition of two composable arrows
f and g is denoted by f ;g = g◦ f .

Let C be a category with pushouts. A cospan c : J −cL�C�cR−K is a pair of C-arrows with
the same codomain. Here, J and K are the domain (or inner interface) and codomain (or outer
interface) of the cospan c, respectively. The identity cospan for an object E is the cospan consisting
of twice the identity arrow of E. Let c : J −cL�C�cR−K and d : K −dL�D�dR−M be cospans
(where the codomain of c equals the domain of d). The composition of c and d is obtained by
taking the pushout of cR and dL. A semi-abstract cospan is an equivalence class of cospans, where
we take the middle object of the cospan up to isomorphism. Now, the cospan category Cospan(C)
is defined as the category which has the objects of C as objects, and semi-abstract cospans as
arrows.

Let a set Σ of labels be given. A hypergraph G, later also simply called graph, is a four-tuple
〈VG,EG,attG, labG〉, where VG is a finite set of vertices (or nodes) of G, EG is a finite set of
edges of G, attG : EG→V ∗G is the attachment function and labG : EG→ Σ is the labeling function.
Here, V ∗G denotes the set of finite sequences of elements of VG. A hypergraph morphism f is a
structure-preserving map between two hypergraphs. A discrete graph is a graph which does not
contain any edges. The discrete graph with n nodes is denoted by Dn. The empty graph is denoted
by /0 instead of D0. The category of graphs and graph morphisms is denoted by HGraph.

A cospan of graphs (an arrow in the category Cospan(HGraph)) can be seen as a graph with
an inner (left) and an outer (right) interface. Intuitively, the interfaces designate the parts of the
graph which can be “touched” from the outside. With [G] : /0→ G← /0 we denote the cospan
consisting of a graph G with empty inner and outer interfaces.

Cospans of graphs are closely related to graph transformation systems, in particular to the
double-pushout (DPO) approach to graph rewriting [19]. A DPO rewrite rule ρ : L�ρL− I −ρR�R
can be considered as a pair of cospans ` : /0→ L�ρL− I and r : /0→ R�ρR− I, which will in the
following be called left- and right-hand side, respectively. Then it holds that G ⇒ρ H if and only
if [G] = ` ;c and [H] = r ;c, for some cospan c.

We define recognizable graph languages by using automaton functors on the category of
cospans of graphs, as in [8].

Definition 1 (Automaton functor, recognizability) Let a category C with initial object /0 be
given. An automaton functor is a functor A : C→Rel, which maps every object X of C to a finite
set A (X) of states of X and every arrow f : X→Y to a relation A (f)⊆A (X)×A (Y), together
with two distinguished sets IA ⊆A (/0) and FA ⊆A (/0) of initial and final states, respectively.

An automaton functor is deterministic if every relation A (f) is a function and every IA

contains exactly one element.

Proc. Doctoral Symposium ICGT 2010 2 / 15

ECEASST

An arrow f : /0→ /0 is accepted by an automaton functor A , if 〈s, t〉 ∈A (f), for some s ∈ IA

and t ∈ FA . The language L(A) of an automaton functor contains exactly those arrows which
are accepted by it. A language L of arrows from /0 to /0 is a recognizable language if L = L(A),
for some automaton functor A .

The intuition behind the definition is to have a mapping into a (locally) finite domain. The func-
tor property guarantees that decomposing an object in different ways does not affect acceptance in
any way. This is different from word languages, where there is essentially one way to decompose
an object into subobjects.

Familiar constructions on finite automata, such as the determinization construction, can be
easily generalized to automaton functors. Also, it was shown in [8], that restricting to discrete
interfaces does not affect the expressiveness of the formalism. Due to the latter result, we shall
restrict to discrete interfaces in the rest of this paper.

The above definition can easily be generalized to accept languages between arbitrary objects.
However, in our setting we require only languages from the initial object to the initial object.

A characterization of recognizable graph languages can be obtained in terms of recognizable
languages in Cospan(HGraph):

Definition 2 (Recognizable graph language) A set L of graphs is a recognizable graph language,
if [L] = {[G] : /0→ G← /0 | G ∈ L} is a recognizable language in Cospan(HGraph).

In the following we do not distinguish between L, a language of graphs, and [L], a language of
(cospans of) graphs with empty interfaces.

2.2 Atomic Cospans

We assume that the set of nodes of each discrete graph Dn is VDn = {v0, . . .vn−1}. We set Nn =
{0, . . . ,n−1} and we denote the disjoint union of two graphs G1 and G2 by G1⊕G2. We assume
that G1 and G2 are disjoint. Furthermore we define the disjoint union f ⊕g : G1⊕G2→ H1⊕H2
of two graph morphisms f : G1→ H1 and g : G2→ H2 where H1 and H2 are disjoint as follows:

(f ⊕g)(v) =

{
f (v), if v ∈VG1

g(v), if v ∈VG2

and (f ⊕g)(e) =

{
f (e), if e ∈ EG1

g(e), if e ∈ EG2

.

Definition 3 (Atomic graph operations) Restriction of the outer interface: Let ρ : Dn−1→ Dn

with ρ(vi) = vi be an arrow between two discrete graphs. We define the cospan resn as
follows: resn : Dn−idDn�Dn�ρ−Dn−1.

Permutation of the outer interface: Let a permutation π : Nn→ Nn with π(i) = i+ 1 for 0 ≤
i < n−1 and π(n−1) = 0 and an arrow σ : Dn→Dn with vi 7→ vπ(i) between two discrete
graphs be given. We define the cospan permn as follows: permn : Dn−idDn�Dn�σ−Dn.

Transposition of the outer interface: Let a transposition τ : Nn→ Nn with τ(0) = 1, τ(1) = 0
and τ(i) = i for 2≤ i≤ n−1 and an arrow σ : Vn→Vn with vi 7→ vτ(i) between two discrete
graphs be given. We define the cospan transn as follows: transn : Dn−idDn�Dn�σ−Dn.

3 / 15 Volume 38 (2010)

Efficient Implementation of Automaton Functors for the Verification of GTSs

resn =

Dn Dn Dn−1

...
...

...

ρ

permn =

Dn Dn Dn

...
...

...
σ

transn =

Dn Dn Dn

...
...

...

σ

fusen =

Dn D Dn−1

...

...
...

θmap ϕ

connectA,m
n =

Dn H⊕Dn−m Dn

...

...

...

...

A
...

...

e

vertexn =

Dn Dn+1 Dn+1

...
...

...

dL

Figure 1: Graph operations

Fusion of two nodes of the outer interface: Let n > 1 and an equivalence relation θ = idVn ∪
{(v0,v1),(v1,v0)}, an arrow θmap which maps every node of Dn to its θ -equivalence class,
and an arrow ϕ : Dn−1→ D with vi 7→ Jvi+1Kθ , where D is the discrete graph with node set
{JvKθ | v ∈Vn}, be given. We define the cospan fusen as follows: fusen : Dn−θmap�D�ϕ−
Dn−1.

Connection of a single hyperedge: Let an edge label A ∈ Σ, m ∈ N with 0 ≤ m ≤ n and a
hypergraph H which consists of a single hyperedge h with arity m and labeled with A be
given. We define the cospan connectA,m

n as follows: connectA,m
n : Dn−e�H⊕Dn−m�e−Dn

with e(vi) = atti(h) for 0≤ i < m and e(vi) = vi−m otherwise.

Disjoint union with a single node: We define the cospan vertexn as follows: vertexn : Dn−dL�
Dn+1�idDn+1−Dn+1 with dL = idDn⊕ i and i : /0→ D1.

The following proposition, which is proven in [4], shows that every graph (viewed as cospan
with empty inner and outer interface) can be decomposed in a sequence of atomic cospans:

Proposition 1 Every cospan of the form c : Dm −ϕL�G�ϕR−Dn where the right leg ϕR is
injective can be constructed by a sequence op1, . . . ,opk of atomic graph operations, i.e. c can be
obtained as the composition c = op1 ; . . . ;opk.

Due to this result, we can restrict our attention to atomic cospans instead of considering arbitrary
cospans in the following sections.

3 Recognizability and Invariant Checking

In this section we give a short introduction to a straightforward approach to verification which is
based on recognizable graph languages. The main idea is to provide an invariant and to check
that it is preserved by all transformation rules. This technique was first presented in [3, 4]. In this
section we want to present new examples how to use technique for verification. An implementation
which provides an invariant check among other things will be discussed in section 4.

Proc. Doctoral Symposium ICGT 2010 4 / 15

ECEASST

a
b

b

Figure 2: Subgraph T

0 1

a =⇒
0 1

a

Figure 3: Transformation rule σa

In the case of words, a language is an invariant for a rule `→ r if it holds for all words u and
v that u`v ∈ L implies urv ∈ L. If we consider regular word languages the rule `→ r preserves
the language L if and only if ` and r are ordered with respect to a monotone well-quasi-order
such that L is upward-closed w.r.t this well-quasi-order [12, 18]. The coarsest such order is the
Myhill-Nerode quasi-order of a language L which relates arbitrary words v and w if and only
if it holds for all words u and x that uvx ∈ L implies uwx ∈ L. This is the coarsest monotone
quasi-order such that L is upward-closed with respect to this quasi-order and it can be computed
by a fixed-point iteration similar to the computation of the minimal finite automaton [3].

The notion of the Myhill-Nerode quasi-order and the result that a rule `→ r preserves a
languages if and only if ` and r are ordered with respect to the Myhill-Nerode quasi-order can
be lifted to recognizable graph languages (based on Cospan(Graph)) [4]. The algorithm for
computing the Myhill-Nerode quasi-order can also be adapted to the more general setting and
there exists a prototype implementation to check whether the language of all graphs containing a
given subgraph is an invariant according to a given graph transformation rule [3]. In the following
we present some instances for recognizable graph languages which are invariants for different
transformation rules.

First we consider the language LU of all graphs which contain a fixed subgraph U . The
automaton functor A accepting this language works as follows: For every discrete graph Di,
i ∈ N, the automaton functors contains a state set AU(Di). Every state in each of the state sets
has to hold two informations. The first information represents which parts of the subgraph
have already been recognized. The second information is a function which maps every node of
the interface Di to a node which has already been recognized or to some “bottom element” to
indicate that the interface node is not mapped to a node of the wanted subgraph. For every cospan
c : Dm−cL�G�cR−Dn two states (U ′, f ′) ∈AU(Dm) and (U ′∪U ′′, f ′′) ∈AU(Dn) are related by
AU(c) if and only if U ′′ is a graph containing those nodes and edges of U which lie in the graph
G and by “updating” the function f ′ to a function f ′′ according to c. Since the graph G might
contain several graphs U ′′ as subgraph, the automaton functor is highly non-deterministic. More
details about the construction of this automaton functor can be found in [3].

Example 1 As an example we want to take the graph T (see Figure 2) as the wanted subgraph.
It can be shown that the language LT of all graphs containing T as a subgraph is an invariant
for the rule σa (see Figure 3). The general idea is now to perform the following three steps.
The first step is to compute the automaton functor AT for LT . The next step is to compute the
Myhill-Nerode quasi-order for LT using the automaton functor AT and the algorithm presented in

5 / 15 Volume 38 (2010)

Efficient Implementation of Automaton Functors for the Verification of GTSs

0 1
=⇒

0 1

Figure 4: Transformation rule αn

0 1

(a) Left-hand side

0 1

(b) Right-hand side

Figure 5: Colorings for the rule αn

[3]. The last step is to check whether the left-hand side of σa (viewed as a cospan) is related to the
right-hand side of σa (viewed as a cospan) according to the Myhill-Nerode quasi-order. Note that
in practice we use a slightly different algorithm which computes the simulation relation instead
of the Myhill-Nerode quasi-order due to the fact that the automaton functor is non-deterministic
and the algorithm computing the Myhill-Nerode quasi-order is only applicable to deterministic
automaton functors.

Another recognizable graph language we want to consider is the language L(k) of all k-colorable
graphs (for some k ∈ N). A k-coloring of a graph G is a function f : VG→ Nk such that for all
edges e∈ EG and for all nodes v1,v2 ∈ attG(e) it holds that f (v1) 6= f (v2) if v1 6= v2. The question
whether a graph is k-colorable is essential in many applications, for example in scheduling theory
to find a solution for allocations of limited (hardware) resources or for assignments of limited
bandwidth in networks. The idea of the automaton functor A(k) : Cospan(HGraph)→ Rel
accepting all k-colorable graphs (as defined in [8]) is as follows: Every discrete graph Di, i ∈ N,
is mapped to the state set A(k)(Di) containing all valid k-colorings of Di, i.e.

A(k)(Di) = { f : VDi → Nk | f is a valid k-coloring of Di}.

For every cospan c : Dm−cL�G�cR−Dn two states fm ∈A(k)(Dm) and fn ∈A(k)(Dn) are related
by A(k)(c) if and only if f (cL(v)) = fm(v) for every node v ∈VDm and f (cR(v)) = fn(v) for every
node v ∈VDn .

Example 2 Now we want to consider two examples. The first example is the transformation rule
αn (see Figure 4) for which the language L(2) is an invariant. The rule αn simply adds two new
nodes to an existing path. The second example is the transformation rule αr (see Figure 6) for
which the language language L(3) is an invariant. The second rule replaces the middle node of
a rectangular graph by a new rectangle. Since the path of the left-hand side is 2-colorable (see
Figure 5) and since the two nodes in the image of the interface do not need to be re-colored, it
is obvious that the language L(2) is an invariant for the rule αn. Due to the fact that the outer
rectangle of the LHS of αr is a (closed) path it is also 2-colorable (see Figure 7) and since the
inner node of the left-hand side of αr in each case forms a triangle with two of the outer rectangle
nodes and every triangle is 3-colorable it is clear, that the left-hand side is 3-colorable. The
3-colorability of the right-hand side of the rule αr can be obtained in a similar way, therefore L(3)
is an invariant for the rule αn.

Please note that, although it is guaranteed that the colorability for a graph is preserved by the
applied transformation rule, it might be necessary to “re-color” the graph during the processing

Proc. Doctoral Symposium ICGT 2010 6 / 15

ECEASST

0

1 2

3

=⇒

0

1 2

3

Figure 6: Transformation rule αr

0

1 2

3

(a) Left-hand side

0

1 2

3

(b) Right-hand side

Figure 7: Colorings for the rule αr

of (the decomposition of) the graph to obtain a valid k-coloring of the graph. The information
about possible “re-colorings” are automatically hold by the automaton functor A(k) due to its
construction.

4 Efficient Implementations of Automaton Functors

In this section we present our (prototype) Java-implementation of a tool suite for computing and
manipulating automaton functors. In order to implement such a tool suite we have to restrict
ourselves to automaton functors of finite size, i.e. the considered automaton functors must not
consist of infinitely many finite state sets.

But in general an automaton functor is not finite, since graphs with an arbitrary pathwidth have
to be considered. But if only recognizable graph languages of bounded pathwidth are allowed,
it is possible to use automaton functors of bounded size, since the size of the interface of every
graph is bounded. In the following we only take cospans into account which have a bounded
interface size.

Definition 4 (Bounded cospan) A cospan c : S−cL�G�cR−T is called bounded (by k), if there
exist atomic graph operations op1, . . . ,op j such that c= op1 ; . . . ;op j and for every graph operation
opi : Dni −opL

i �Gi�opR
i −Dmi for 1≤ i≤ j it holds that ni,mi ≤ k.

However, the automaton functors might still be very large. Therefore it is not suitable to
represent the automaton functors explicitly. To achieve a compact representation of the automaton
functor we use Binary Decision Diagrams (BDDs) [1] to encode the transition relation of the
automaton functor. The basic idea is to encode each state of the automaton functor as a bit string
of length t. The transition relation can then be seen as set T of bit strings of length 2t where a
bit string b1 . . .b2t is contained in T if and only if b1 . . .bt is the encoding of a state q, bt+1 . . .b2t

is the encoding of a state q′ and q is related to q′ by the transition relation. The set T can be
characterized by a boolean function F with 2n atomic propositions and this formula F can be
represented by a BDD.

As an example we want to consider the following set of 4-bit vectors: {0000,0011,1100,1111}.
We assume that the bits of the bit vectors are numbered from b0 to b3 with the least significant bit
left. Then the set can be characterized by the formula (b0↔ b1)∧ (b2↔ b3). The BDD which
encodes this formula can be seen in Figure 8.

Besides the compact representation of sets and relations BDDs provide some other useful

7 / 15 Volume 38 (2010)

Efficient Implementation of Automaton Functors for the Verification of GTSs

features. One of these features is that BDDs are unique (up to isomorphism) if the ordering of
the atomic propositions of the represented boolean function is fixed and if the BDD is reduced.
We use this property of BDDs to efficiently check the equivalence of boolean functions. Another
feature of BDDs is the possibility to directly compute boolean operations or both existential and
universal quantifications on BDDs instead of performing these operations on the represented
boolean functions. In our implementation we use the JavaBDD1-package which is based on the
Buddy2-BDD-package written in C as implementation of BDDs.

In the following we present the state encoding and the
b0

b1 b1

b2

b3 b3

1 0

Figure 8: BDD for the formula
(b0↔ b1)∧ (b2↔ b3)

propositional formulas we used for the implementation of the
automaton functor accepting all graphs containing a specific
subgraph (see Section 3). The state encoding has to take care
of the following informations:

• the interface size (of the outer interface of the
cospan seen so far)

• the parts of the subgraph which have been recog-
nized so far

• the overlap of the parts (of the subgraph) with the
current interface

Since a good ordering of the bits holding these informa-
tions is essential to construct BDDs which are very compact,
we have done some experiments to find the best possible
ordering. The resulting encoding of a state is as follows if we assume that the maximum interface
size is k, `= dlog2(k+1)e and that the wanted subgraph has m edges and n nodes:

b1 . . .b`e0 . . .em−1(v0 f0,0 . . . f0,k−1) . . .(vn−1 fn−1,0 . . . f0,k−1).

The bits b1 . . .b` encode the current interface size as a binary number, the bit ei (for 0≤ i≤m−1)
and the bit v j (for 0≤ j ≤ n−1) respectively represent the (non-)existence of the i-th edge and
j-th node respectively, and the bit fi, j (for 0 ≤ i ≤ n− 1, 0 ≤ j ≤ k− 1) encode that the j-th
interface node is (not) mapped to the i-th node of the wanted subgraph. To distinguish between the
bits encoding the current state and the bits encoding the successor state we indicate the successor
state encoding by b′1 . . .b

′
`e
′
0 . . .e

′
m−1(v

′
0 f ′0,0 . . . f ′0,k−1) . . .(v

′
n−1 f ′n−1,0 . . . f ′n−1,k−1). In the following

we do not distinguish between the nodes and edges of the wanted subgraphs and the bits encoding
the (non-)existence of these nodes and edges in states encoded by the several bit strings.

For each of the atomic graph operations (connectA,p, fuse, perm, res, trans, vertex) we define
a separate propositional formula describing all transitions – for all permitted interfaces – of
the automaton functor (for the particular atomic graph operation). These formulas can then be
easily transformed in BDDs which describe the transition functions for the different atomic graph
operations.

In the following we present the formula fconnectA,p for the connectA,p-operation as an example.
In order to define the formula we use six auxiliary formulas

1 JavaBDD Project Homepage: http://javabdd.sourceforge.net
2 Buddy Manual: http://buddy.sourceforge.net/manual/main.html

Proc. Doctoral Symposium ICGT 2010 8 / 15

http://javabdd.sourceforge.net
http://buddy.sourceforge.net/manual/main.html

ECEASST

• to describe that none of the edges from ei to e j have been changed:

EdgesUnchanged(i, j) ⇐⇒
j∧

t=i

(et ↔ e′t)

• to describe that the A-labeled edge ei of arity s has been added and all other edges have not
been changed:

EdgeAdded(i,A,s) ⇐⇒ EdgesUnchanged(0, i−1)∧ (lab(ei) = A

∧ |att(ei)|= s∧¬ei∧ e′i)∧EdgesUnchanged(i+1,m−1)

• to describe that none of the nodes from vi to v j have been changed:

NodesUnchanged(i, j) ⇐⇒
j∧

t=i

(vt ↔ v′t)

• to describe that the node vi must have been recognized and be present in the interface if it is
adjacent to the edge e j and must not be changed otherwise:

AdjacentNodeExisting(i, j) ⇐⇒ (vi ∈ att(e j)→ (vi∧ v′i∧
k−1∨
t=0

fi,t))

∧ (vi /∈ att(e j)→ (vi↔ v′i))

• to describe that the interface from j to k for the node vi has not been changed:

InterfaceUnchanged(i, j,k) ⇐⇒
k∧

t= j

(fi,t ↔ f ′i,t)

• to describe that the interface from j to k for the node vi is undefined:

InterfaceUndefined(i, j,k) ⇐⇒
k∧

t= j

(¬ fi,t ∧¬ f ′i,t).

Now we can define the formula f
connectA,p

i
. A transition q−connectA,p

i �q′ is allowed if and only
if both states q and q′ belong to the same state set A (Di) (i.e. both states have the same interface
size) and if either the currently added edge does not belong to the wanted subgraph (i.e. the parts
of the subgraph already recognized does not change) or the currently added edge is exactly one of
the edges which belong to the wanted subgraph (i.e. this edge will be added to the parts of the

9 / 15 Volume 38 (2010)

Efficient Implementation of Automaton Functors for the Verification of GTSs

subgraph already recognized):

f
connectA,s

i
=
∧̀
j=1

(
(bin j (i)↔ b j)∧ (b j↔ b′j)

)
∧ (1)(

EdgesUnchanged(0,m−1)∨ (2)

m−1∨
j=0

(
EdgeAdded(j,A,s)→

n−1∧
t=0

AdjacentNodeExisting(t, j)

))
∧ (3)

n−1∧
j=0

(
InterfaceUnchanged(j,0, i)∧ InterfaceUndefined(j, i+1,k−1)

)
(4)

The function bini (x) used in the formula above returns the i-th bit of the binary encoding of a
natural number x. In line 1 it is required that the interface size of the current state is i and that the
successor state has also the interface size i. In line 2 the case is described that the currently added
edge does not belong to subgraph. Whereas in line 3 it is described that in the case that the added
edge belongs to the subgraph it has to be checked that the label and the arity of the new edge
matches to an edge of the subgraph, that exactly one edge which has not be recognized before has
been added and that all nodes which are adjacent to the new edge has been recognized before and
are still present in the interface. In line 4 it is required that the interface nodes which represent the
current interface, i.e. the first i interface bits, have not been changed and the other interface bits,
i.e. the bits from i+1 to k−1 have not been set. Note that in the case that the wanted subgraph
does not contain an edge with the specified label and the specified arity it can only occur that no
edge of the subgraph has been changed.

Example 3 We consider that the graph S (see Figure 9) is the subgraph we are looking for and
that the maximum interface of the corresponding automaton functor is 3. The length of the state
encoding then is 16, since we need two bits for the interface size, two bits for the edges, three bits
for the nodes and nine bits for the interface function.

The encoding of the state q (see Figure 10) of this automaton functor in which the nodes v0 and
v1 have already been recognized, the node v2 as well as both edges e0 and e1 are still missing and
the second interface node is mapped to v1 and the third is mapped to v0 would be:

b1 b2 e0 e1 v0 f0,0 f0,1 f0,2 v1 f1,0 f1,1 f1,2 v2 f2,0 f2,1 f2,2
1 1 0 0 1 0 0 1 1 0 1 0 0 0 0 0

If we assume that the automaton functor is in state q and the next atomic graph operation it
processes is the connecta,2

3 -operation, two transitions are possible. By the first transition the
automaton functor decides non-deterministically that the new binary a-labeled edge is none of
the edges belonging to S and therefore the automaton functors remains in state q. By the second
possible transition the automaton functor decides that the new edge is one of the edges of S and
moves to the state q′ (see Figure 10) in which the newly added edge has been recognized. Since
all adjacent nodes must have been recognized before an edge can be added, there is only the
possibility to add the edge e0 in this situation. The encoding of the state q′ is as follows:

Proc. Doctoral Symposium ICGT 2010 10 / 15

ECEASST

v0

2

v1 1
a

a
=⇒

connecta,2
3

v0

2

v1 1
a
e0

a

Figure 10: Transition from state q to state q′

b1 b2 e0 e1 v0 f0,0 f0,1 f0,2 v1 f1,0 f1,1 f1,2 v2 f2,0 f2,1 f2,2
1 1 1 0 1 0 0 1 1 0 1 0 0 0 0 0

The encoding of relations is usually done in an “interleaving fashion”, more precisely the bits
encoding the first element of the pair are alternated with the bits encoding the second element. The
great advantage of this interleaving encoding is that the BDD representing the relation gets rather
small, since the bits encoding the same piece of information are near each other. For example the
following bit vector encodes the pair (q,q′) for the connecta,2

3 -operation:

b1 b2 e0 e1 v0 f0,0 f0,1 f0,2 v1 f1,0 f1,1 f1,2 v2 f2,0 f2,1 f2,2
b′1 b′2 e′0 e′1 v′0 f ′0,0 f ′0,1 f ′0,2 v′1 f ′1,0 f ′1,1 f ′1,2 v′2 f ′2,0 f ′2,1 f ′2,2

1 1 1 1 0 1 0 0 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0

In order to optimize the computation and size of the BDDs needed to
v0

v1

v2

a
e0

a
e1

Figure 9: Subgraph S

represent the transition relations for the different atomic graph operations,
we permitted all bit vectors which encode an interface which has a size
less than or equal to the maximum interface size of the automaton functor.
The idea behind this is that the BDDs spend much information to the check
whether a state (bit vector) is valid, i.e. it has to check four consistency
conditions:

• the parts of the subgraph already recognized do not contain dangling edges
(for example if e0 is set also v0 and v1 have to be set),

• interface nodes are only mapped to subgraph nodes which have already been recognized
(for example if one of f0,i, 0≤ i≤ 2, is set also v0 has to be set),

• an interface node is only mapped to exactly one subgraph node
(for example if f1,1 is set, then f0,1 and f2,1 must not be set),

• the bits of interface nodes which do not belong to the current interface must not be set
(for example if the current interface size is 1, then fi,1 and fi,2, 0≤ i≤ 2, must not be set).

11 / 15 Volume 38 (2010)

Efficient Implementation of Automaton Functors for the Verification of GTSs

path- number of number of time for BDD time for explicit
width valid states BDD nodes construction computation3

5 7475 2049 0.37 sec 17 sec
10 6041421 7782 0.42 sec −4

20 5.9 ·1012 30044 0.67 sec −4

50 6.8 ·1030 183038 7.85 sec −4

100 8.6 ·1060 726156 1 min 10 sec −4

200 1.4 ·10121 2892392 60 min 44 sec −4

Table 1: Performance statistics for the automaton functor AS

Since the formulas for the several transitions guarantee that these consistency conditions are
fulfilled by the transitions, it is not possible to reach an “invalid” state by starting in a “valid”
state. In Table 1 we present some results for the automaton functor from example 3 for different
interface sizes. The first column indicates the maximum interface size, the second column shows
the number of states – without “invalid” bit vectors – of the automaton functor recognizing the
subgraph S. In the third column the number of BDD nodes is given which are needed to represent
the BDDs for all atomic graph operations. The last two columns show the time for constructing the
automaton functor recognizing the subgraph S by computing the BDD-based representation and
by computing an explicit-state representation3. The table shows that it is not efficiently possible
to represent the automaton functor in an explicit way. Due to the fact that the number of states
grows exponential the explicit representation leads to an exhaustive consumption of resources.
Therefore it is only possible to compute the automaton functor (accepting all graphs containing S
as subgraph) for a maximum interface size of 7 on a machine with 2 GB main memory. Despite
of that we have successfully tested the implicit BDD-based representation for maximum interface
sizes of 1000 and more.

In Table 2 the results for another automaton functor recognizing the

Figure 11: Subgraph R

subgraph R which can be seen in Figure 11 are shown. It turns out that
the computation of automaton functors also scales for subgraphs with
higher number of nodes and edges. However, the computation of the
simulation relation (which is needed to perform the invariant check)
does not benefit from the usage of BDDs in the same dimension as the
automaton functor computation. In Table 3 we present the time needed
for the BDD-based computation of the simulation relation. Currently
we were able to compute the simulation relation up to a maximum
interface size of 7. For comparison, if we use an explicit representation
of the simulation relation we were only able to compute the relation up
to a maximum interface size of 4 [3]. The problem of the computation
is that the “intermediate relations” which occur during the fixed-point computation are not
efficiently representable by a BDD, i.e. with a small number of BDD nodes.

3 Further informations about the explicit-state implementation can be found in [3].
4 Computation impossible due to exhaustive resource consumption.

Proc. Doctoral Symposium ICGT 2010 12 / 15

ECEASST

path- number of number of time for BDD
width valid states BDD nodes construction

5 32748051 7521 0.47 sec
10 7.7 ·1011 28014 0.77 sec
20 6.5 ·1020 106646 3.37 sec
50 8.4 ·1047 643550 1 min 7 sec

100 1.2 ·1093 2542518 23 min 18 sec

Table 2: Performance statistics for the automaton func-
tor AR

pathwidth time
1 0.49 sec
2 0.53 sec
3 0.83 sec
4 2.51 sec
5 19.32 sec
6 4 min 17 sec
7 53 min 12 sec

Table 3: Performance statistics
for the simulation relation

5 Conclusions and Future Work

We have presented techniques for an efficient implementation of a tool suite for computing and
manipulating (bounded) automaton functors. Apart from the invariant check which we have
shown in this paper we have already implemented methods for computing the union and the
intersection of automaton functors. In addition we are working on both a universality and a
language inclusion check for recognizable graph languages which are both based on an antichain
construction introduced by Henzinger et. al. [20]. Since our invariant check suffers from an
under-approximation – due to the non-determinism of the automaton functor – we suffer from a
one-sided error. This lack could be eliminated if we were able to solve the language inclusion
problem on non-deterministic automaton functors (efficiently).

Furthermore we are tackling another problem: Now we have to construct our automaton
functors very directly, but this is hard because of the functor property which has to be enforced.
In [9] a category-based logic (called a logic on subobjects) which has the same expressive power
as monadic second-order logic is presented that can be employed for all kinds of (graph-like)
structures. This logic can be used for generating automaton functors from formulas due to a
result by Courcelle [10, 11] which states that every monadic second-order definable language is
recognizable. Currently, we are working on a project to implement this formula-based generation.

Finally, we are studying another approach to the verification of distributed and infinite-state
systems: regular model checking [6]. The main idea is to describe (possibly infinite) sets of states
as regular languages and transitions of the system as regular relations represented by finite-state
transducers transforming a regular language into another regular language. For this purpose we
are developing the notion of so-called transduction functors, i.e. the counterpart of finite-state
transducers in the case of word languages. Since this approach has been extended to the setting
of regular tree languages and tree transducers [5] it is a logical step to generalize regular model
checking to graph transformation systems where recognizable graph languages play the role of
regular languages and transduction functor play the role of finite-state transducers.

There already exists the notion of MSO-definable transductions invented by Courcelle [11], but
this notion does not seem to be that useful, since these transductions are very complex and do not
guarantee to transform a recognizable graph language into another recognizable graph language
in general which is required for a forward analysis. It has to be investigated how the notion of

13 / 15 Volume 38 (2010)

Efficient Implementation of Automaton Functors for the Verification of GTSs

finite-state transducer can be generalized to transduction functors similar to the generalization of
finite-state automata to automaton functors. The goal is to have a notion of transduction functor
which is equivalent to finite-state transducers when restricted to word languages.

In addition to our application, BDDs have also been used in other automaton-oriented tools
such as MONA [16, 15]. In contrast to our approach in which we represent sets and relations
on states implicitly by BDDs, in MONA BDDs are used in a different way, since in MONA the
input labels of the automaton are encoded as bit vectors. The idea is that the root node and the
leaf nodes of the BDDs indicate states of the automaton which are represented explicitly. Starting
in the root node and following some path in the BDD to a leaf node one reaches the successor
state according to the input letter encoded by the chosen path. This idea is quite different to
our approach since we use a different BDD for each input letter, i.e. for each atomic cospan, to
represent the whole transition relation induced by this input letter.

Another related work by Kneis and Langer [17] is based on dynamic programming on tree
decompositions to check whether a given graph has some property. For their approach Kneis and
Langer take advantage of game-theoretic formalisms to check after each step of the processing of
the tree decomposition whether the property still holds. We have not yet compared our results
with this approach in detail and it has also to be investigated further, whether this technique could
be applied to our setting.

Acknowledgements: The author would like to thank Barbara König, Sander Bruggink and
Mathias Hülsbusch for their suggestions and their valuable discussions on this research topic.

Bibliography

[1] Andersen, H.R.: An introduction to binary decision diagrams. Course Notes (1997), http:
//www.configit.com/fileadmin/Configit/Documents/bdd-eap.pdf

[2] Bauderon, M., Courcelle, B.: Graph expressions and graph rewritings. Mathematical Systems
Theory 20(2-3), 83–127 (1987)

[3] Blume, C.: Graphsprachen für die Spezifikation von Invarianten bei verteilten und dynamis-
chen Systemen. Master’s thesis, Universität Duisburg-Essen (2008)

[4] Blume, C., Bruggink, S., König, B.: Recognizable graph languages for checking invariants.
In: Proceedings of GT-VMT ’10. Electronic Communications of the EASST, vol. 29 (2010)

[5] Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T.: Abstract regular tree model
checking of complex dynamic data structures. In: Proceedings of SAS ’06. pp. 52–70.
Springer (2006)

[6] Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular model checking. In: Proceed-
ings of CAV ’00: Proceedings of the 12th International Conference on Computer Aided
Verification. pp. 403–418. Springer (2000), LNCS 1855

Proc. Doctoral Symposium ICGT 2010 14 / 15

http://www.configit.com/fileadmin/Configit/Documents/bdd-eap.pdf
http://www.configit.com/fileadmin/Configit/Documents/bdd-eap.pdf

ECEASST

[7] Bozapalidis, S., Kalampakas, A.: Graph automata. Theoretical Computer Science 393,
147–165 (2008)

[8] Bruggink, H.J.S., König, B.: On the recognizability of arrow and graph languages. In:
Proceedings of ICGT ’08. pp. 336–350. Springer (2008), LNCS 5214

[9] Bruggink, H.S., König, B.: A logic on subobjects and recognizability. In: Calude, C.,
Sassone, V. (eds.) Theoretical Computer Science. IFIP Advances in Information and Com-
munication Technology, vol. 323, pp. 197–212. Springer Boston (2010)

[10] Courcelle, B.: The monadic second-order logic of graphs I. Recognizable sets of finite
graphs. Inf. Comput. 85(1), 12–75 (1990)

[11] Courcelle, B.: The expression of graph properties and graph transformations in monadic
second-order logic. In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing
by Graph Transformation, Vol.1: Foundations, chap. 5. World Scientific (1997)

[12] Ehrenfeucht, A., Haussler, D., Rozenberg, G.: On regularity of context-free languages.
Theoretical Computer Science 27, 311–332 (1983)

[13] Fribourg, L., Olsén, H.: Reachability sets of parameterized rings as regular languages.
In: Proceedings of Infinity ’97. Electronic Notes in Theoretical Computer Science, vol. 9.
Elsevier (1997)

[14] Geser, A., Hofbauer, D., Waldmann, J.: Match-bounded string rewriting systems. Applicable
Algebra in Engineering, Communication and Computing 15(3–4), 149–171 (2004)

[15] Gottlob, G., Pichler, R., Wei, F.: Bounded treewidth as a key to tractability of knowledge
representation and reasoning. Artif. Intell. 174(1), 105–132 (2010)

[16] Klarlund, N., Møller, A.: MONA Version 1.4 User Manual. BRICS, Department of Computer
Science, Aarhus University (January 2001)

[17] Kneis, J., Langer, A.: A practical approach to Courcelle’s theorem. In: Proceedings of
the International Doctoral Workshop on MEMICS ’08. Electronic Notes in Theoretical
Computer Science, vol. 251, pp. 65–81. Elsevier (2009)

[18] de Luca, A., Varricchio, S.: Well quasi-orders and regular languages. Acta Inf. 31(6),
539–557 (1994)

[19] Sassone, V., Sobociński, P.: Reactive systems over cospans. In: Proceedings of LICS ’05.
pp. 311–320. IEEE Computer Society (2005)

[20] Wulf, M.D., Doyen, L., Henzinger, T.A., Raskin, J.F.: Antichains: A new algorithm for
checking universality of finite automata. In: Proceedings of CAV ’06. pp. 17–30 (2006)

15 / 15 Volume 38 (2010)

	Introduction
	Preliminaries
	Category Theory and Recognizable Graph Languages
	Atomic Cospans

	Recognizability and Invariant Checking
	Efficient Implementations of Automaton Functors
	Conclusions and Future Work

