
Electronic Communications of the EASST
Volume 2 (2006)

Proceedings of the
Workshop on Petri Nets and Graph Transformation

(PNGT 2006)

Reversing graph transformations1

Paweł Sobociński

7 pages

Guest Editors: Paolo Baldan, Hartmut Ehrig, Julia Padberg, Grzegorz Rozenberg
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

Reversing graph transformations2

Paweł Sobociński

ECS, University of Southampton, United Kingdom

Abstract: In recent work with Vincent Danos and Jean Krivine the author intro-
duced a general framework for backtracking in concurrent formalisms, thus allowing
modelling of situations where deadlock can arise without the necessity of explicitly
encoding the often involved backtracking mechanisms. Here we shall discuss how
the framework can be applied to the well-known formalism of double-pushout graph
transformation.

Keywords: graph transformation, reversibility, transaction

We present an application of the framework developed in [5] to the theory of graph transfor-
mation systems. Here we say “graph” to mean an object of an arbitrary category with pushouts
along monomorphisms where the local Church-Rosser theorem holds. An example is an adhe-
sive category [10]. Of course, the category Graph of ordinary graphs is adhesive and in this
setting it suffices to require that the interface embeds in both the left and the right hand sides of
each production.

In order to establish the basic concepts we shall consider a concrete example, working in the
category C of directed graphs whose vertices are tagged with the elements of a set; the presheaf
topos C = Set·→·⇔·. The edges of such graphs will represent physical proximity of entities
represented by the vertices. The elements with which vertices may be tagged represent the
internal state of the entities. Let T be the graph illustrated in Fig 1. The graph has two vertices
(“Philosopher” and “Table”) and one edge. The tags are “fork”, “eating”, “thinking” and “fork”.
Then C/T is the adhesive category [10] of graphs typed over T , in the usual way. One can
thus think of the objects in C/T as graphs consisting of two types of vertices, the philosopher
vertices and the table vertices. The philosopher vertices, which may be tagged with a set of
“fork”, “eating” or “thinking” tags, may be the source of an arbitrary set of edges with targets
the table vertices, which themselves may be tagged with a set of “fork” tags.

Our main example is a graph transformation system over the category C/T and models Hoare’s
dining philosophers problem [9]. Let P be the DPO grammar over C/T with the start graph S
as illustrated in Fig 2 and the three productions q1, q2 and q3 illustrated in Fig 3. Note that we
only illustrate the left and the right hand sides of the productions, their interface is the obvious
one in each case. Each thinking philosopher may claim a fork next to her using the production
q1. Once a thinking philosopher has two forks in her possession, she may start eating via the
production q2. Finally, an eating philosopher can release her forks at any time and return to
thinking using production q3. The dining philosophers problem is famous not least for the fact
that it succinctly illustrates the fundamental issue of deadlock in parallel programming. If each
of the philosophers picks up the fork to her left then no further productions are possible and the
philosophers starve to death.

To solve this problem, one could partition the set of productions into reversible and irreversible
productions; the idea being that the reversible productions may lead to deadlock and thus should

1 / 7 Volume 2 (2006)



Reversing graph transformations3

fork
eating
thinking

Philosopher

fork
Table

Figure 1: Type graph T .

thinking
Philosopher

fork
Table

thinking
Philosopher

thinking
Philosopher

thinking
Philosopher

fork
Table

fork
Table

fork
Table

fork
Tablethinking

Philosopher

Figure 2: Start graph S.

be allowed to be (correctly) backtracked. On the other hand, the irreversible productions occur
only in the presence of a desired global state possibly reached via the application of a number
of the reversible productions. In our particular example one could specify the set of reversible
productions R = {q1} and the set of irreversible productions I = {q2, q3}.

One may now view of the behaviour of each philosopher as a series of transactions – causal
sequences of reversible actions followed by a single irreversible action. Each philosopher can
perform two possible transactions, the first being two instances of q1 followed by q2 (claiming
two forks and starting to eat) and the second being a single instance of q3 (relinquishing the forks
and starting to think). In order to avoid deadlock, one specifies that each of the initial actions
can be reversed. The correctness of the backtracking means roughly that the behaviour of the
resulting system should be precisely the behaviour of the transactions of the original system “up
to” reversible moves.

The naive solution of simply adding a reversed production q1?, illustrated in Fig 4 is unsatis-
factory. Indeed, a philosopher can now begin by picking up her left fork with q1 and placing it
via q1? together with her right fork. This sequence of actions results in states not reachable from
the start state by performing the transactions of the original system - consider for instance the
state illustrated in Fig 5. Thus although the addition of q1? solves the problem of deadlock, it is

Proc. PNGT 2006 2 / 7



ECEASST

thinking
Philosopher

fork
Table

thinking
fork

Philosopher

Table

eating
Philosopher

thinking
Philosopher

fork
Table

fork
Table

thinking
fork
fork

Philosopher

eating
Philosopher

Table Table

⇒
q1

⇒
q2

⇒
q3

Figure 3: Productions q1, q2 and q3 of P .

clearly incorrect.
There are several ways to fix the naive solution: for example, one can label the edges out

of each philosopher with l and r, replace the rule q1 with two rules q1l , q1r and add their in-
verses q1l?, q1r?, thus disallowing the aforementioned errant behaviour. There are two apparent
problems with such an ad-hoc solution: firstly, one has to prove that the transactions are indeed
modelled correctly (trivial in this case, but not always so); secondly, there is a danger of making
the model too complex to be of use. There is a general solution, described and shown to be
correct in [5]. It arose by generalising previous work on reversing the process calculus CCS by
Danos and Krivine [3,4]. It is general in the sense that it applies also to other models for concur-
rency such as Petri nets and process calculi. We briefly outline this solution below, instantiated
with the example of graph transformation systems.

Given a grammar G , let the category of computations CpG be the category with objects those
of C (the ambient category of G ) and arrows finite (possibly empty) paths of direct derivations
modulo switch-equivalence. The arrows of CpG are thus the concurrent computations of G .4

Such categories are natural and have been studied for other models, notably for Petri nets [11].
They have also been considered in the setting of graph transformation, see [8, Ch 4] for an in-
depth presentation and a proof that this category also arises as a free construction.

In the problem specification, the set of productions P of G is partitioned into sets of reversible

4 Note that the description given here is quite concrete since the states are not quotiented by isomorphism – in
particular, thinking of the category as a transition system results in infinite branching for trivial reasons since if a state
q can do a transition to state q′ then it can do the same transition to any state isomorphic to q′. Ways of cutting down
the state space by considering only isomorphism classes of states have been considered in the graph transformation
literature, see [2] and references therein.

3 / 7 Volume 2 (2006)



Reversing graph transformations5

q1!

⇒thinking
fork

Philosopher

Table

thinking
Philosopher

fork
Table

Figure 4: Reversed rule q1?.

thinking
Philosopher

Table

thinking
Philosopher

thinking
Philosopher

thinking
Philosopher

Table

Table

fork
fork

Table

fork
fork
fork

Tablethinking
Philosopher

Figure 5: A state reachable from the start state after adding {q1}? to the set of productions.

productions R and irreversible productions I. Recall that in our running example, R = {q1} and
I = {q2,q3}. Let R be the subcategory of Cp(G ) with arrows the derivations consisting of only
the reversible productions. Let I be the subcategory of Cp(G ) consisting of the irreversible
computations – roughly, those where the last action in each thread is irreversible. The arrows of
I can be considered as paths (of possibly zero length) of transactions modulo concurrency.

The category I can actually be defined in a more abstract way using a particular closure
construction from the theory of prefactorisation systems of Freyd and Kelly [6], see [5] for
details. It is not difficult to verify that 〈I ,R〉 is actually a factorisation system on Cp(G )
– each computation can be factorised into a (possibly empty) irreversible component followed
by a (possibly empty) reversible component, moreover, such factorisation is essentially unique.
Notice that to able to factorise computations in such a way is to be able to ascertain exactly
which part of a computation history is reversible – it is exactly the reversible component in the
irreversible-reversible factorisation. The presence of such a factorisation system is thus closely
related to the idea of backtracking and forms an integral part of the general construction.

The first step of the construction is the construction of the so-called category of histories. The
idea is to obtain a new category of computations h(CpG ,R) with the objects being the reversible

Proc. PNGT 2006 4 / 7



ECEASST

P1

g1

��

f // P2

g2

��
Q1 h

// Q2

Figure 6: An arrow in h(CpG ,R).

P1
f //

g1

��

P2

g2

��
Q1 h?

// Q2

Figure 7: An arrow in h?(CpG ,R).

computations (the arrows in R) of the original category CpG . In a graph transformation system
this would mean that a state is no longer a particular graph but rather a concurrent computation
made up of applications of reversible productions. The computations of the new system also
deserve an explanation. The natural choice is that a computation starting from a state (reversible
computation) g1 : P1→ Q1 is any computation h : Q1→ Q2, ie h is an arbitrary arrow of CpG .
The only question remaining is what is the final state of this computation. The natural choice
is to take this to be g2 : P2 → Q2 where g2 ◦ f is the 〈I ,R〉 factorisation of h ◦ g1. Roughly,
the intuition is that g2 consists of the parts of g1 which are causally visible after performing
h (ie they were not in the causal history of an application of an irreversible production in h)
together with any causally visible reversible components of h. More formally, the objects of
h(CpG ,R) are arrows in R, while the arrows are commutative diagrams, as illustrated in Fig 6,
where h is in CpG and f is in I . Given a reversible computation g : P1→ Q1 (an object of the
history category), clearly any computation h : Q1 → Q2 leads to a (unique up to isomorphism)
object g2 : P2→ Q2 of h(CpG ,R) and irreversible computation f resulting in a map g1→ g2 –
here g2 ◦ f is simply the 〈I ,R〉-factorisation. The category h(CpG ,R) is related to I via an
adjunction, see [5] for details.

It turns out that all that is missing is the ability to actually “undo” the reversible computations
represented by the objects of h(CpG ,R). In order to do this, we shall need the notion of a
category of fractions [7]. Given a set of morphisms R of a category C, the category of fractions
C[R−1] is the category resulting from C by “freely” adding inverses to the arrows of R. We
obtain a canonical functor Φ : C→ C[R−1] which sends each arrow in R to an isomorphism.

Let h?(CpG ,R) be the category of reversible histories. It has the same objects as h(CpG ,R)
but arrows are formal diagrams, as illustrated in Fig 7, where h? is in CpG [R−1] and h?Φ(g1) =
Φ(g2 f ). Roughly speaking, this category is as h(CpG ,R) but histories can be backtracked [5].
Note that while we constructed the history categories for our particular category CpG , in fact
the constructions rely only on the presence of a factorisation system. Interestingly, while the

5 / 7 Volume 2 (2006)



Reversing graph transformations6

description of h?(CpC,R) given here may appear ad-hoc, the result is actually equivalent to
the category of fractions obtained by reversing those computations of h(CpC,R) which have a
reversible lower component.

The main result of [5] states that there is an equivalence of categories h?(CpG ,C) ' I .
This implies, as we shall explain in more detail, that to correctly capture the transactions for a
graph grammar G , one can replace the category of computations CpG with h?(CpG ,R). The
equivalence of categories result can be seen as a proof of correctness of the “implementation”
h?(CpG ,C) with respect to the “specification” I . The proof in [5] proceeds to show that the
evident functor M? : h?(CpG ,C)→I which takes a diagram as in Fig 7 to its upper component
is an equivalence of categories, thus full, faithful and essentially surjective on objects. The fact
that M? is a functor can be understood roughly in process-algebra terminology as a simulation of
h?(CpG ,C) in I . The fact that the functor is full means that, roughly, the simulation is also a
functional bisimulation.

In order to concretely implement the solution described in the previous paragraph it is help-
ful to have a convenient way of representing an arbitrary concurrent computation in G . One
possibility is to take some notion of process, for instance as presented in [1]. Assuming such a
“syntax”, one:

(i) replaces the states of a computation; instead of a graph Q, a state is a reversible computation
g : P→ Q represented by an appropriate “syntactic” expression;

(ii) the original productions of G are allowed to be applied in the usual way, in a way which
corresponds to the arrows of h(CpC,R). Thus an application of a reversible production
simply results in a “larger” state since there is now one more production which may be
reversed. On the other hand an application of an irreversible production possibly results in
a “smaller” state since it may causally depend on a certain part of the start state – that part
of the state then needs to be removed in order to obtain the end state;

(iii) add an inverse production q? for each reversible production q ∈ R, such reversed produc-
tions are then allowed to be applied precisely when their inverse appears as a final produc-
tion (in terms of causality) in the state – in other words q? can be applied at state g precisely
when there exists a reversible computation g′ such that g = q◦g′. Applying the inverse then
removes that application of q from the state.

The resulting computations are “weakly” (modulo reversible moves) equivalent to the transac-
tions of the original grammar.

Bibliography

[1] P. Baldan, A. Corradini, T. Heindel, B. König, and P. Sobociński. Processes for adhesive
rewriting systems. In Proceedings of FoSSaCS ’06, volume 3921 of LNCS, pages 202–216.
Springer, 2006.

[2] A. Corradini, H. Ehrig, R. Heckel, M. Lowe, U. Montanari, and F. Rossi. Algebraic ap-
proaches to graph transformation part I: Basic concepts and double pushout approach. In

Proc. PNGT 2006 6 / 7



ECEASST

Handbook of Graph Grammars and Computing by Graph Transformation, volume 1, pages
162–245, World Scientific, 1997.

[3] V. Danos and J. Krivine. Reversible communicating systems. In Proceedings of Concur’04,
volume 3170 of LNCS, pages 292–307. Springer, 2004.

[4] V. Danos and J. Krivine. Transactions in RCCS. In Proceedings of Concur’05, volume
3653 of LNCS, pages 398–412. Springer, 2005.

[5] V. Danos, J. Krivine, and P. Sobociński. General reversibility. In EXPRESS ’06, Electronic
Notes in Theoretical Computer Science. Elsevier, 2006. To appear.

[6] P. J. Freyd and G. M. Kelly. Categories of continuous functors, I. Journal of Pure and
Applied Algebra, 2:169–191, 1972.

[7] P. Gabriel and M. Zisman. Calculus of fractions and homotopy theory. Springer-Verlag,
1967.

[8] R. Heckel. Open Graph Transformation Systems: A New Approach to Compositional Mod-
elling of Concurrent and Reactive Systems. PhD thesis, TU Berlin, 1998.

[9] C. A. R. Hoare. Towards a theory of parallel programming. In Seminar at Queen’s Univer-
sity, Belfast, Northern Irelend. Academic Press, 1972.

[10] S. Lack and P. Sobociński. Adhesive and quasiadhesive categories. Theoretical Informatics
and Applications, 39(3):511–546, 2005.

[11] J. Meseguer and U. Montanari. Petri nets are monoids. Information and computation,
88:105–155, 1990.

7 / 7 Volume 2 (2006)


