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Abstract: Usually, verification of graph rewriting-based model transforma-
tions is performed manually, however, the industrial applications require au-
tomated methods. In several cases, transformation developers are interested
in the offline analysis, when only the definition of the transformation and
the specification of the modeling languages are taken into account. Hence,
the analysis must be performed only once, and the results are independent
from the concrete input models. For this purpose, transformations should be
specified in a formalism that can be automatically analyzed. Based on our
previous work that presented the mathematical background, this paper pro-
vides a platform-independent, declarative formalism for the specification of
graph rewriting-based model transformations, and demonstrates its applica-
bility on a case study of refactoring mobile-based social network models. Our
results prove that several functional properties of the model transformations
can be automatically verified, moreover, the capabilities of our methods can
be extended in the future.
Keywords: graph rewriting-based transformation; automated verification

1 Introduction

With the increasing need of reliable systems, the verification of model processing pro-
grams has become a fundamental issue in model-based software engineering. In our
terminology, a model transformation covers the definition of a model processing program
that is based on graph rewriting systems [EEPT06] and is specified by a set of rewriting
rules (based on the double-pushout approach, DPO) as well as an additional control
structure that explicitly defines the execution order of the rules.

When they are feasible, offline verification methods are extremely useful in industrial
applications. A verification technique is called offline if only the definition of the pro-
gram and the specification of the languages that describe the models to be transformed
∗ This paper was supported by the János Bolyai Research Scholarship of the Hungarian Academy of
Sciences. This work is connected to the scientific program of the ”Development of quality-oriented and
harmonized R+D+I strategy and functional model at BUTE” project. This project is supported by the
Hungarian Academy of Sciences - the Office for Subsidized Research Units and by the New Hungary
Development Plan (Project ID: TÁMOP-4.2.1/B-09/1/KMR-2010-0002).
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Declarative Description of Graph Rewriting-Based Model Transformations

are used during the analysis process. Therefore, the results of the analysis are general in
the sense that they are independent from the concrete input models. Although the offline
analysis is very complex (e.g. the termination of a graph transformation is undecidable
in general [Plu98]), it must be performed only once. Several techniques can be found for
the verification of graph rewriting-based model transformations, however, these methods
usually lack generalization possibilities, since the analysis is performed manually or the
methods can be applied only to a certain transformation class or to the analysis of a
certain type of property only. Therefore, there is an increasing need for automated veri-
fication methods and tools. The goal of our research is to provide an offline, automated
verification framework for the analysis of graph rewriting-based model transformations.
For these purposes, model transformations need to be formalized in a way that their
verification could be performed by automated methods. This paper outlines the concept
of our verification approach, and we introduce a formalism for the declarative description
of model transformations.

The rest of the paper is organized as follows: Section 2 presents a case study of
refactoring mobile-based social network models, which will be used to demonstrate our
methods. Section 3 introduces the main concepts of our verification methods informally.
After the mathematical background is presented in Section 4, we provide the contribution
of this paper, the formalism for the specification of model transformations in Section 5.
We demonstrate the usability of our formalism on the case study in. Finally, we describe
the related work in Section 6 and summarize our results in Section 7.

2 Application Domain of Mobile-Based Social Networks

In the mobile devices, phone books represent social relationships that can be integrated
into social networks. PhoneBookMark is a mobile-based social network implementation
by Nokia Siemens Networks [EL10], which provides methods for the automated synchro-
nization of the data in the phone books of the members with the public data of other
members. We took part in PhoneBookMark project and, before the public introduction,
it was available for a group of general users (420 registered members with more than
72000 private contacts).

Visual Modeling and Transformation System (VMTS) [VMT] is a metamodeling and
model transformation framework. We have created a domain-specific modeling envi-
ronment for PhoneBookMark in VMTS. The entities of its metamodel are presented in
Figure 1a: a member is a user of the social network, a phone is a mobile device of a
member, which can contain phone book entries, a contact corresponds to a phone book
entry of a phone. Relations between the entities have also been defined: each mem-
ber can own several phones (PhoneOwnerConnection), each phone can contain several
contacts (ContactContainment). A contact can be connected to a member with a Cus-
tomizedConnection or a SimilarityConnection edge. A CustomizedConnection, or shortly
customization edge, means that the current entry corresponds to the member of the so-
cial network. Whenever the owner member of the entry connects to the network, the
data can be synchronized. PhoneBookMark provides a semi-automatic similarity detect-

Proc. MPM 2010 2 / 14



ECEASST

ing and resolving mechanism, which detects similarities between phone book contacts
and the members of the network. Similarity means that the algorithm suggest to the
user that the contact and the member represent the same person. In this case, a Sim-
ilarityConnection, or shortly, a similarity edge is created between the contact and the
appropriate member, later, the user has to decide the acceptance of this relation. For this
purpose, ApprovalState attribute has been defined for similarity edges, whose value can
be approved, rejected, or, the default value, ignored, which means that the user has not
made a decision yet. During the refactoring of a model, approved edges will be converted
to customization edges and rejected edges will be deleted from the model. In VMTS, the
domain-specific environment for PhoneBookMark includes the metamodel and a concrete
syntax for the instance models. A sample model is presented in Figure 1b.

(a) PhoneBookMark Metamodel (b) Sample Instance Model

(c) Transformation Control Flow

(d) Rule rc1 (e) Rule rc2

(f) Rule rc3 (g) Rule rc4 (h) Rule rc5

(i) Rule rc6

Figure 1: PhoneBookMark Domain and Similarity Refactoring Transformation in VMTS
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In VMTS, the model transformations are based on graph rewriting and are defined with
the use of two modeling languages: the Visual Control Flow Language (VCFL) and the
Visual Transformation Definition Language (VTDL) [VMT]. The activity diagram-like
VCFL models controls the execution order of the rewriting rules, while the rewriting rules
are described with VTDL models. The application of the rules is based on the double
pushout approach [EEPT06]. We have implemented a model transformation (Similar-
ity Handling Transformation) that refactors PhoneBookMark models, more precisely, it
processes the similarity edges, where processing means the deletion of the rejected edges
and the conversion of the approved edges into customization edges. This refactoring step
is needed to maintain PhoneBookMark models and to upgrade existing social network
models to support mobile-based features as well.

The control flow graph of the transformation, as implemented in VMTS, is presented
in Figure 1c. The dashed, gray control flow edges are followed if the application of the
source rules was unsuccessful, which happens when no matches of the left-hand side
can be found. The solid, gray edges are followed if the application of the previous rule
was successful, while solid black edges are always followed. Rules with a circle in the
top right bottom are executed exhaustively, which means that the rules are applied
repeatedly, until they cannot be applied any more. Figure 1 contains the definition of
the rules of the transformation. In VMTS, the left-hand side and right-hand side of the
rules are merged, elements that are deleted by the rule are red, newly created are blue
and the attributes of gray elements are modified. In Figure 1, we show the definition
of the rules in VMTS along with the attached constraints and imperative code for the
modification of the attributes. This model transformation will be used to demonstrate
our verification concept.

3 Overview of Automated Verification

In this section, we provide the informal outline of our verification approach based on
our previous work [ALL10]. As mentioned earlier, we restrict ourselves to the analysis
of model processing programs based on graph rewriting systems, which are defined by
a set of rewriting rules and an additional control structure. We also mentioned that we
call such a program a model transformation. We assume that the control structure is a
directed control flow graph, which conforms to certain conditions: (i) start node and end
nodes are used to mark the starting point and possible end points of the transformations,
other nodes of the transformation are the rewriting rules; (ii) the flow edges of the control
flow graph define the execution order, branches can be defined. Moreover, we assume
that the output of the execution is always the modified input model (in-place transfor-
mation). However, it is not a restriction of the generality of the model transformation,
since assuming that we have multiple input and multiple output models, we can always
compose their union and treat them as a single model.

Assume that we have a language (MCDL [AELL10b]) that is able to express the
verifiable properties of the output models of the transformations. For example, given the
Similarity Handling Transformation presented in Section 2, we may need to express the
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following properties of the output models (the properties themselves are in italic): (v1)
After the application of the transformation, no approved similarity edge should be present
in the model, because each approved edge should be transformed to a customization edge,
or should be deleted if there is more than one approved similarity edge from the same
contact. (v2) After the application of the transformation, no rejected similarity edge
should be present in the model, since all rejected similarity edges should be deleted.
(v3) After the application of the transformation, it is forbidden that a contact has a
similarity and a customization edge at a time, because, in this case, the similarity edge
should have been deleted. (v4) After the application of the transformation, it is forbidden
that a contact has two customization edges at a time, provided that this pattern was also
forbidden before that transformation started. This would result in an inconsistent state.
Assume that MCDL is able to express verifiable properties such as the ones presented
above. We detail some simple MCDL expressions formally in Section 5, but to illustrate
the capabilities of this language, we mention that basically MCDL is able to express (i)
static properties of models, e.g. that a certain pattern exists, or not exists in the model,
(ii) dynamic properties of model transformations, e.g. that each instance of pattern P
will be transformed to pattern P ′. (iii) Moreover, the expression and analysis of non-
functional properties, mainly the termination is subject of research.

Model Condition Inference Logic (MCIL) [ALL10] is an inference logic that is able
to analyze logical implications such as φ1⇒ φ2, where Greek letters denote MCDL for-
mulae. The result of the analysis can be the proof, the refutation, or the result that
the implication is undecidable. For example, given an MCDL formula ϕ stating that
after the application of the transformation, the approval state of all similarity edges in
the model will be ignored, we can derive the first two verifiable formulae presented above
from ϕ, because if all similarity edges are in ignored state, it implies that there are neither
approved nor rejected edges. MCIL consists of several extensible deduction rules.

The main concept of our verification approach is the assignments of formulae, or
discovery algorithm: given a model transformation, assume that we are able to assign
MCDL formulae to each control flow edge such that given a flow edge f , the formula
φf assigned to f is a property that is satisfied by the model under transformation at
its current state when the execution of the transformation reaches f . Assuming that
we have only one end node in the control flow and it has only one incoming edge, and
the formula φfinal is assigned to this edge. φfinal will be satisfied by all possible output
models of the transformation. During the analysis of a model transformation, the goal
of our methods is to produce these assignments. Its main benefit is as follows: given a
property of the output models that should be validated, which is described as an MCDL
expression φver, if we can prove φfinal⇒ φver, then the property is validated. Another
benefit of the assignment is that we assign formulae not only to the edge before the end
nodes, but to all flow edges, which helps locating the problematic points while debugging.

Obviously, the main question is how to produce such an assignment, i.e. how to
discover the formulae on the control flow edges. We present the main concept of the
recursive discovery algorithm in the following. The start node of the transformation
has one outgoing edge. The formula assigned to this edge is called the initial formula.
This is known, since this is the condition that must be satisfied by all possible input
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models. Assume that we have a rule in the transformation with several incoming edges
and one outgoing edge, and we have already assigned formulae to the incoming edges.
In other words, we know some properties of the model under transformation when the
execution reaches a rule. We have the formal definition of the rule, therefore, by its
definition, we may derive certain properties that will be true after the application of the
rule. These properties described in MCDL can be assigned to the outgoing edge. This
method is called the propagation of formulae through a rule, which is a very complex task
itself, it depends on the MCDL formulae, and the definition of the rule. The goal of our
methods is to collect the most information in the formulae that are assigned to the edges.
However, if nothing can be derived, it will not imply the failure of our algorithm, only
that the assigned formulae will not contain relevant information, therefore, the verifiable
properties could not be derived by MCIL.

The formalism to specify the model transformations largely influences the efficiency of
the propagation and the discovery algorithms. The main contribution of this paper is a
formalism for specifying the rules and the control flows in a declarative way such that
the algorithms could be defined. The presentation of the algorithms themselves would
exceed the limits of this paper, but we outline their operation on the case study in order
to demonstrate the applicability of the presented formalism.

4 Mathematical Background

This section summarizes previously presented [AEL+10] definitions based on typed graphs
[BELT04, EEPT06], which provides the mathematical background for the contributions
of this paper. The main components what we formalize here are: (i) metamodels: types
of entities and relations, with the names of the attributes; (ii) models and patterns: en-
tities and relations typed over a metamodel along with abstract attribute constraints;
(iii) weakly typed morphisms: formal mapping between patterns or between patterns and
models.

Definition 1 (type graph with inheritance and inheritance clans) A type graph with
inheritance is a double (GT , I) consisting of a type graph GT = (N,E,s, t) (with a set
N of nodes, a set E of edges, source and target functions s, t : E → N for edges), and
inheritance graph I sharing the same set of nodes N . For each node n in N (N ≡NI ≡
NG), the inheritance clan is defined by clanI(n) = {n′ ∈N |∃ path n′→∗ n in I} where
path of length 0 is included, i.e. n ∈ clanI(n).

Definition 2 (clan morphism and instance graphs) Given a type graph with inheritance
T = (G,I), and a graph H, a clan morphism τ : H → T consists of two functions
τN :NH →NG, τE :EH →EG such that: (i) ∀e∈EH : τN ◦sH(e)∈ clanI(sG ◦τE(e)), and
(ii) ∀e ∈ EH : τN ◦ tH(e) ∈ clanI(tG ◦ τE(e)). Given a type graph (with inheritance) T , a
double (G,τ) of a graph G along with a clan morphism τ :G→ T is called an instance
of T . G is said to be typed over T .

Given a node n in a type graph, clanI(n) is the set of nodes that are inherited from n,
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moreover, clanI(n) also contains n. An instance of a type graph (i.e. a graph typed over
a concrete type graph) is defined by the instance graph itself and a special type morphism
that assigns an element of the type graph to each element of the instance graph. The
type morphism should take inheritance into account and is called clan morphism.

Definition 3 (metamodel interface) A metamodel interface M is a triple (T,A,σ),
where T is a type graph, A is a set of attribute names that are defined on the elements of
the type graph, and σ : LT → 2A is the attribute assignment function that assigns a set
of attributes to each element in the type graph. Because of the inheritance of attributes,
the following condition must hold: ∀n,n′ : n,n′ ∈NT ,n

′ ∈ clanI(n)⇒ σ(n)⊆ σ(n′).

Attributes are described in an abstract form: we specify only their names in the
metamodel interfaces. Attribute constraints defined over models are abstracted as black
box functions. The return value of such a function is the logical value true or false.
Since a constraint function takes the values of the attributes as parameters, we need
additional functions that map each parameter to a certain element of the model and to
a certain attribute of the current element. To evaluate the logical value of a constraint,
we need to assign values to the attributes first, which is described by a special function.
In the next definitions, let [a,b] denote the interval of natural numbers from a to b, i.e.
[a,b] = {a,a+ 1, ...b}. Moreover, to facilitate formalization, we assume that V is the set
of all possible attribute values.

Definition 4 (abstract attribute constraint) Given a metamodel interface M= (T,A,σ)
and an instance graph G typed over T by clan morphism τ . An abstract attribute con-
straint c over G is defined by the triple (ε,%,ω), where: (i) ε : Vn→{true,false} is the
evaluation function, n> 0, true and false denote the logical constants; (ii) % : [1,n]→LG

is the source function; (iii) ω : [1,n]→ A is the attribute selector function, such that
∀i ∈ [1,n]⇒ ω(i) ∈ σ(τ ◦%(i)); (iv) n is the number of the parameters of function ε,
called the arity of c and is denoted by n= |c|.

Definition 5 (attribute value assignment and constraint evaluation) Given a meta-
model interface M = (T,A,σ), and a graph G typed over T by clan morphism τ , an
attribute value assignment is a function v : LG×A → V. v is called complete if
∀l,a : l ∈LG,a ∈ σ(l)⇒∃v(l,a), otherwise, it is called partial. We say that v is complete
with respect to constraint c if ∀i ∈ [1, |c|]⇒ ∃v(%(i),ω(i)). Given a constraint c = (ε,
%,ω) over a graph G, and an attribute value assignment v that is complete with re-
spect to c, the evaluation of c is the evaluation of the function ε as follows: ε(v(ω(1))
,v(ω(2)), ...v(ω(n))). We say that G satisfies c with respect to v (i.e. G �v c) if the return
value of the evaluation is true, otherwise c is not satisfied (denoted by G 2v c).

In the following, we define two types of abstract relations between constraints. Since
the functions in the constraints are treated as black boxes, we will use these relations to
compare constraints. Therefore, we assume that in several cases, we can determine the
relation between constraints, for this purpose, we introduce two functions and assume
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that both of them are available as global functions in our system.

Definition 6 (relations of constraints) Given two sets C1, C2 of abstract attribute
constraints over the same graph G. (i) C1 and C2 are conflicting (or are in conflict),
denoted by C1⊗C2, if @ complete attribute value assignment v over G such that G �v C1
and G �v C2. We can say shortly that the set C ′ = C1 ∪C2 is conflicting. C1 and C2
are not conflicting, if ∃ a complete attribute value assignment v over G such that
G �v C1,G �v C2. (ii) Cder is derivable from Cfrom, denoted by Cfrom `Cder, if for each
possible complete attribute value assignment v over G: G �v Cfrom⇒ G �v Cder. Cder

is not derivable from Cfrom, if ∃ a complete attribute value assignment v over G such
that G �v Cfrom, but G 2v Cder.

The function AreConflicting(C,G) takes a set C of constraints, a graph G, on
which the constraints are defined. Given any possible parameters, this function returns
a value either true, false, or unknown. The value true means that it can be proved
that the constraints in the set C are conflicting, false means that it can be proved that
the constraints in C are not conflicting, and unkown means that neither can be proved,
i.e. the system does not have enough information.

The function IsDerivable(Cfrom,Cder,G) takes two sets Cfrom, Cder of constraints,
a graph G, on which the constraints are defined. Given any possible parameters, this
function returns a value either true, false, or unknown. The value true means that
Cder can be proved to be derivable from Cfrom, false means that it can be proved that
Cder is not derivable from Cfrom, and unknown means that neither can be proved, i.e.
the system does not have enough information

The assumption that we have these two functions seems to be very restrictive, since
in complex attribute constraint description languages, it is really hard to determine the
relation between arbitrary constraints. However, the implementation of the previous
functions always have the possibility to return the value unknown.

Definition 7 (pattern) A pattern P = (G,C) of a metamodel interface M is an in-
stance graph G of M and a set C of abstract attribute constraints defined over G. The
constraints of a pattern P are also denoted by C@P , i.e. C = C@P .

Patterns are instances of metamodel interfaces. A pattern defines the elements of a
model part along with additional attribute constraints. A sample pattern described by
the concrete syntax of the domain of mobile-based social networks is as follows: .
This pattern contains a contact, a member, and a similarity edge between them. More-
over, we define a constraint which states that the similarity edge should be rejected, i.e.
the value of the ApprovalState attribute must be rejected, which is denoted by the label
’rejected’ on the similarity edge. Several other patterns will be presented in Section 5.

In order to handle type inheritance in matches, we introduce the definition of weakly
typed morphisms. It is easy to show that typed graphs along with weakly typed mor-
phisms form a category. We also define the mapping of attribute constraints by mor-
phisms.
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Definition 8 (weakly typed morphism and mapped constraint) Given typed graphs
(G1, τ1) and (G2, τ2) typed over a type graph T . Let τ1 = (τN

1 , τ
E
1 ) and τ2 = (τN

2 , τ
E
2 ) be

the clan morphisms of G1 and G2. A weakly typed morphism m : G1→ G2 is a graph
morphism such that: (i) ∀n ∈NG1 : τN

2 ◦m(n) ∈ clanI(τN
1 (n)), (ii) ∀e ∈EG1 : τE

2 ◦m(e) =
τE

1 (e). Given a metamodel interface M, two patterns P1 = (G1,C1), P2 = (G2,C2) of M,
and a weakly typed morphism m : G1 → G2. For each c = (ε,%,ω) ∈ C1, the mapping
c′ = m(c) is a constraint on P2, which exists if ∀i ∈ [1, |c|] : ∃m(%(i)). The mapped
constraint c′ is an abstract attribute constraint (ε′,%′, ω′) on P2 such that ε′= ε, %′=m◦%,
and ω′ = ω.

5 Declarative Description of Model Transformations

The declarative description of a model transformation contains the formal specification
of the rewriting rules and the control flow graph.

Definition 9 (rewriting rule interface) A rewriting rule interface p is defined by
four patterns L, C, K, and R, called the left hand side (LHS), the context, the interface
(or gluing), and the right hand side (RHS) patterns respectively, and three injective,
total weakly typed morphisms l : K → L and r : K → R and i : I →K. No constraints
are allowed to be defined in C and K, i.e. C@C = ∅ and C@K = ∅. Moreover, let cl = l◦c
and cr = r ◦ c.

L is the pattern that needs to be matched before the application of the rule. In the
match, the constraints of L must be satisfied. During the application of the rule, L will
be replaced by a pattern that is isomorphic to R such that the constraints of R will be
satisfied. As in the case of traditional rewriting rules, K represents the pattern that
is matched, but not modified. However, in this case, modification concerns only the
structure, i.e. deletion of the elements of the graph, therefore, the attributes of these
elements may be modified. We introduce a new component, pattern C, for this purpose,
which specifies the part of K that is completely left intact, i.e. the attributes of these
elements are also not modified. In the following, we assume that given a total, injective
weakly typed morphism q, q−1 denotes the inverse morphism, which is also injective, but
may not be total. The application of a rule can also be formalized as an interface:

Definition 10 (direct model transformation interface) Given a rewriting rule interface
p and a pattern G with a total, injective, weakly typed morphism m :L→G called match
such that AreConflicting(C@G∪m(C@L),G) 6= true, a direct model transforma-
tion interface is given by the following double pushout diagram, where (1) and (2) are
pushouts, m, k, n are injective, total weakly typed morphisms and G, D, H are model
patterns. During the composition of the patterns D and M , their structure (i.e. their
elements) are computed by the traditional DPO approach. Moreover, the constraints
attached to these patterns are as follows: (i) For each constraint c ∈ C@G such that
∀i ∈ [1, |c|]⇒ @l ∈ L :m(l) = %(i)∨∃l ∈C :m◦cl(l) = %(i), we compose c′ = l′−1(c). C@D
is the set of all c′ constraints. (ii) C@H = r′(C@D)∪n(C@R). Moreover, we require that
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AreConflicting(C@H,H) = false.
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In the following, we present the definition of control flow graphs to formally describe
the control structure of model transformations.

Definition 11 A control graph CT is defined by the tuple (NT ,FT ,sourceT , targetT ,
startT ,ST ,EST ,ET ,stepT ,RT ,actionT ), where:
• NT is the set of the nodes of the graph, which is composed by the three disjoint

sets {startT },ST ,ET , i.e. NT = {startT }∪ST ∪ET , ST ∩ET = ∅, and startT /∈
ST ,startT /∈ ET . EST is a subset of ST (i.e. EST ⊆ ST ) called exhaustive steps.
• startT is the starting node of the control flow, this is the point where the execution

starts, and ET contains the end nodes, these are the points of the control flow,
where the execution finishes.
• RT is the set of rewriting rule interfaces that are referenced by the control flow

graph. ST is the set of rule nodes that are called steps in this context. Function
stepT : ST →RT assigns a rewriting rule to each step of the control flow graph.
• FT is the set of the edges called flow edges. sourceT : FT →NT and targetT : FT →
NT are the source and target functions for the flow edges respectively. Function
actionT : FT →{s,f,x} assigns one of the values s, f , or x to each flow edge.

The separate building elements of the transformations are called steps. A step is
a traditional rewriting rule. The application of a rewriting rule can be successful, or
unsuccessful, this property can be used in the control flow to define branches. Therefore,
to each flow edge an action value is assigned by function actionT . (i) Value s (’success’)
means that the flow edge is followed if the application of the source step was successful.
(ii) Value f (’failure’) means that the flow edge is followed if the application of the
source step was unsuccessful. (iii) Value x (’dontcare’) means that the edge is followed
in both cases. If there are multiple edges that can be followed after the application of
a rule, one is chosen nondeterministically. Start node and end nodes are used to mark
the starting point and possible end points of the transformations. Moreover, exhaustive
steps are rules that are applied exhaustively. It may happen that a step does not have an
outgoing edge to be followed, in this case the transformation terminates without reaching
an end node, which is a irregular operation. Because of this and other restrictions on
the graphs, we provide the definition of regular control flow graphs as follows:

Definition 12 (regular control flow graph) A control graph CT is regular if the follow-
ing conditions hold: (i) ∃ unique f ∈FT : sourceT (f) = startT , (ii) the graph is connected,
i.e. ∀n ∈ NT : ∃ path along directed flow edges from startT to n, (iii) ∀s ∈ ST : s has
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either at least one outgoing flow edge with the action value x or has at least two outgoing
edges with the action values s and f respectively.

The definition of Similarity Handling Transformation can be transformed into the
presented formalism trivially. To illustrate our definitions, we present the declarative
description of rule rc2 in Figure 2.

Figure 2: Formal Description of Rule rc2 of Similarity Handling Transformation

The formal, complete presentation of the verification of Similarity Handling Transfor-
mation would exceed the limits of this paper. However, the main benefit of the previously
proposed declarative description is the ability to support the automated offline analy-
sis. Therefore, we selected the verifiable property (v2), and in the following, we present
its verification informally to illustrate how our formalism makes the automated analysis
possible. Note that we informally explain the operation of the completely automated
algorithms implemented in VMTS. For deeper details about the formal presentation of
the analysis, see [AELL10a].

Before starting the analysis, we need to introduce the syntax and semantics of a con-
crete type of MCDL formula. A simple MCDL formula [AELL10b] is defined as ∃P ,
where P is a pattern. Given a pattern M , M satisfies ∃P if and only if there exists a total,
injective, weakly typed morphismm :P →M such that IsDerivable(C@M,m(C@P ),M).
Moreover, M satisfies @P if M does not satisfy ∃P . We use a simple MCDL formula to
express the verifiable property ϕv2.

Let ϕv2 = @ = @Pv2, this property must be true for the output models,
therefore, the verification means formally proving that for each possible input model, the
output model satisfies ϕv2. The discovery algorithm processes the rules of the control
flow graph in the following order: rc1, rc2, rc3, rc4, rc5, and finally rc6. It is easy to
show that the exhaustive application of rc1 terminates, because in each application it
deletes one similarity edge, but does not create new similarity edges. Obviously, after
the exhaustive application of rc1, LHS of rc1 will not be present in the model, otherwise
the rule could have been applied again. The discovery algorithm can infer this property,
therefore, assuming that the MCDL formula ϕe2 is assigned to edge e2, we can say that
ϕe2⇒ ϕv2, since LHS of rc1 is the pattern that is present in ϕv2. Here, we skip some
steps of the analysis, which would require the analysis of the control flow graph itself,
but we assume that the discovery algorithm has computed formula ϕe6 assigned to edge
e6. We also assume that we can derive from ϕe6 that ϕv2 is true, i.e. ϕe6⇒ ϕv2. Given
the rule interface of rc5, it is easy to prove that if ϕv2 is true before the application
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of rc5, it will be so after its application. We illustrate how this information can be
inferred from the declarative rule interface: assume that after the application of rc5,
the pattern Pv2 is present. We can enumerate all possible patterns that describe the
part of the modified model, which part contains RHS of rc5 and pattern Pv2. For each
possible pattern, we can compute what was present before the application of the rule by
applying Definition 10 in the reverse direction. In these computed patterns, it is easy
to prove, that pattern Pv2 exists. Therefore, we can prove that if Pv2 exists after the
application of rc5, it must exist before its application as well. Similarly, we can prove
that ϕe7⇒ ϕv2 and ϕe8⇒ ϕv2, therefore ϕv2 will be true for all possible output models
of the transformation. Once again, because of lack of space, this informal explanation
only illustrates how the rule interfaces are used by the propagation algorithm.

Although the verification of only the property (v2) is outlined informally for demon-
stration purposes, we emphasize that the analysis of all properties could be performed
automatically in VMTS.

6 Related Work

In this section, we present the work related to the formalism that constitutes the contri-
bution of this paper. For a detailed discussion on offline verification methods for graph
rewriting-based model transformations in general, see our previous paper [ALL10].

[Str08] presents an approach to formally describe certain parts of graph transforma-
tions in order to reason about the transformations in a proof assistant. However, this
approach is limited to the structural aspects of graph rewriting.

In [Sch09], [Sch10], a verification method for graph rewriting-based model transforma-
tions are presented. The approach provides a formal representation to describe model
transformations as declarative relations in Prolog style. The specification of the trans-
formations is not based on rule-based graph grammars, but uses a textual description
based on a relational, declarative calculus. [Sch09] shows that the presented representa-
tion can be directly translated into representations for theorem provers. One of the key
differences between this approach and that presented in our paper is the handling of at-
tributes. In [Sch09], attribute values are explicitly defined in the declarative description
of the rules, while our approach can contain arbitrary constraints by the definition of
abstract attribute constraints.

[Pen09] presents a notation of structural transformations, namely programs with in-
terface, that are a generalization of programs over transformation rules. The presented
formalism makes it possible to analyze and verify the programs. Nested conditions that
can express the verifiable properties are also defined. Similarly to the concept presented
in [Ore08], [Pen09] assumes that the language of attribute constraints is defined by a data
signature and algebra. In our approach, we do not rely on these formalisms, the definition
of abstract attribute constraints make it possible to work with any type of imperative
and constraint description language (e.g. C# in VMTS) during the implementation of
the verification system.

We also need to mention the approach presented in [CCGL10, CCGL08]. The authors
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translate the definition of graph rewriting rules into an OCL-based representation, which
can be combined with constraints defined in the metamodels. Moreover, combining
individual rules, a transformation model can also be defined, which can be analyzed by
several tools. One main difference between this approach and the one discussed in our
paper is that we analyze the control structure of model transformations, which can be
an arbitrary directed graph.

7 Conclusions

The verification of model processing programs is a fundamental issue, in our research, we
concentrate on the verification of graph rewriting-based model transformations. More-
over, we are interested in the automated, offline verification of such programs. In this
paper, we have summarized the operation of our framework for the automated verifi-
cation of model transformations. The main element of the concept is the declarative,
formal, platform-independent description of model transformations. Based on a solid
mathematical background, we have provided a formalism for the specification of model
transformations. On a case study of refactoring mobile-based social network models, we
demonstrated how the formal description can be generated from the implementation of a
model transformation in a modeling framework VMTS. The complete formal verification
of the presented model transformation would exceed the limits of this paper, therefore,
we are not able to formally present how the provided formalism can be used by auto-
mated methods. However, we informally explained how these methods work to illustrate
the importance of our results.

Our results show that several functional properties of the model transformations can
be automatically verified. Moreover, the capabilities of our methods can be extended in
the future. In future work, our goal is to test our verification framework in more complex
industrial case studies.
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