
Electronic Communications of the EASST
Volume 42 (2011)

Proceedings of the
4th International Workshop on

Multi-Paradigm Modeling
(MPM 2010)

Towards Transformation Rule Composition

Mark Asztalos, Eugene Syriani, Manuel Wimmer and Marouane Kessentini

13 pages

Guest Editors: Vasco Amaral, Hans Vangheluwe, Cécile Hardebolle, Lazlo Lengyel
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Towards Transformation Rule Composition

Mark Asztalos1, Eugene Syriani2, Manuel Wimmer3 and Marouane Kessentini4

1 Budapest University of Technology and Economics, Budapest 1111, Hungary
asztalos@aut.bme.hu

2 McGill University, Montréal, Québec, Canada H3A 2A7
esyria@cs.mcgill.ca

3 Vienna University of Technology, 1040 Wien, Austria
wimmer@big.tuwien.ac.at

4 DIRO, Université de Montréal, Montréal, Québec, Canada H3T 1J4
kessentm@iro.umontreal.ca

Abstract: Many model transformation problems require different intermediate
transformation steps. For example, platform-specific models (PSM) are often gener-
ated from platform-independent models (PIM) by chains of model transformations.
This requires the presence of several intermediate meta-models between those of
the PIM and the PSM. Thus, most of the effort is needed to define a transformation
mechanism for each intermediate step. The solution proposed in this paper is to
investigate whether it is possible to generate a single transformation from a chain of
transformations, solely involving the initial PIM and final PSM meta-models. The
presented work focuses on the composition of transformations at the rule level. We
apply the automatic procedure for composing rules in the context of the evolution of
the Enterprise Java Beans (EJB) language, transforming UML models into EJB 2.0
models and then to EJB 3.0 models.

Keywords: rule composition, transformation chain, transitive transformation

1 Introduction

Nowadays, software platforms evolve very rapidly. This is also true for modelling languages,
which have to reflect the evolution of the underlying platforms. The evolution of a modelling
language requires one to adapt its meta-model as well as any model transformation involving it.
The task of adapting the transformations to the new version of the language can be very tedious
and error prone, especially when this is done manually. Let us take the example scenario of
generating platform-specific models (PSMs) from platform-independent models (PIMs). Due to
the continuous evolution of the platform, while several versions of the platform-specific meta-
model have to be employed, transformations between these meta-model versions are necessary
for migrating the PSMs at version n to PSMs at version n+1. These transformations can be also
reused within a model transformation chain for transforming a PIM over several intermediate
meta-models into a PSM for the latest platform version. Over time, such transformation chains
naturally become larger and larger, which has a negative impact on maintainability and execution
performance.

1 / 13 Volume 42 (2011)

mailto:asztalos@aut.bme.hu
mailto:esyria@cs.mcgill.ca
mailto:wimmer@big.tuwien.ac.at
mailto:kessentm@iro.umontreal.ca

Transformation Rule Composition

The goal of this paper is to reduce the manual effort of shortening transformation chains by
eliminating intermediate transformation steps. The presented work proposes to compose a chain
of transformations into one transformation that does not involve any intermediary meta-model. In
particular, this is done by computing the transitive transformation of two given transformations.

In Section 2, we first define the composition of transformations in general. Section 3 reduces
the problem to the composition of rules by (1) elaborating on the criteria for composing graph
transformation rules and (2) presenting an automatic procedure to compose such rules into one.
In Section 4, we illustrate this approach in the context of the evolution of the Enterprise Java
Beans (EJB) language, transforming UML models into EJB 2.0 models and then to EJB 3.0
models. Section 5 is dedicated to the related work and we conclude in Section 6.

2 Transformation Composition

In this section, we define a composition operator to precisely specify the meaning of a transfor-
mation composition. This operation is applied in the context of a chain of model transformations
as defined below.

Definition 1 (Transformation chain). Let Tn = 〈T1,T2, . . . ,Tn〉n∈N be an ordered sequence of
transformations where each Ti defines a mapping from a meta-model Mi to a different meta-
model Mi+1. We denote such a transformation chain as M1

T1→M2
T2→M3

T3→ . . .
Tn→Mn+1. Note

that we enforce that all the meta-models involved in the chain Tn be different from one another,
i.e., each transformation must be exogenous [MV06].

Using the previous notation, we call Mi the domain of Ti and Mi+1 its co-domain. The trans-
formation is applied on a model mi conforming to its meta-model Mi and results in a new model
mi+1 = Ti(mi) conforming to its meta-model Mi+1. Note that transformations, transformation
rules, as well as the pre- and post-condition patterns of the rules are also considered as models
conforming to their respective meta-models [KMS+10].

The presented approach assumes that each transformation in the chain is specified using al-
gebraic graph transformation rules. The models involved are represented as graph objects in the
category of typed attributed graphs as defined in [EEPT06]. In the remainder of the paper, a
model m and its element graph G will be used interchangeably. The typed attributed graph G
consists of a set of nodes V (G) and edges E(G), where each node conforms to a specific node
type in a type graph (representing M, the meta-model of m) and can hold attribute values. We
however require that graph edges be partitioned in two sets E(G) = Em(G)∪Λ(G), distinguish-
ing trace edges Λ(G) from the edges Em(G) conforming to those defined in the type graph. A
trace edge represents a traceability link connecting any two nodes regardless of their type. While
a transformation is applied, traceability links are created such that any newly created element
must have at least a traceability link1.

Definition 2 (Transformation composition). Let T1 and T2 be two consecutive transformations
in a transformation chain such that M1

T1→M2
T2→M3. We denote T ′ = T2 • T1 the composed

1 Traceability links can be created implicitly such as in [JK06]. Otherwise, their creation must be explicitly specified
in the rules.

Proc. MPM 2010 2 / 13

ECEASST

transformation of T1 with T2, following the composition operator • which satisfies the sequence,
elimination, and transitivity criteria as defined below.

We describe the application criteria of the composition operator given an arbitrary input model
m1 for T1, m2 = T1(m1), and m3 = T2(m2), where m1,m2, and m3 conform to M1,M2, and M3
respectively. We denote m′ = T2 •T1(m1) be the resulting model after the composition. In the
case where traceability links are created explicitly in the rules, m̂ represents the graph model
isomorphic to m without any trace edge.

Sequence There shall exist three injective graph morphisms (seqi)i=(1,2,3) that must be defined
as: seq1 : m1→ m′, seq2 : m̂3− m̂2− m̂1→ m′, and seq3 : m̂′→ m3. seq1 ensures that the
input model is preserved. seq2 ensures that all the elements from M3 produced by T2 are
present in m′. seq3 ensures that m′ contains no other elements than those found in m3.

Elimination There should not be any morphism elem : m2− m̂1 → m′. That is, m′ shall not
contain any occurrence of an element from M2. Moreover, no traceability links involving
elements from M2 shall be present.

Transitivity We denote by λi j a traceability link (trace edge) between an element from mi and
an element from m j. The following predicate must hold: ∃λ12 ∈Λ(m3)∧∃λ23 ∈Λ(m3)⇒
∃λ13 ∈Λ(m′). This ensures the transitive closure of traceability links, i.e., for any instance
element of M2 in m3, if it is connected through trace edges to both an instance element of
M1 and an instance element of M3, then m′ must have a trace edge between the latter two
instance elements.

The sequence criterion ensures soundness and completeness of the composition operator. The
elimination criterion ensures that the resulting transformation is independent from any interme-
diate meta-model. Finally, the transitivity criterion ensures that traceability links correctly map
the source and target model elements of the composed transformation T ′.

The following generalizes the transformation composition definition to an arbitrary number of
transformations.

Definition 3 (Transformation chain composition). Given the chain Tn = 〈T1,T2, . . . ,Tn〉n∈N, the
composed transformation of Tn is a transformation T ′ = Tn • (Tn−1 • . . .(T3 • (T2 •T1)) . . .). This
can be written in short T ′ = Tn •Tn−1 • . . .•T3 •T2 •T1.

3 Rule Composition

The task of composing two arbitrary transformations is a very complex problem. That is because
the choice of which rule from one transformation to compose with a rule from the other transfor-
mation often depends on the domain of application. For the scope of this paper, we concentrate
on applying the composition operation on two graph transformation rules. In this section, we
provide a procedure for composing two individual rules into a single one such that the sequence,
elimination, and transitivity criteria are satisfied.

3 / 13 Volume 42 (2011)

Transformation Rule Composition

3.1 Criteria for Rule Composability

In the following, we assume that rewriting rules or productions are defined as presented in [EEPT06].
This means that a rule p = (L ← K → R) consists of three objects in the category of typed
attributed graphs: the left hand side (L), the interface K, and the right hand side (R) objects
respectively. In this paper, we assume that each transformation transforms an instance of one
metamodel into an instance of another, therefore, the objects L, K, and R may contain elements
from both the source and the target metamodel of the current transformation.

To apply the composition operator on two individual rules, we assume that each of the trans-
formations involved consists of a single rule for sake of completeness: T1 = {r1} and T2 = {r2}.
The procedure assumes that the rules r1 and r2 are monotonically increasing, i.e., they can only
create new elements and/or modify attribute values. Moreover, all traceability links created dur-
ing the application of T1 and T2 shall be preserved. The output of the composition procedure
is a new transformation T3 = T2 •T1 = {r2} • {r1} = {r3} consisting of a single rule. The fol-
lowing proposition specifies the necessary condition for the composition procedure to satisfy
Definition 2.

Proposition 1 (Composability condition). Two rules r1 = L1←K1→R1 and r2 = L2←K2→R2
satisfy the composability condition if there exists a partial morphism n : L2→ R1 such that:
• the domain of n is a subgraph of L2, which consists of all the elements that is from M2,
• the co-domain of n is a subgraph of R1 consisting of elements only from M2,
• the mapping from the domain to the co-domain of n is a total injective morphism.

The formal definition of the traditional composition of two sequential rewriting rules is de-
scribed in [EEPT06], this composition is called the E-concurrent production. The definition
states that given two rules p1 and p2, then they can be composed into a new rule p = (L,K,R).
Informally, the p is composed along a new graph object E, which is produced by jointly surjec-
tive morphisms from R1—the right-hand side (RHS) of p1—and L2—the left-hand side (LHS)
of p2. The application of the new rule is equal with the sequential application of the two original
rules. However, there are often more than one possible compositions of the rules, because of the
non-determinism of the matches.

To satisfy the elimination and transitivity criteria of Definition 2, the sub-procedure in Algo-
rithm 1 is required:

Algorithm 1 eliminate(m)
1: for all λ12,λ23 ∈ Λ(m) do
2: if trg(λ12) = src(λ23) then
3: create λ13 such that src(λ13) = src(λ12) and trg(λ13) = trg(λ23)
4: Λ(m)← Λ(m)∪{λ13}−{λ12,λ23}
5: V (m)←V (m)−{trg(λ12)}
6: end if
7: end for
8: for all λ12 ∈ Λ(m) do
9: Λ(m)← Λ(m)−{λ12}

10: V (m)←V (m)−{trg(λ12)}
11: end for

Proc. MPM 2010 4 / 13

ECEASST

Given a model m, the elimination procedure performs two runs over the trace edges in m. In
the first run (lines 1 to 7), it first looks for a trace edge λ12 linking an element conforming to
M1, say e1, to an element conforming to M2, say e2 and another trace edge λ23 linking e2 to
an element conforming to M3, say e3. It then creates the transitive trace edge λ13, removes the
two other traceability edges as well as e2. In the second run, the elimination procedure looks for
all remaining trace links involving M1 and M2 elements and removes them from m. Note that
there cannot be any trace edge in the form λ23 remaining after the first run, since any element
from M2 must be linked to an element from M1 by construction. Therefore after the elimination
procedure terminates, the only remaining trace edges in m link elements from M1 to elements
from M3.

3.2 Composition Procedure

Let r1 = L1 ← K1 → R1 and r2 = L2 ← K2 → R2 be two rules that satisfy the composability
condition of Proposition 1. We want to produce the composite rule r3 such that {r3}= {r2}•{r1}
as defined in Section 2.

Algorithm 2 compose(r1,r2)
1: compute the E-based composition (L3,K3,R3) of r1 and r2 such that E = R1
2: K3← R1
3: L3← eliminate(L1)
4: R← φ

5: r′2← r2 extended with R2 as a NAC, if not present
6: repeat
7: R3← apply r′2 exhaustively on E
8: eliminate(R3)
9: R← R∪{(L3,K3,R3)}

10: until all application sequences of r′2 have been exhausted on E
11: return R

Algorithm 2 produces the set of all possible compositions of r1 and r2. r2 is extended with
a negative application condition (NAC) corresponding to its RHS. This ensures that r2 is only
applied once on every match found in E. It is worth noting that there can be different R3’s even
if r′2 is applied exhaustively on E, if the order of application affects the result.

Before analyzing the algorithm, we demonstrate its operation on the composition of two sim-
ple rules R1 and R2 presented in Figure 1. Let R′2 be rule R2 extended by the NAC which consists
of the RHS of R2. By Algorithm 2, the E graph is RHS of R1. If we modify R1 by applying
R′2 once on its RHS, we get rule R. However, we apply R′2 exhaustively, therefore, RHS of R is
modified again, which results in rule R′. Note that there are no other possible matches, because
of the NAC in R′2. The next step is the application of the elimination algorithm, which performs
the transitive closure on the trace edges. RHS of R′ is eliminated, which results in rule R′′.

The lemmas below validate the composition procedure. Lemma 1 ensures that the procedure
will output all possible composed rules r3 and Lemma 2 ensures its correctness.

Lemma 1. If r1 and r2 satisfy the composability condition, then compose(r1,r2) outputs all
compositions of r1 and r2 such that the exhaustive application of compose(r1,r2) is equivalent
to the composition of r1 and r2 using the composition operator of Definition 2.

5 / 13 Volume 42 (2011)

Transformation Rule Composition

b1:T2

… a1:T1 a1:T1 T … b:T2 b:T2 c:T3TR1 R2
b2:T2

b1:T2

’
c:T3T

’’
c:T3b1:T2 c:T3T

… a1:T1 a1:T1

b2:T2

TR’
c:T3T

… a1:T1 a1:T1 TR’’
c:T3

… a1:T1 a1:T1

b2:T2

TR
b2:T2 c:T3T c:T3b2:T2

Figure 1: Example for rule composition.

Proof. Assume that there is a possible E-based composition r = L← K → R such that the E-
graph E 6= R1. This implies that ∃e ∈ E : e /∈ R1 where e can be any type of element in the graph.
E is produced by jointly surjective morphisms from R1 and L2; thus e ∈ L2. Moreover, e is an
element conforming to M2 as it is the domain of r2. However e /∈ R1, which implies that e ∈ L,
according to the definition of the E-concurrent production. But L cannot contain elements from
M2 because if it did, the input model would contain elements conforming to M2, which is a
contradiction.

Lemma 2. The result of the composition procedure {r3}= {r2}•{r1} satisfies Definition 2.

Proof. Assume that a model m1 is processed by the transformations T1 and T2 through a possible
traditional E-based composition r′3 of the rules r1 and r2. Let r3 be a rule computed by applying
the elimination procedure on the LHS, RHS, and interface graph of r′3. Let T3 = {r3}, m2 =
T1(m1), m3 = T2(m2), and m′ = T3(m1). We shall now prove that T3 satisfies the sequence,
elimination, and transitivity criteria.
• Sequence Criterion: ∃seq1 : m1→ m′, because L3 = K3 and hence the input model m1 is

not modified. ∃seq2 : m̂3− m̂2− m̂1→m′ as no elements from r′3 have been deleted during
the elimination that was performed to produce r3. Moreover, ∃seq3 : m̂′ → m3 since R3
contains elements conforming to M3 because of the exhaustive application of r′2.
• Elimination Criterion: m′ does not contain any element from M2 since applying the elim-

ination procedure on r′3 ensures that all elements from the intermediate meta-model are
removed from it.
• The Transitivity Criterion is also satisfied because the elimination procedure generates all

the traceability links required by the condition.

When NACs come into play in r1 or r2, we distinguish the following case:
• If there is a NAC in r1 and it corresponds to R1, then we extend each composite rule r3

with a NAC corresponding to R3.
• If there is a NAC in r2 and it corresponds to R2, then it is taken into account when applying

r2 to E.
• Any other NAC is not considered in the presented procedure.

Proc. MPM 2010 6 / 13

ECEASST

4 Application

We now apply the composition approach presented in Section 3 in the following scenario. A
company has developed a transformation T1 for transforming UML class diagrams to Enterprise
Java Beans (EJB) 2.0. However, after some time, the company decided to use EJB 3.0 due to
several simplifications of the new version of the standard. Thus, they developed a transformation
T2 for migrating existing EJB 2.0 models to EJB 3.0 models. However, to support the generation
of new EJB 3.0 models from UML class diagrams, they would have to implement a dedicated
transformation T3, if applying the transformation chain 〈T1,T2〉 is undesired. Reasons for this
may be related to performance issues for ensuring rapid generation of EJB 3.0 models. Also,
direct traceability between UML models and EJB 3.0 models is desired since EJB 2.0 instances
would become obsolete.

4.1 Involved Artefacts

EJB 3 t d lUML metamodel EJB 3 metamodel

T3
?

EJB 2 metamodel

Figure 2: Meta-models of the case study.

A simplified version of the meta-models and transformation rules for this scenario are il-
lustrated in Figures 2 and 3 respectively. T1 transforms Packages into EJBArchives and
Classes into either SessionBeans or EntityBeans, depending on the isPersistent
attribute, as well as into Interfaces. Furthermore for each Bean, an Entry in the Deploy-
mentDescriptor has to be generated. The DeploymentDescriptor concept is no longer
used in EJB 3.0, because no additional XML configuration files for Beans are required. Instead,
a light-weight approach for configuring Beans directly in the Java code through Annotations

7 / 13 Volume 42 (2011)

Transformation Rule Composition

is supported by EJB 3.0. Note that given the semantics of this migration, all rules of the trans-
formations are applied exhaustively.

The transformations T1 and T2 have been implemented in ATL [JK06] and subsequently trans-
formed into graph transformation rules based on EMF Tiger2 [BET08]. To adhere to the be-
haviour of ATL, the resulting graph transformation rules have the following properties which also
comply to the criteria for rule composition:
• Matchable Elements: ATL is designed as a model-to-model transformation language mean-

ing that the target model is completely rebuilt from the source model. Thus, the only ele-
ments that can be matched by a rule are elements of the source model and elements of the
target model already created by previous rule applications. The latter are only accessible
via trace edges.
• Creation and Deletion of Elements: In ATL the source model is considered as read-only,

thus elements of this model may not be altered. Furthermore, elements of the target model
are created by executing the transformation, but once created, they can no longer be deleted
by the transformation.
• Trace Model: For each rule execution, a trace element is generated linking all matched

source elements to all generated target elements. Other transformation rules can build on
this trace information, e.g., for adding links to already created target elements.
• Unique Matching: Each transformation rule can only match once for a given set of ele-

ments. Thus, to ensure this behaviour in the graph transformation rules, each rule com-
prises a NAC corresponding to the RHS of the rule3.

4.2 Composing the Transformations

We now apply the composition procedure to our example by composing the rules of T1 with those
of T2. Since the composition procedure is applied on individual rules, we have implemented a
program in Java that first detects which combinations of rules from T1 can be composed with
rules from T2, based on Proposition 1. The iteration over the rules of T2 follows the order shown
in the upper left of Figure 3. However, this may lead to several possible valid combinations of
rules. The user then selects the most appropriate combination according to his knowledge of
UML class diagrams and EJB. Then, the composition procedure is applied on these two rules.
The result, i.e., the transformation T3, is shown at the bottom of Figure 3.

Composing T2 : R1. T2 : R1 is composable with T1 : R1, T1 : R2, and with T1 : R3 according to
the composability condition. However, due to the fact that T1 : R2 and T1 : R3 both contain a
subgraph of the LHS of T2 : R1 in both their LHS and RHS, T1 : R1 seems to be more appropriate
for composition. The reason is that T1 : R1 actually generates the input elements for T2 : R1
in contrast to the other two rules which only check for the existence of these elements. The
composite rule T3 : R1 is constructed by composing T1 : R1 and T2 : R1 as follows. The LHS
of T3 : R1 remains the same as the one for T1 : R1. Then to create the RHS of T3 : R1, the
composition procedure connects an EJBArchive3 element to the Package element of T1 :

2 Other graph transformation frameworks explicitly representing transformations as models are applicable as well.
3 Please note that due to space limitations, the NACs are not shown in Figure 3.

Proc. MPM 2010 8 / 13

ECEASST

R1 via a trace edge. Then the elimination procedure removes both the EJBArchive2 and

T1 UML 2 EJB2 T2 EJB2 2 EJB3T1: UML 2 EJB2 T2: EJB2 2 EJB3
b2:EJBArchive2

a1:Package 1 P k TR1 … c1:EJBArchive2 c1:EJBArchive2 d2:EJBArchive3TR1a1:Package… a1:Package TR1 R1

b3:DeployDescp y
d2:EJBArchive3 d2:EJBArchive3T

b2:EJBArchive2
d2:EJBArchive3 d2:EJBArchive3T

b2:EJBArchive2

b2:EJBArchive2
T c1:EJBArchive2T

b2:EJBArchive2
b3:DeployDesc

c1:EJBArchive2
d6:EntityBean

R2a1:Package
b3:DeployDesc

T … c1:EJBArchive2 name = c4.nameR2

b7:EntityEntry
T

R2 c4:EntityBean T
1 P k

b3:DeployDesc b7:EntityEntryR2
c4:EntityBean

y
d7:Interface

a1:Package… c4:EntityBean
name = c4.name

a4:Class b5:EntityBeanT
name = a4.name d2:EJBArchive3 d2 EJBArchi e3Ta4:Class
b6 I t f

d2:EJBArchive3 d2:EJBArchive3T
isPersistent = true b6:Interface

d6 S i B
T

name = a4.name
c1:EJBArchive2 c1:EJBArchive2 d6:SessionBean
c1:EJBArchive2 name = c3.name

R3b2:EJBArchive2T
…

c3:SessionBean
R3

b2:EJBArchive2
T c3:SessionBean c3:SessionBean d7:Interface

T
a1:Package

b3:DeployDesc
T c5:SessionEntry

name = c3.nameT
a1:Package

b7 S i E t
T c5:SessionEntry

c5:SessionEntry d8:StatelessisStateful = false
b3:DeployDesc

b7:SessionEntry
i S f l f lR3

c5:SessionEntry d8:StatelessisStateful = false

a1:Package
b3:DeployDesc isStateful = false

…
R3

a1:Package
b5 S i B

…
d2:EJBArchive3 d2:EJBArchive3T

a4:Class b5:SessionBeanT T
a4:Class

name = a4.name
d6:SessionBean

T

i P i t t f l
a4:Class

b6:Interface c1:EJBArchive2 c1:EJBArchive2 d6:SessionBean
3isPersistent = false

name = a4 name
b6:Interface … name = c3.nameR4name = a4.name

c3:SessionBean c3:SessionBean d7:Interface
R4

c3:SessionBean c3:SessionBean d7:Interface
name = c3 name

T
c5:SessionEntry name = c3.name

c5:SessionEntry d8:StatefulisStateful = true

T3: UML 2 EJB3T3: UML 2 EJB3

1 P k d2 EJBA hi 31 P k TR1 a1:Package… d2:EJBArchive3a1:Package TR1

d2:EJBArchive3 d2:EJBArchive3T

1 P kT a1:PackageT
a1:Package d6:EntityBeanR2 g

a4:Class name = a4.name
d6:EntityBean…

T
R2

a4:Class
a4:Class name a4.nameT

i P i t t t
a4:Class d7:Interface

isPersistent = true name = a4.name

d2:EJBArchive3 d2:EJBArchive3T

a1:Package
d8:StatelessT a1:PackageT

a1:Package d6:SessionBean…R3 a1:Package
name = a4 name
d6:SessionBeanR3

a4:Class name = a4.nameT
a4:Class d7:Interface

isPersistent = false name = a4.namename a4.name

Figure 3: Transformations of the case study.

DeployDesc elements from the result. Finally a trace edge connecting the Package element
to the EJBArchive3 is created. T3 : R1 also comprises a NAC corresponding to its RHS since
T1 : R1 did have a NAC corresponding to its own RHS. For computing this NAC, we are currently
not using a composition procedure. Instead we just copy the elements of the RHS into the NAC
to ensure the aforementioned unique rule matching.

Composing T2 : R2. T2 : R2 is only composable with T1 : R2 as it is the only rule of T1 that
has a RHS matchable by the LHS of T2 : R2. The two rules are thus composed in the same
way as described in the previous case. In addition, we now have to compose not only the graph
patterns but also the attribute value computations. For example, consider the assignment name
= c4.name in element d6:EntityBean of the RHS of T2 : R2. It cannot be copied as is

9 / 13 Volume 42 (2011)

Transformation Rule Composition

since the assignment refers to an element of the EJB 2.0 meta-model. In this example, we
only have simple value assignments without using more complex functions. For setting the
attribute values in the composed transformation rule, we have to find out for each attribute value
assignment in T2, how the value is actually computed in T1. In our example, we can easily find
out that the name attribute of the element c4 in T2 : R2 is actually calculated by using the name
attribute value of the element a4. Thus, only this assignment has to be used in the composed
transformation rule. Finally, the elimination procedure applied on the LHS of T3 : R2 not only
deletes the DeployDesc element from the RHS of T3 : R2 (as in the previous case), but also
from the LHS of T3 : R2.

Composing T2 : R3. T2 : R3 is only composable with T1 : R3. In this case, in addition to
composing the nodes and edges of the pattern, we also consider the attribute value condition
isStateful = false of the LHS of T2 : R3. However, the rest of the composition is analo-
gous to the previous case.

Composing T2 : R4. T2 : R4 is not composable with any rule of T1.

4.3 Implementation

The presented composition procedure allows to compose T1 and T2 nearly automatically. The
transformation T3 can be entirely produced with the help of some heuristics to further filter out
meaningful composition possibilities (e.g., reasoning about if a rule generates the elements or
uses them only as context, as discussed in the first composition). Furthermore, some specific
extensions such as attribute value assignments as well as constraints are necessary in the future
to allow for a higher automation degree.

We have implemented the composition procedure on top of EMF Tiger. The user chooses
two transformations to compose. If they are composable, the procedure outputs the composite
rule. In the case where there are more than one possibility, the user can interactively select
the most appropriate composition. The implementation relies on a higher-order transformation
implemented in Java. The first step is the generation of templates out of the LHS of the rules
from T2. These templates are then matched against the RHS of the rules from T1. This match
model is the basis for further composition computations. In a second step, the rules of T1 are
rewritten according to the presented composition procedure. In addition, we have implemented
the mentioned heuristic for filtering the composition possibilities and support simple attribute
value assignments. After the composition computation has finished, the resulting transformation
is serialized as T3 expressed again as an EMF Tiger transformation.

5 Related Work

In this section, we outline how others have investigated in transformation composition: in graph
transformation theory, in model-driven engineering, and more widely for model management in
the field of data engineering.

Proc. MPM 2010 10 / 13

ECEASST

5.1 Composition of Algebraic Graph Transformations

As mentioned in Section 3.2, a formal definition for the composition of two graph transformation
rules was already proposed in [EEPT06], by creating the so-called E-concurrent rule. However,
the authors do not explicitly precise how this rule is constructed. In the current paper, we propose
a systematic algorithm to (1) detect if two rules are composable and (2) explicitly give the steps
on how to construct the E-concurrent rule. Also, the scope of the definitions and algorithms of
this paper are directly applicable in model-driven frameworks.

5.2 Composition of Model Transformations

In the latest years, the sequential composition of model transformations has been an active re-
search field. Several approaches for modelling transformation chains [Old05, VBH+06, FABJ09,
RRL+09] have been proposed. Most of them are based on UML Activity Diagrams which or-
chestrate several transformations to achieve a larger goal. However, none of these approaches
tries to compute new transformations out of existing transformations as done in this paper.

In [PGPB08], the authors present an approach for composing rules within one transforma-
tion: the so called internal composition. For example, considering a transformation from UML
class diagrams to Java, two rules can be composed when they both transform UML classes to
Java classes with different mapping details. In [Wag08], Wagelaar presents sophisticated inter-
nal composition techniques for ATL and QVT [Obj08] in order to improve the design of model
transformations. Since these approaches focus on internal composition only, they do not discuss
the computation of the transitive transformation from two given transformations.

In [BHE09], the compositionality of model transformations is addressed. By compositionality
the authors do not mean sequential composition as meant in this paper, but they are interested
in the spatial composition when mapping a model to its semantic domain. Compositionality is
guaranteed by a transformation T if the execution of T produces a set of semantic expressions
(instances of the semantic domain) such that their composition represents the semantics of the
whole model.

In summary, to our best knowledge no comparable approach to ours exists in the field of
model-driven engineering for composing two transformations into the transitive transformation.

5.3 Composition in Model Management

In the area of data engineering, model management [BM07] has gained much interest during the
last decade. Model management stands for the idea of dealing with evolution in data engineer-
ing by using models (i.e., schemas and mappings between them) and operators for producing
new models out of existing ones. They define schema operators, such as diff and merge, as
well as mapping operators, such as inverse and compose. The goal of the compose operator is
similar to our model transformation composition approach. However, its realization is quite dif-
ferent (cf. [BGMN08] and [YP05]). First, in data engineering, only relational and hierarchical
schemas are considered in contrast to object-oriented meta-models, which are the basis for the
composition approach of this paper. Second, in data engineering, pre-defined relational operators
(e.g., project, select, and join) are used for describing mappings between schemas. In contrast,
our approach is built on graph transformations, which is a significantly different paradigm for
describing mappings between object-oriented meta-models.

11 / 13 Volume 42 (2011)

Transformation Rule Composition

6 Conclusion
In this paper, we provide a mechanism for composing individual rules from a transformation
chain. This composition allows for the creation of a new transformation involving only the
initial and target meta-models. Although some assumptions must be made on the syntax of rules,
the composition procedure is general enough in the sense that it is independent from the input
model. The presented approach is based on the syntactic composition of the rules. Extending the
procedure to the transformation level requires to take into account the semantics of the chain of
transformations.

The main benefits of our approach are: (1) it is possible to reduce the complexity of transfor-
mation chains by eliminating unnecessary transformation steps, (2) if there is traceability from
m1 to m2 and from m2 to m3, we are able to provide traceability from m1 to m3, and (3) our
approach seems to be perfectly suited in metamodel evolution scenarios where the target meta-
model evolves. If there is already an instance migration transformation from the initial target
metamodel version to the new target metamodel version, this migration transformation may be
composed with the transformation between the source and the initial target metamodel in order
to ensure transformation co-evolution.

As this is a first attempt on composing chains of transformations, a number of open issues
still remain. In the presented example, we have only considered the core part of ATL which
is comparable to the core of other model-to-model transformation approaches, such as QVT-
Relations [Obj08]. In particular, we did not focus on transformations requiring an explicit rule
scheduler (e.g., with a control flow). Also, several other features of ATL should be supported,
such as OCL queries and called rules (rules that are not automatically executed by the trans-
formation engine but that have to be explicitly invoked in the transformation). Furthermore,
our example only considers simple attribute value assignments in the rules. However, before
considering more complex attribute manipulations in the composition, one should first think of
how to map them to graph transformations in order to provide a theoretical basis for extending
the composition procedure. Moreover, dealing with arbitrary OCL expressions when composing
transformations is challenging and should certainly form a composition topic on its own. Fi-
nally, we have to provide tool support for transforming the composed transformations, expressed
as graph transformations, back to ATL transformations. In this context, we have intend to migrate
our current prototype to a bi-directional model transformation formalism.

Acknowledgements

We would like to thank all the participants of the 2010 Computer-Aided Multi-Paradigm Mod-
elling workshop (CAMPaM) for their useful feedback.

Bibliography

[BET08] E. Biermann, C. Ermel, G. Taentzer. Precise Semantics of EMF Model Transfor-
mations by Graph Transformation. In International Conference on Model Driven
Engineering Languages and Systems. LNCS 5301, pp. 53–67. Springer, 2008.

Proc. MPM 2010 12 / 13

ECEASST

[BGMN08] P. A. Bernstein, T. J. Green, S. Melnik, A. Nash. Implementing mapping composi-
tion. VLDB J. 17(2):333–353, 2008.

[BHE09] D. Bisztray, R. Heckel, H. Ehrig. Compositionality of Model Transformations. Elec-
tronic Notes in Theoretical Computer Science 236:5–19, 2009.

[BM07] P. A. Bernstein, S. Melnik. Model management 2.0: manipulating richer mappings.
In International Conference on Management of Data. Pp. 1–12. ACM, 2007.

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer. Fundamentals of Algebraic Graph
Transformation. EATCS. Springer-Verlag, 2006.

[FABJ09] M. D. D. Fabro, P. Albert, J. Bézivin, F. Jouault. Achieving Rule Interoperability
Using Chains of Model Transformations. In International Conference on Theory
and Practice of Model Transformations. LNCS 5563, pp. 249–259. Springer, 2009.

[JK06] F. Jouault, I. Kurtev. Transforming Models with ATL. In Model Transformation in
Practice Workshop. LNCS 3844, pp. 128–138. Springer, 2006.

[KMS+10] T. Kühne, G. Mezei, E. Syriani, H. Vangheluwe, M. Wimmer. Explicit Transforma-
tion Modeling. In MoDELS 2009 Workshops. LNCS 6002, pp. 240–255. Springer,
2010.

[MV06] T. Mens, P. Van Gorp. A Taxonomy of Model Transformation. In GraMoT’05.
ENTCS 152, pp. 125–142. Tallinn (Estonia), March 2006.

[Obj08] Object Management Group. Meta Object Facility 2.0 Query/View/Transformation
Specification. April 2008.

[Old05] J. Oldevik. Transformation Composition Modelling Framework. In International
Conference on Distributed Applications and Interoperable Systems. LNCS 3543,
pp. 108–114. Springer, 2005.

[PGPB08] C. Pons, R. Giandini, G. Perez, G. Baum. An Algebraic Approach for Composing
Model Transformations in QVT. In International Workshop on Software Language
Engineering. 2008.

[RRL+09] J. E. Rivera, D. Ruiz-Gonzalez, F. Lopez-Romero, J. Bautista, A. Vallecillo. Or-
chestrating ATL Model Transformations. In MtATL Workshop. Pp. 34–46. 2009.

[VBH+06] B. Vanhooff, S. V. Baelen, A. Hovsepyan, W. Joosen, Y. Berbers. Towards a Trans-
formation Chain Modeling Language. In International Workshop on Embedded
Computer Systems. LNCS 4017, pp. 39–48. Springer, 2006.

[Wag08] D. Wagelaar. Composition Techniques for Rule-Based Model Transformation Lan-
guages. In International Conference on Theory and Practice of Model Transforma-
tions. LNCS 5063, pp. 152–167. Springer, 2008.

[YP05] C. Yu, L. Popa. Semantic Adaptation of Schema Mappings when Schemas Evolve.
In Int. Conference on Very Large Data Bases. Pp. 1006–1017. ACM, 2005.

13 / 13 Volume 42 (2011)

	Introduction
	Transformation Composition
	Rule Composition
	Criteria for Rule Composability
	Composition Procedure

	Application
	Involved Artefacts
	Composing the Transformations
	Implementation

	Related Work
	Composition of Algebraic Graph Transformations
	Composition of Model Transformations
	Composition in Model Management

	Conclusion

