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Abstract: Abstract rewriting systems are often defined as binary relations over a
given set of objects. In this paper, we introduce a new notion of abstract rewriting
system in the framework of categories. Then, we define the functoriality property
of rewriting systems. This property is sometimes called vertical composition. We
show that most graph transformation systems are functorial and provide a counter-
example of graph transformation system which is not functorial.
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1 Introduction

Various properties of rewriting systems can be defined on an abstract level by using the notion of
abstract rewriting systems (see e.g., [1]). In this paper we focus on categorical rewriting systems,
that is to say rewriting systems defined by means of category theory, and we define them in
an abstract manner. We consider rule-based frameworks in which the rewrite step is defined
relatively to a match. The aim is to be able to reason abstractly about rewriting systems which
are defined categorically. There are many such systems which underly graph transformation,
following the seminal work of [10]. In general, a graph rewriting system consists of a set of
graph rewrite rules with a left-hand side L and a right-hand side R (where both are graphs).
When a graph rewrite rule is applied to an instance of the graph L in a graph L1, it replaces
this instance of L by an instance of R, resulting in a new graph R1. We introduce categorical
rewriting systems in Section 2, they provide an abstract framework for dealing with such notions
of rewrite rules, instances and rewrite steps. Moreover, in a graph rewriting system, usually
the given graph L1 and the modified graph R1 can be seen as the left-hand side and right-hand
side of a new rule, from which the process can be repeated. Then the functoriality problem
appears: from an instance of L in L1 and an instance of L1 in L2, do we get the same graph
R2 when proceeding in two steps as when proceeding in one step? The functoriality property
is sometimes called the vertical composition. It is similar to the contextual closure of term
rewriting systems. It ensures also the soundness of replacement of equals by equals. This is a
very desirable property of programming languages, since it allows one to instantiate programs in
a safe manner as in partial evaluation techniques [2]. A recent work of M. Löwe [13] adresses a
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Categorical Abstract Rewriting

similar issue in a different setting in which matches are spans instead of morphisms. In Section 3
we check that the functoriality property holds for many usual algebraic graph transformation
approaches like double pushouts (DPO) [4], single pushouts (SPO) [12], sesqui-pushouts (SqPO)
[3] and heterogeneous pushouts (HPO) [6]. Then in Section 4 we look at garbage removal as a
categorical rewriting system, in two different ways. This yields a categorical rewriting system
which is functorial, and another one which is not functorial. We refer to [14] for categorical
notions: mainly commutative diagrams, functors, pushouts and pullbacks, comma categories.
The class of objects of a category C is denoted as |C |. A subcategory M of a category C is
called a wide subcategory of C if it has the same objects as C .

2 Categorical rewriting systems

2.1 Definition of categorical rewriting systems

Definition 1 A categorical rewriting system (L : ML←P →MR : R,S) is made of a span
of categories

P
L
||

R
""

ML MR

and a family of partial functions
S = (Sρ)ρ∈|P|

where for each object ρ in P , the partial function Sρ , from the set of morphisms in ML with
source L (ρ) to the set of morphisms in P with source ρ , is such that L (Sρ( f )) = f for every
f in the domain of Sρ . The objects of P are the rewrite rules or productions, the morphisms of
ML and MR are the left-hand side and right-hand side matches, and the partial function Sρ is the
rewriting process function with respect to ρ; its domain is denoted as Dom(Sρ). Given a rule ρ ,
the rewrite step applying ρ is the partial function from the set of morphisms in ML with source
L (ρ) to the set of morphisms in MR with source R(ρ) which maps every match f in Dom(Sρ)
to the match g = R(Sρ( f )). The target R1 of g may be called the derived object, with respect to
the rule ρ and the match f .

Remark 1 Many categorical rewriting systems are such that ML = MR, then this category is
denoted as M . For the interested reader we refer to [7] as an example of a rewriting system
defined by composition of rewriting systems (such composition is defined in Section 2.3) in
which ML 6= MR.

Remark 2 Each categorical rewriting system with ML = MR = M determines an abstract
rewriting system on the objects of M , i.e., a binary relation on |M |, defined by L R if and
only if there is some ρ in P such that L = L (ρ) and R = R(ρ).

In a categorical rewriting system, the matches introduce a “vertical dimension”, in addition
to the “horizontal dimension” provided by the rules. A rule ρ with L (ρ) = L and R(ρ) = R
is denoted as ρ : L R. It should be noted that, although ρ is an object in the category P , it
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is represented as an arrow from its left-hand side L to its right-hand side R; this refers to the
usual notation for rewriting systems. Whenever P is a category of arrows, it may happen that ρ

actually is a morphism in some category D , with either ρ : L→ R (as in Sections 3.1 and 3.2) or
ρ : R→ L (as in Sections 3.3 and 3.4). A morphism π : ρ → ρ1 in P , with L (π) = f : L→ L1
and R(π) = g : R→ R1, is illustrated as follows:

L
f
��

ρ
//

π

R
g
��

L1 ρ1
// R1

Then, each rewriting process Sρ can be illustrated as:

L
f
��

ρ
// R

L1

� Sρ
//

L
f
��

ρ
//

Sρ ( f )

R
g
��

L1 ρ1
// R1

For instance, Definition 2 below provides categorical rewriting systems based on pushouts. As
usual a category with pushouts is a category C such that for every morphisms f and ρ in C with
the same source, the pushout of ρ and f exists in C . The category of arrows of any category
C is denoted C→: its objects are the morphisms of C and its morphisms are the commutative
squares in C .

Definition 2 Let C be a category with chosen pushouts. The categorical rewriting system
based on pushouts in C , denoted as RSPO,C , is made of the categories ML = MR = C and
P = C→, the source functor L = Src : C→→ C , the target functor R = Tgt : C→→ C , and
the family of functions SPO such that for each rule ρ the function SPO,ρ is total and for each
match f the commutative square SPO,ρ( f ) is defined as the chosen pushout of ρ and f in C .

L
f
��

ρ
// R

L1

� SPO,ρ
//

L
f
��

ρ
//

SPO,ρ ( f )

R
g
��

L1 ρ1
// R1

In Section 3, we consider categorical rewriting systems which generalize the pushout rewriting
systems. There is a need for these generalizations, since there may be restrictions (e.g., injec-
tivity conditions or gluing conditions) on the morphisms used for rules and for matches. These
generalizations are built according to the following patterns.

Definition 3 Let C be a category with two wide subcategories M and D . The generalized
arrow category D→M (in C ) is the following category: the objects in D→M are the morphisms
in D , and the morphisms from ρ to ρ1 in D→M , where ρ : L→ R and ρ1 : L1 → R1 in D , are
the pairs ( f : L→ L1,g : R→ R1) of morphisms in M such that g◦ρ = ρ1 ◦ f in C . The source
functor Src : D→M →M and the target functor Tgt : D→M →M map each object ρ in D→M

to its source and target, when ρ is seen as a morphism in D ; they map each morphism ( f ,g) in
D→M to the morphisms f and g in M , respectively.
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Categorical Abstract Rewriting

This situation yields two spans of categories where ML = MR = M and P = D→M , as de-
fined below; these spans will be used for describing graph transformation systems as categorical
rewriting systems in Sections 3 and 4.

Definition 4 Let C be a category with two wide subcategories M and D . Let D→M denote
the corresponding generalized arrow category and Src,Tgt : D→M →M the source and target
functors.

• The direct arrows-based span on C with rules in D and matches in M is the span of
categories (Src : M ←D→M →M : Tgt). This means that a rule ρ : L R is a morphism
ρ : L // R in D , a match is a morphism in M and a morphism of rules (from ρ to ρ1) is
a commutative square in C with f ,g in M :

L
f
��

ρ
//

=

R
g
��

L1 ρ1
// R1

• The inverse arrows-based span on C with rules in D and matches in M is the span of
categories (Tgt : M ←D→M →M : Src). This means that a rule ρ : L R is a morphism
ρ : R // L in D , a match is a morphism in M and a morphism of rules (from ρ to ρ1) is
a commutative square in C with f ,g in M :

L
f
��

=

R
g
��

ρ
oo

L1 R1ρ1
oo

2.2 Functoriality of categorical rewriting systems

A categorical rewriting system, when it is seen as an abstract rewriting system, is read “hori-
zontally”: it maps the left-hand side match f : L→ L1 to the right-hand side match g : R→ R1.
But it may also be read “vertically”: it maps the rule ρ : L R to the rule ρ1 : L1 R1. In this
section we study a functoriality property of categorical rewriting systems from this “vertical”
point of view; a similar property is called “vertical composition” in [13]. The statements and
results below are given up to isomorphism.

Definition 5 A categorical rewriting system (L : ML←P →MR : R,S) is functorial if for
each rule ρ : L R the partial function Sρ satisfies:

• the identity idL is in the domain of Sρ and

Sρ(idL) = idρ .

L
idL
��

ρ
// R

L

� Sρ
//

L
idL
��

ρ
//

idρ

R
idR
��

L
ρ

// R
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• and for each pair of consecutive morphisms f1 : L → L1 and f2 : L1 → L2 in ML, if
f1 ∈ Dom(Sρ) and f2 ∈ Dom(Sρ1), where ρ1 denotes the target of Sρ( f1) , then f2 ◦ f1 ∈
Dom(Sρ) and

Sρ1( f2)◦Sρ( f1) = Sρ( f2 ◦ f1) .

L
f1
��

ρ
// R

L1

f2
��

L2

� Sρ
//

L
f1
��

ρ
//

Sρ ( f1)

R
g1
��

L1

f2
��

ρ1 //

Sρ1 ( f2)

R1

g2
��

L2 ρ2
// R2

=

L

f2◦ f1

��

ρ
//

Sρ ( f2◦ f1)

R

g2◦g1

��

L2 ρ2
// R2

For instance, using Definition 2, the next result is due to the well-known compositionality
property of pushouts.

Proposition 1 Let C be a category with pushouts. The categorical rewriting system RSPO,C is
functorial.

Remark 3 For any category C and any object X in C , let X ↓C denote the coslice category of
objects of C under X . Then the objects of X ↓C are the morphisms in C with source X . Let
RS=(L : ML←P→MR : R,S), be a categorical rewriting system. For each rule ρ : L R let
Lρ : ρ ↓P→ L↓ML denote the functor induced by L . Then Sρ can be seen as a partial function
Sρ : |L↓ML| / |ρ ↓P| such that Lρ ◦Sρ is the identity of Dom(Sρ). The name “functorial”
comes from this interpretation of categorical rewriting systems: let RS = (L : ML ←P →
MR : R,S) be a categorical rewriting system, and let us assume that for each rule ρ : L R the
rewriting process Sρ is total, which means that it is a total function Sρ : |L ↓ML| / |ρ ↓P|
such that Lρ ◦Sρ is the identity of |L↓ML|. For each morphism h : f1→ f2 in L↓ML, i.e., for
each morphism h : L1→ L2 in ML such that h ◦ f1 = f2, let us define Sρ(h : f1→ f2) = Sρ1(h)
where ρ1 is the target of Sρ( f1) in P . Then it can be proved that RS is functorial if and only if
for each rule ρ : L R, Sρ(idL) = idρ and Sρ is a functor Sρ : L↓ML→ ρ ↓P .

2.3 Composition of categorical rewriting systems

In order to compose (“horizontally”) categorical rewriting systems, we use composition of spans:
given two spans of categories L : ML←P→MR : R and L ′ : M ′

L←P ′→M ′
R : R ′ which

are consecutive, in the sense that MR = M ′
L, the composed span L ′′ : ML←P ′′→M ′

R : R ′′

is obtained from the pullback of R and L ′, as follows:

P ′′
L ′′

=

		

xx &&

R ′′

=

��

P

L}}
R
&&

P ′
L ′

xx R ′ ""

ML MR = M ′
L M ′

R
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The objects of P ′′ are the pairs (ρ,ρ ′) with ρ in P and ρ ′ in P ′ such that R(ρ) =L ′(ρ ′). The
morphisms from ρ ′′ = (ρ,ρ ′) to ρ ′′1 = (ρ1,ρ

′
1) in P ′′ are the pairs π ′′ = (π,π ′) where π : ρ→ ρ1

in P and π ′ : ρ ′→ ρ ′1 in P ′ are such that R(π) = L ′(π ′).

Definition 6 Let RS = (L : ML ←P →MR : R,S) and RS′ = (L ′ : M ′
L ←P ′ →M ′

R :
R ′,S′) be two categorical rewriting systems which are consecutive, in the sense that MR = M ′

L.
The composition of RS and RS′ is the categorical rewriting system

RS′ ◦RS = (L ′′ : ML←P ′′→M ′
R : R ′′,S′′(ρ,ρ ′))

where L ′′ : ML←P ′′→M ′
R : R ′′ is the composition of the spans in RS and RS′ and where the

family of partial functions S′′ = (S′′
ρ ′′)ρ ′′∈|P ′′| is defined as follows, for each ρ ′′ = (ρ,ρ ′) in P ′′:

the domain of S′′
ρ ′′ is made of the morphisms f in Dom(Sρ) such that R(Sρ( f )) is in Dom(S′

ρ ′),
and for each f ∈ Dom(S′′

ρ ′′):

S′′(ρ,ρ ′)( f ) = (Sρ( f ),S′ρ ′( f ′)) where f ′ = R(Sρ( f )) .

L
f
��

ρ
//

Sρ ( f )

R = L′

f ′
��

ρ ′
//

S
ρ ′ ( f ′)

R′

f ′′
��

L1 ρ1
// R1 = L′1

ρ ′1

// R′1

=

L
f
��

ρ ′′
//

S(ρ,ρ ′)( f )

R′

f ′′
��

L1
ρ ′′1

// R′1

This composition gives rise to the bicategory of categorical rewriting systems (as for spans,
we get a bicategory rather than a category, because the uniqueness of pushouts is only up to
isomorphim). The next result follows easily from the definitions.

Proposition 2 Let RS and RS′ be two consecutive categorical rewriting systems. If RS and RS′

are functorial then RS′ ◦RS is functorial.

3 Functoriality of graph transformations

Since [10], several graph transformation systems have been studied following the algebraic ap-
proach. We show that many of them can be seen as categorical rewriting systems which satisfy
the functoriality property. A direct arrows-based span is used in Sections 3.1 and 3.2 for sin-
gle pushout and heterogeneous pushout rewriting systems. In Sections 3.3 and 3.4, for double
pushout and sesqui-pushout rewriting systems, an inverse arrows-based span is used, then a direct
one, and finally both are composed according to Definition 6.

Definition 7 A graph is a set of nodes and a set of edges with two functions from edges to
nodes called the source and the target functions. A morphism of graphs is made of a function on
nodes and a function on edges which preserve the sources and targets. This provides the category
of graphs, denoted as Graph.
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3.1 Single Pushout rewriting

In this section we show that, under suitable assumptions, the single pushout approach to graph
transformation (SPO) [9] can be seen as a categorical rewriting system. Let MSPO = Graph be
the category of graphs. Let CSPO = Graphp be the category of graphs with partial morphisms,
so that MSPO can be seen as a wide subcategory of CSPO. Let DSPO = Graphp

m be the wide
subcategory of CSPO with partial monomorphisms. We consider the direct arrows-based span
on CSPO with rules in DSPO and matches in MSPO. Following [9, Definition 7], given a rule
r : L // / R, we say that a match f : L // L1 is conflict-free with respect to r when f does
not identify any item (node or edge) in the domain of r with an item outside this domain. For
each rule r : L // / R, we define SSPO,r as the partial function with domain the conflict-free
matches with respect to r, such that SSPO,r( f ) is the pushout of f and r in Graphp for each f in
Dom(SSPO,r). It follows from [9, Proposition 5 and Lemma 8] that this pushout exists, that r1 is
a partial monomorphism and that g is a total morphism.

L
f
��

// r / R

L1

� SSPO,r
//

L
f
��

// r /

SSPO,r( f )

R
g
��

L1 // r1
/ R1

Definition 8 The categorical rewriting system for graphs based on single pushouts, denoted as
RSSPO, is made of the direct arrows-based span on CSPO = Graphp with rules in DSPO = Graph
and matches in MSPO = Graphp

m together with the family of partial functions SSPO defined as
above from pushouts in Graphp.

Lemma 1 Let us consider the categorical rewriting system RSSPO. Let r : L // / R be a rule
and f1 : L // L1 a match which is conflict-free with respect to r. Let R1 with r1 : L1 // / R1
and g1 : R // R1 be the pushout of r and f1 in Graphp. Let f2 : L1 // L2 be a match which is
conflict-free with respect to r1. Then f2 ◦ f1 is conflict-free with respect to r.

Proof. Let f = f2 ◦ f1 : L // L2. The proof is done by contradiction. Let us assume that there
are two items x and y in L such that f (x) = f (y), with x ∈ Dom(r) and y 6∈ Dom(r). Then there
are two cases:

1. If f1(x) = f1(y) then f1 is not conflict-free with respect to r.

2. Otherwise let x1 = f1(x) and y1 = f1(y), so that f2(x1) = f2(y1). The commutativity of the
square SSPO,r( f1) is written as g1 ◦ r = r1 ◦ f1. This implies that g1 ◦ r and r1 ◦ f1 have the
same domain, and since f1 and g1 are total this means that for each item x in L, x∈Dom(r)
if and only if f1(x) ∈ Dom(r1). Thus, x1 ∈ Dom(r1) and y1 6∈ Dom(r1), so that f2 is not
conflict-free with respect to r1.

Proposition 3 The categorical rewriting system RSSPO is functorial.

Proof. This is due to Lemma 1 and to the well-known compositionality property of pushouts.
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3.2 Heterogeneous pushout rewriting

We now consider the heterogeneous pushout framework (HPO) presented in [6], which allows
some deletion and cloning in the context of termgraph rewriting. Given a set called the set of
labels, with an arity (a natural number) for each label, a termgraph is a graph where some nodes
are labeled, when a node n has a label ` then the successors of n form a totally ordered set and
their number is the arity of `, and when a node n is unlabeled then it has no successor. If G is
a termgraph then |G| denotes the set of nodes of G. A morphism of termgraphs (respectively a
partial morphism of termgraphs) is a morphism of graphs (respectively a partial morphism of
graphs) which maps labeled nodes to labeled nodes, preserving the labels and the ordering of the
successors. This provides the category of termgraphs TermGraph. Let MHPO = TermGraphm
be the wide subcategory of TermGraphm with monomorphisms. Let CHPO be the category with
the termgraphs as objects and with morphisms from L to R the pairs (τ,σ) of partial termgraph
morphisms τ : L / R and σ : R / L. Then MHPO is considered as a wide subcategory of
CHPO by identifying each total morphism of termgraphs f : L // L1 to the pair ( f ,ω) where
ω : L1 / L is nowhere defined. Let DHPO be the wide subcategory of CHPO with morphisms
the pairs ρ = (τ,σ) : L o / R such that the domain of τ is the set of nodes of L and the domain
of σ is a subset of the set of nodes of R. Moreover, every node p ∈ |R| in the domain of σ is
either unlabelled or such that the node q = σ(p) ∈ |L| is such that p and q share the same label
and the successors of p in R are the image by τ of the successors of q in L.

We consider the direct arrows-based span on CHPO with rules in DHPO and matches in MHPO.
Following [6, Definitions 6 and 7], for each rule ρ : L o / R and each match f : L // // L1, a
heterogeneous cocone over ρ and f is made of a rule ρ1 : L1 o / R1 and a match g : R // // R1
such that ρ1 ◦ f = g ◦ ρ in CHPO. A morphism of heterogeneous cocones over ρ and f , say
h : (ρ1,g)→ (ρ ′1,g

′), is a morphism h : R1 // R′1 in MHPO such that h◦ρ1 = ρ ′1 and h◦g = g′

in CHPO. This yields the category of heterogeneous cocones over ρ and f , and a heterogeneous
pushout of ρ and f is defined as an initial object in this category. The uniqueness of the hetero-
geneous pushout, up to isomorphism, is a consequence of its initiality property. Its existence is
proven in [6, theorem 1] by providing an explicit construction. For each rule ρ : L o / R let us
define SHPO,ρ as the total function such that SHPO,ρ( f ) is the heterogeneous pushout of f and ρ

for each match f , which is denoted as:

L o
ρ

/
��

f
��

R

L1

�SHPO,ρ
//

L o
ρ

/
��

f
��

SHPO,ρ ( f )
R��

g
��

L1 o ρ1
/ R1

It follows from [6, Proposition 1] that this construction provides a rule ρ1 and a match g, so that
we get a categorical rewriting system.

Definition 9 The categorical rewriting system for termgraphs based on heterogeneous pushouts,
denoted as RSHPO, is made of the direct arrows-based span on CHPO with rules in DHPO and
matches in MHPO = TermGraph together with the family of partial functions SHPO defined as
above from heterogeneous pushouts.

Proc. GTVMT 2011 8 / 17
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Proposition 4 The categorical rewriting system RSHPO is functorial.

Proof. The compositionality property of heterogeneous pushouts, similar to the compositionality
property of pushouts, follows easily from their initiality property. Proposition 4 is a consequence
of this property.

3.3 Double pushout rewriting

In this section we check that under suitable assumptions the graph transformation based on dou-
ble pushouts (DPO) [4] can be considered as a categorical rewriting system which is composed,
in the sense of Definition 6, of a categorical rewriting system based on pushout complements (as
defined below) followed by a categorical rewriting system based on pushouts (Definition 2). We
restrict our study to cases where the pushout complement is unique. Let MPOC =CPOC =Graph
be the category of graphs. Let DPOC = Graphm be the wide subcategory of CPOC with injective
morphisms. We consider the inverse arrows-based span on CPOC with rules in DPOC and matches
in MPOC. This means that a rule ρ : L R is a monomorphism of graphs ρ : R // // L, or (ac-
cording to the usual notations) l : K // // L. Following [15], we define a partial graph as a graph
in which there may be edges without a source or target node. Given a graph G and a subgraph H
of G, we denote as G−H the partial graph made of the nodes and edges in G which are not in
H, with the restriction of the source and target functions. In general G−H is not a graph, since
it can have dangling edges, i.e., edges which are not in H but which have their source or target
in H. Following [4, Proposition 9], given a rule l : K // // L we say that a match f : L // L1
satisfies the gluing condition with respect to l if:

• Dangling condition. If an edge e1 in L1 is incident to a node in f (L− l(K)) then e1 is in
f (L).

• Identification condition. If two nodes (respectively two edges) x and y in L are such that
x 6= y and f (x) = f (y) then x and y are in l(K).

One can remark that if the dangling condition is satisfied then L1− f (L− l(K)) is a graph. It
is proven in [4, Proposition 9] that when f satisfies the gluing condition with respect to l then
the graph K1 = L1− f (L− l(K)) together with the inclusion l1 : K1 // // L1 and the morphism
g : K // K1 which maps each node or edge x to f (l(x)) forms a pushout complement of l and f
in Graph, and in addition this pushout complement is unique up to isomorphism. For each rule
l : K // // L we define SPOC,l as the partial function with domain the matches with source L which
satisfy the gluing condition with respect to l, such that SPOC,ρ( f ) is the pushout complement of
l and f for each f in dom(SPOC,l):

L
f
��

Kooloo

L1

�SPOC,ρ
//

L
f
��

SPOC,ρ ( f )

Kooloo

g
��

L1 K1oo
l1oo

Definition 10 The categorical rewriting system for graphs based on pushout complements,
denoted as RSPOC, is made of the inverse arrows-based span on CPOC = Graph with rules in
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DPOC = Graphm and matches in MPOC = Graph together with the family of partial functions
SPOC defined as above from pushout complements in Graph. The categorical rewriting sys-
tem for graphs based on double pushouts, denoted as RSDPO, is the composition of RSPOC and
RSPO,Graph (from Definition 2).

Lemma 2 Let us consider the categorical rewriting system RSPOC. Let l : K // // L be a rule
and f1 : L // L1 a match which satisfies the gluing condition with respect to l. Let (K1, l1,g1)
be the pushout complement of l and f1. Let f2 : L1→ L2 be a match which satisfies the gluing
condition with respect to l1. Then f2 ◦ f1 satisfies the gluing condition with respect to l.

Proof. Let f = f2 ◦ f1 : L→ L2 We have to prove that f satisfies the dangling condition and the
identification conditions with respect to l.

• Dangling condition. Suppose that f1 and f2 verify the identification condition. Let e2 be
an edge in L2 which is incident to a node x2 in f (L− l(K)). We have to prove that e2 is in
f2( f1(L)) = f (L). There are two cases:

1. There exists an edge e1 in L1 such that e2 = f2(e1). Hence there is a node x′1 in L1
such that e1 is incident to x′1 and f2(x′1) = x2. On the other hand, let x be a node in
L− l(K) such that x2 = f (x), and let x1 = f1(x), so that x1 ∈ f1(L− l(K)). Since l1
is the inclusion of K1 = L1− f1(L− l(K)) in L1, it follows that x1 is not in l1(K1).
Hence, the identification condition of f2 ensures that x1 = x′1. Now, as f1 satisfies the
dangling condition with respect to l, we have that e1 is in f1(L), thus f2(e1) = e2 is
in f2( f1(L)) = f (L).

2. The edge e2 has no f2-antecedent in L1. Let x be a node of L− l(K) such that
f (x) = x2. Let x1 = f1(x), then x1 ∈ L1− l1(K1) because (K1, l1,g1) being the pushout
complement of l and f1, it is unique and K1 is the subgraph of L obtained by removing
all items that are in the image of f1 but not in the image of f1 ◦ l (see [4, Proposition
9]). Thus e2 is an edge incident to a node of f2(L1− l1(K1)). Since f2 satisfies the
dangling condition with respect to l1, we know that e2 is in f2(L1), which contradicts
our hypothesis that e2 has no f2-antecedent. Thus, this case cannot occur.

• Identification condition. Suppose that there are two items x,y ∈ L such that x 6= y and
f (x) = f (y). We have to prove that x and y are in l(K). Then there are two cases:

1. If f1(x) = f1(y), the identification condition of f1 with respect to l implies that x and
y are in l(K).

2. If f1(x) 6= f1(y), let x1 = f1(x) and y1 = f1(y), so that x1 6= y1 and f2(x1) = f2(y1).
The identification condition of f2 with respect to l1 implies that x1 and y1 are in
l1(K1). Now since K1 = L1− f1(L− l(K)) and x1,y1 are in f1(L), it implies that they
are in l(K).

Proposition 5 The categorical rewriting systems RSPOC and RSDPO are functorial.
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Proof. The functoriality of RSPOC follows from Lemma 2 and the compositionality property of
pushouts. Then the functoriality of RSDPO follows from the functoriality of RSPO,Graph (Propo-
sition 1) and from Proposition 2.

3.4 Sesqui-pushout rewriting

Similarly to Section 3.3, under suitable assumptions the graph transformation based on sesqui-
pushouts (SqPO) [3] can be considered as a categorical rewriting system which is composed of
a categorical rewriting system based on final pullback complements (as defined below) followed
by a categorical rewriting system based on pushouts. Final pullback complements are defined
in [8, Theorem 4.4] as follows. For each match f : L→ L1 let us consider the slice categories
D ↑L and D ↑L1 of objects of D over L and L1, respectively. Let f ∗ : D ↑L1→D ↑L denote the
pullback functor, which maps each l1 : K1→ L1 to f ∗(l1) : K → L such that there is a pullback
square:

L
f
��

K

��

f ∗(l1)
oo

L1 K1l1
oo

The Dyckhoff-Tholen condition for f states that the pullback functor f ∗ has a right adjoint f∗
such that f ∗ ◦ f∗ is the identity. This last condition implies that the functor f∗ : D ↑L→ D ↑L1
provides a pullback complement for f and l, for every l : K→ L, which is called the final pullback
complement (FPBC) of f and l. The definition of the final pullback complement of f and l
implies that, when it does exist, it is unique. Let CFPBC = Graph be the category of graphs,
and let Graphm be the category of graphs with monomorphisms, seen as a wide subcategory of
Graph. Following [3], we define two kinds of rewriting systems based on FPBCs. In the first
one the rules are monomorphisms, in the second one the matches are monomorphisms. In both
cases we consider an inverse arrows-based span on Graph.

1. Left-linear rules. Let DFPBC,1 = Graphm and MFPBC,1 = Graph. Following [3, defini-
tion 4], given a rule l : K // // L we say that a match f : L // L1 is conflict-free with
respect to l when f does not identify any item in the image of l with an item outside this
image (note the similarity with the definition of conflict-free matches for SPO). For each
rule l : K // // L we define SFPBC,1,l as the partial function with domain the conflict-free
matches with respect to l, such that SFPBC,1,l( f ) is the final pullback complement of l and
f in Graph, for each f in Dom(SFPBC,1,l). It is proved in [3, construction 5] that this final
pullback complement exists, and that it yields l1 : K1 // // L1 and g : K // K1.

L
f
��

Kooloo

L1

�SFPBC,1,l
//

L
f
��

SFPBC,1,l( f )

K
g
��

ooloo

L1 K1ool1
oo

2. Monic matches. Let DFPBC,2 = Graph and MFPBC,2 = Graphm. Given a rule l : K // L
we define SFPBC,2,l as the total function on Graphm such that SFPBC,2,l( f ) is the final
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pullback complement of l and f in Graph, for each f in Graphm. It is proved in [3,
construction 6] that this final pullback complement exists, and that it yields l1 : K1 // L1
and g : K // // K1.

L��
f
��

Kloo

L1

�SFPBC,2,l
//

L��
f
��

SFPBC,2,l( f )

K��
g
��

loo

L1 K1l1
oo

Definition 11 The categorical rewriting systems for graphs based on final pullback comple-
ments, denoted as RSFPBC,i with i = 1 or i = 2, are made of the inverse arrows-based span on
Graph with rules in Graphm and matches in Graph when i = 1, and with rules in Graph and
matches in Graphm when i = 2, together with the family of functions SFPBC,i defined as above
from final pullback complements in Graph, so that SFPBC,1 is partial and SFPBC,2 is total. For
each i ∈ {1,2}, the categorical rewriting systems for graphs based on sesqui-pushouts, denoted
as RSSqPO,i, is the composition of RSFPBC,i and RSPO,Graph (from Definition 2).

Lemma 3 Let us consider the categorical rewriting system RSFPBC,1. Let l : K // // L be a rule
and f1 : L // L1 a match which is conflict-free with respect to l. Let (K1, l1,g1) be the final
pullback complement of l and f1. Let f2 : L1→ L2 be a match which is conflict-free with respect
to l1. Then f2 ◦ f1 is conflict-free with respect to l.

Proof. Let f = f2 ◦ f1 : L // L2. The proof is done by contradiction. Let us assume that there
are two items x and y in L such that f (x) = f (y), with x ∈ l(K) and y 6∈ l(K). Then there are two
cases:

1. If f1(x) = f1(y) then f1 is not conflict-free with respect to l.

2. Otherwise let x1 = f1(x) and y1 = f1(y), so that f2(x1) = f2(y1). The commutativity of
the square SFPBC,l( f1) implies that x1 ∈ l1(K1). Moreover, the construction of the final
pullback complement in [3, construction 6] shows that y1 6∈ l1(K1) since y 6∈ l(K). Thus,
x1 ∈ l1(K1) and y1 6∈ l1(K1), so that f2 is not conflict-free with respect to l1.

Proposition 6 The categorical rewriting systems RSFPBC,i and RSSqPO,i, for i = 1 and i = 2,
are functorial.

Proof. Similar to the proof of Proposition 5.

A similar result (vertical composition of sesqui-pushout graph transformations) is stated in
[13, proposition 5].

4 A non-functorial graph transformation system

We define two garbage removal rewriting systems, as two attempts to formalize the process of
removing unreachable nodes from a given graph. One of these rewriting systems is not functorial,
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but the other is. Let Graph⊆ be the category of graphs with inclusions; it is a preorder, thus every
diagram in Graph⊆ is commutative. In both rewriting systems, the underlying span is the inverse
arrows-based span on Graph⊆ with rules and matches in Graph⊆.

4.1 Garbage removal

Definition 12 Let L1 be a graph and A a subgraph of L1. The set of nodes of L1 which are
reachable from A (A stands for Alive nodes) is defined recursively, as follows: a node of A is
reachable from A, and the successors of a node reachable from A are reachable from A. The
subgraph of L1 generated by the nodes reachable from A is called the maximal subgraph of L1
reachable from A, it is denoted as ΛA(L1).

The aim of garbage removal is the determination of ΛA(L1). In fact, ΛA(L1) does not depend
on the edges of A, only on its nodes. The nodes of A play the role of roots for the graph L1,
with ΛA(L1) as the result of garbage removal from these roots. There are several categorical
characterizations of ΛA(L1), see for instance [5], but they are not used in this paper. Garbage
removal provides a factorization of the inclusion A ⊆ L1 in two inclusions A ⊆ ΛA(L1) ⊆ L1.
This is denoted:

A

��

L1

� GC //

A

�� %%GC
L1 ΛA(L1)oo

This “triangular” diagram is equivalent to the “rectangular” one:

A

��

Aoo

L1

� GC //

A

��
GC

A

��

oo

L1 ΛA(L1)oo

Example 1 Here are two simple examples, where A is made of a single node.

A a oo a A

��
GC

��

L1 a
��

b

c
oo

a
��
c

ΛA(L1)

A a oo a A

��
GC

��

L2 a
��   

b
��

c d e
oo

a
�� !!
c d

ΛA(L2)

We generalize this situation by allowing the rules to be any inclusions R ⊆ L, not only iden-
tities; thus for instance the inclusion ΛA(L1)⊆ L1 can be seen as a rule. Then, garbage removal
can be seen as a categorical rewriting system with respect to the inverse arrows-based span on
Graph⊆ with rules and matches in Graph⊆. This can be done in two ways: in Section 4.2 the
alive subgraph A is the left-hand side L while in Section 4.3 it is the right-hand side R.

4.2 Garbage removal as a non-functorial graph rewriting system

Definition 13 The L-garbage removal rewriting system RSLGC is defined as the inverse arrows-
based span on Graph⊆ with rules and matches in Graph⊆ together with the total functions
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SLGC,ρ , for every ρ : R ⊆ L, which map each inclusion L ⊆ L1 to the commutative square in
Graph⊆ with vertices L, R, L1 and ΛL(L1).

L
f
��

R
ρ

oo

L1

�SLGC,ρ
//

L

�� ((

R

��

oo

=

GC
L1 ΛL(L1)oo

Proposition 7 The categorical rewriting system RSLGC is not functorial.

Proof. In general ΛL1(L2) is not the same as ΛL(L2), see Example 2 below.

L

�� ))

R

��

oo

=

GC
L1

�� ))

R1 = ΛL(L1)

��

oo

=

GC
L2 R2 = ΛL1(L2)oo

6=

L

�� !!

R

��

oo

=

GC

L2 ΛL(L2)oo

Example 2 Let us apply RSLGC to R = L ⊆ L1 ⊆ L2 and to R = L ⊆ L2, as in Example 1. We
get ΛL1(L2) 6= ΛL(L2).

L a oo a R

�� ��

L1 a
��

b

c
oo

a
��
c

ΛL(L1)

�� ��

L2 a
�� ��

b
��

c d e
oo

a
�� ��

b
��

c d e

ΛL1(L2)

6=

L a oo a R

�� ��

L2 a
�� ��

b
��

c d e
oo

a
�� ��

c d

ΛL(L2)

It turns out that if we choose the right-hand side of the rule instead of its left-hand side as the
alive subgraph, the graph transformation system obtained is functorial: this is done in the next
section.

4.3 Garbage removal as a functorial graph rewriting system

Definition 14 The R-garbage removal rewriting system RSRGC is defined as the inverse arrows-
based span on Graph⊆ with rules and matches in Graph⊆ together with the total functions
SRGC,ρ , for every ρ : R ⊆ L, which map each inclusion L ⊆ L1 to the commutative square in
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Graph⊆ with vertices L, R, L1 and ΛR(L1).

L
f
��

R
ρ

oo

L1

�SRGC,ρ
//

L
f
��

=

GC

R

��

ρ
oo

vvL1 ΛR(L1)oo

Proposition 8 The categorical rewriting system RSRGC is functorial.

Proof. It is easy to check that ΛR1(L2), where R1 = ΛR(L1), is the same as ΛR(L2).

L

��

=

GC

R

��

oo

uuL1

��

=

GC

R1 = ΛR(L1)

��

oo

uuL2 R2 = ΛR1(L2)oo

=

L

��

=

GC

R

��

oo

{{

L2 R2 = ΛR(L2)oo

Example 3 Let us apply RSRGC to R = L ⊆ L1 ⊆ L2 and to R = L ⊆ L2, as in Example 1. We
get ΛR1(L2) = ΛR(L2).

L a oo a R

�� ��

L1 a
��

b

c
oo

a
��
c

R1=

ΛR(L1)

�� ��

L2 a
��   

b
��

c d e
oo

a
�� !!
c d

ΛR1(L2)

=

L a oo a R

�� ��

L2 a
�� ��

b
��

c d e
oo

a
�� ��

c d

ΛR(L2)

5 Conclusion

We have introduced a new notion of abstract rewriting system based on categories. These sys-
tems are designed for dealing with abstract rewriting frameworks where rewrite steps are defined
by means of matches. We have defined the properties of (horizontal) composition as well as func-
toriality of rewriting in our abstract setting and we have illustrated these properties throughout
several algebraic graph rewriting systems. We plan to extend and deepen our abstract framework
by investigating other instances such as [11, 13] and by allowing the rewriting processes Sρ to
be relations instead of partial functions.

Acknowledgements: We would like to thank Andrea Corradini and Barbara König for enlight-
ing discussions about the Dyckhoff-Tholen condition. We also thank anonymous referees for
insightful comments.
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