
Electronic Communications of the EASST
Volume 42 (2011)

Proceedings of the
4th International Workshop on

Multi-Paradigm Modeling
(MPM 2010)

Combining SysML and Model Transformations to Support Systems
Engineering Analysis

Aleksandr A. Kerzhner and Christiaan J.J. Paredis

12 pages

Guest Editors: Vasco Amaral, Hans Vangheluwe, Cécile Hardebolle, Lazlo Lengyel
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Combining SysML and Model Transformations to Support Systems
Engineering Analysis

Aleksandr A. Kerzhner1 and Christiaan J.J. Paredis1

1G. W. Woodruff School of Mechanical Engineering,
Georgia Institute of Technology, Atlanta, GA, USA

Abstract: As modern systems become increasingly complex, there is a growing
need to support the systems engineering process with a variety of formal models,
such that the team of experts involved in the process can express and share knowl-
edge precisely, succinctly and unambiguously. However, creating such formal mod-
els can be expensive and time-consuming, making a broad exploration of differ-
ent system architectures cost-prohibitive. In this paper, we investigate an approach
for reducing such costs and hence enabling broader architecture space exploration-
through the use of model transformations. Specifically, a method is presented for
verifying design alternatives with respect to design requirements through automated
generation of analyses from formal models of the systems engineering problem.
Formal models are used to express the structure of design alternatives, the system
requirements, and experiments to verify the requirements as well as the relation-
ships between the models. These formal models are all represented in a common
modeling language, the Object Management Group’s Systems Modeling Language
(OMG SysMLTM). To then translate descriptive models of system alternatives into
a set of corresponding analysis models, a model transformation approach is used
to combine knowledge from the experiment models with knowledge from reusable
model libraries. This set of analysis models is subsequently transformed into exe-
cutable simulations, which are used to guide the search for suitable system alterna-
tives. To facilitate performing this search using commercially available optimization
tools, the analyses are represented using the General Algebraic Modeling System
(GAMS). The approach is demonstrated on the design of a hydraulic subsystem for
a log splitter.

Keywords: systems engineering, SysML, model integration, model to model trans-
formation, requirements modeling

1 Introduction

Engineered systems are becoming increasingly complex to design because of greater consumer
expectations, highly integrated products encompassing various engineering domains, and geo-
graphically distributed stakeholders. To manage this complexity, systems engineering can be
applied; systems engineering is an interdisciplinary approach to creating and verifying an inte-
grated set of system solutions to satisfy customer needs.

The systems engineering process generally consists of problem definition, analysis, and inter-
pretation [SA00]. Formulating the problem usually involves several common tasks, including

1 / 12 Volume 42 (2011)

SysML and Model Transformations for Systems Engineering Analysis

defining the system objectives, deriving requirements for the system, and generating candidate
solutions. Several iterations of these core tasks may be needed to derive a suitable final system.
In an effort to precisely and unambiguously express the knowledge present in a systems engi-
neering problem, systems engineers have begun to adopt the Model-Based Systems Engineering
(MBSE) approach [Fis98]. Within MBSE, engineers represent all aspects of the problem using
formal models; such models generally include system alternatives, requirements, experiments to
verify the requirements and also models relating these different aspects. There are many MBSE
approaches that prescribe a work flow for modeling and solving the problem [Est07].

A key challenge during any MBSE process is verifying that the prescribed objectives and re-
quirements are met by a particular alternative. Usually, designers manually create any necessary
analyses by incorporating knowledge of various domains. For complex problems, manually cre-
ating such analysis models requires significant time and effort and introduces many opportunities
for error. An additional complication in many MBSE approaches is that the knowledge needed to
generate these analyses is captured in diverse and incompatible tools and representation syntaxes.

This paper proposes a method for automatically generating analysis models for systems en-
gineering problem models. The entire problem is represented in a common language, the Sys-
tems Modeling Language (SysMLTM) from the Object Management Group (OMG) [OMG08].
SysML is chosen because it allows the representation of the very distinct elements needed in a
single language partially overcoming the challenge of using diverse tools and representations.
Also, a common language allows for the expression of relationships between different facets
of the problem. To automatically generate domain-specific analysis models, model transforma-
tions are utilized to combine knowledge from various models and problem-independent model
libraries. Such libraries facilitate model reuse and can be used to express common structural
components and their relationships to the appropriate analysis models. Model transformations
are also used to transform the problem-specific analysis models into executable simulations. Fi-
nally, meta-data is associated with both models and relationships to efficiently describe their role
within the systems engineering problem and facilitate reuse.

Other work has identified a need for efficient architecture and have proposed computational
tools for synthesizing alternatives [AR04, BSS07, SSS05]. To analyze these alternatives, usually
these works generate one type of analysis model which focuses either on geometric consider-
ations or simple functionality. This paper supports this work by presenting an approach for
generating a more varied and comprehensive set of analyses to evaluate a potential solution.

The remainder of the paper is presented as follows. In Section 2, the general approach to for-
mally modeling meta-data and relationships within SysML is presented. This general approach is
applied to the modeling of a hydraulic log splitter problem in Section 3. The problem definition
is then used in conjunction with model transformations to automatically produce an executable
simulation in Section 4.

2 Approach: Model Management in SysML

Since MBSE prescribes formal modeling throughout the systems engineering process, a large
number of models may be needed to describe a particular problem. Even if these models are
encoded in a single file, it is still important to identify which facet of the problem is being

Proc. MPM 2010 2 / 12

ECEASST

EngineeringModel[Profile] Modelspkg []

«stereotype»

EngineeringModel
+url : String

«stereotype»

ExternalLibrary

+ref : String
+url : String

«stereotype»

ExternalModel

«stereotype»

Library

«stereotype»

Aspect

«metaclass»

Class

«metaclass»

Package
«metaclass»

Classifier

aspect

0..*

Figure 1: Profile for defining engineering models in SysML.

expressed by each individual model and how the models relate to each other. In our approach,
the role of a particular model is characterized by associating related aspects. Also, to express
the relationships between the models each part of the systems engineering problem is modeled
in a common language, SysML. This alone is insufficient because it only facilitates expressing
relationships between models; a generic, consistent, and computer interpretable approach for
expressing the relationships is also needed.

SysML is chosen because it is a visual language designed to represent an entire systems engi-
neering problem [FMS08]. The basic unit of SysML is a Block, which can be used to describe
the system, its components, or other constructs of interest. SysML is also flexible enough to
express the additional knowledge such as aspects and relationships. Because models of both the
meta-data and relationships are captured within SysML, the entire representation is in a common
formalism.

The approach for characterizing the models is based on Multi-Aspect Component Models
(MAsCoMs) [Job08] where aspects are used to characterize analysis models by describing what
the model represents, the representation syntax, and how it can be composed with other models.
Unlike MAsCoMs, aspects are used here to characterize any model expressing the systems engi-
neering problem, not just analysis models. We will refer to these models as engineering models.
The concept of aspects is similar to those in aspect-oriented programming [IKL+97] in that they
characterize models based on their function. Also, models can have any number of associated
aspects to describe their function. Unlike aspect-oriented modeling [CL02], these aspects are
meant to characterize the models for composition and search purposes, not add any additional
crosscutting features.

A profile is used to extend the SysML language to formally define engineering models and any
other constructs unique to our approach [OMG08]. A profile is a Unified Modeling Language
(UML) concept that is used as a light-weight extension mechanism for adding new constructs
to UML or SysML [ISO05]. The engineering model concept is captured using a stereotype
as is illustrated in Figure 1. The EngineeringModel stereotype has an aspect property which
allows any EngineeringModel to be unambiguously classified with aspects. The Engineering-
Model also extends from the Classifier meta-class forcing any engineering model to allow for
generalization/specialization relationships. To enable reuse, the possible aspects are captured
in a model library where they are organized in a hierarchical fashion and stereotyped with the
Aspect stereotype.

Along with capturing models of interest, relationships between them are also captured within
SysML. SysML provides many of the relationships necessary for modeling systems engineering

3 / 12 Volume 42 (2011)

SysML and Model Transformations for Systems Engineering Analysis

ModelManagement[Profile] Modelspkg []

+analysisAspect : Aspect [1..*]

«stereotype»

Structure2Analysis

+compositionAspect : Aspect

«stereotype»

CompositionRelationship

«stereotype»

Structure2TestCase

«stereotype»

Analysis2TestCase

«stereotype»

ModelRelationship

«metaclass»

AssociationClass

«stereotype»

CompositionRule

+catalog
+library : Class

«stereotype»

Library2Catalog

Figure 2: Model Management Profile defining some possible model relationships.

Relationships Relationships[Package] bdd []

«engineeringModel»

ModelB

«engineeringModel»

ModelA

«modelRelationship»

A2B

«modelRelationship»

A2B modelB

1

modelA

1

Figure 3: Example Relationship between Model A and B in SysML.

problems. When existing relationships are not suitable, the UML AssociationClass construct is
used to define a new relationship. Usages of these types can then represent a particular instance
of that type of relationship. Again, a profile is used to enumerate the different relationships used
in this approach, illustrated in Figure 2. For example, CompositionRelationships describe how
models can be composed together into more complex models.

An AssociationClass between two models is shown in Figure 3. This illustrates the ModelRe-
lationship A2B between EngineeringModels A and B. This relationship expresses that usages of
A and B can be related by usages of ModelRelationship A2B. In addition, one can express how
the parameters and ports of these models are linked when such a model relationship exists.

The other relationships will be discussed in more detail in the following sections. Now that the
general framework for capturing models of interest and relationships between them in SysML
has been presented, the next section will cover how a systems engineering problem is expressed
using this model management framework.

3 Defining the Systems Engineering Problem

The design of a hydraulic subsystem for a horizontal acting hydraulic log splitter is used as
an illustrative example in the subsequent sections. This section describes how the problem of
designing the hydraulic subsystem is expressed within our framework. A log splitter is a system
used to divide cylindrical pieces of wood longitudinally.

This example is chosen because it involves the composition of well-defined, modular compo-

Proc. MPM 2010 4 / 12

ECEASST

[Profile] Tests Testspkg []

-Text : String [1] =
-Id : String [1] =
-/Derived : Requirement [*]
-/SatisfiedBy : NamedElement [*]
-/RefinedBy : NamedElement [*]
-/TracedTo : NamedElement [*]
-/VerifiedBy : NamedElement [*]

...

«stereotype»

Requirement

greaterThan
lessThan

equalTo

«enumeration»

ConditionEnumeration

«stereotype»

EngineeringModel

+lhs : ValueProperty
+value : Real

«stereotype»

Testable

«stereotype»

Test

«stereotype»

Block

condition

Figure 4: Profile for defining tests and testable requirements in SysML.

nents into a more complex system. Also, the design of the system must satisfy several competing
requirements; the hydraulic circuit should be cost effective, light weight, and capable of actuat-
ing the wedge with both high force and high velocity. The definition of this problem consists of
three major parts:

• Requirements the system should be designed to meet.

• Experiments that can be performed on the system to verify that requirements are met.

• System topologies under consideration.

This section explores how each of these is captured within SysML. We will begin with the model-
ing of the system requirements. One advantage of SysML is the existing constructs for modeling
requirements and common relationships. These existing relationships can be used to capture how
requirements are decomposed, verified, and satisfied.

The requirements begin with abstract specifications which describe how the system should
behave qualitatively. These requirements are then decomposed into more concrete specifications
on the system. To simplify the verification process, the requirements are further decomposed to
an abstraction level where they can be quantitatively verified through experiments; that is until a
particular property of the system can be bounded. Currently, this is accomplished deterministi-
cally by constraining a variable with an equality or inequality condition.

The next step is to model the experiments or test cases needed to verify that a system satisfies
the specified requirements. Experiments or test cases will be referred to as tests in this paper.
To formally model tests within SysML, some additional constructs are needed to formally de-
fine a quantitatively-verifiable requirement (or testable requirement), a test, and the relationship.
A profile is again used to define these constructs, as shown in Figure 4. Two stereotypes are
added, the Testable stereotype for requirements and the Test stereotype for experiments. The
Testable stereotype derives from the standard SysML Requirement with additional properties for
capturing precisely which system variable is being bounded by the requirement.

5 / 12 Volume 42 (2011)

SysML and Model Transformations for Systems Engineering Analysis

LogSplitterRequirementsRequirements[Package] req []

constraints

{cycleTime=forwardTime+reverseTime}

values

cycleTime : s{unit = second}

«test»

CycleTimeTestCase

{aspect = Behavior , GAMS}Id = "1.3"

Text = "The system shall be

capable of fulfilling the

Hydraulic System

Requirements. "

«requirement»

HydraulicSystem

«requirement»

Id = "1.3.1"

Text = "The cycle time of the

system shall be less than

20 seconds."
«testable»

condition = lt

lhs = cycleTime

value = "20"

«testable»

CycleTime

«deriveReqt» «verify»

Figure 5: Requirements Breakdown for the Log Splitter’s cycle time.

The use of these stereotypes along with existing SysML constructs to model requirements,
derived requirements, and tests for a small portion of the log splitter’s requirements is illustrated
in Figure 5. In this example, a high-level requirement is decomposed into a testable requirement
which can be verified by the defined test. Existing SysML relationships are used to describe that
the testable requirement is derived from a high-level requirement and that the test should verify
the testable requirement.

One important characteristic of the test definition is that it is defined independently of any
particular design alternative. To separate the test definition from the structural definition, the
test is defined using only a system boundary that captures the interface to the environment that
all design alternatives should realize. The test specifies the state of the environment through
inputs to the system as well as the parameters of the system that are to be measured. The state
of the environment is described both by connecting the system boundary inputs to appropriate
models and constraining the appropriate variables. Since the design alternative extends from the
system’s boundary, it has the same interfaces. Therefore, any constraints placed on the system
boundary can be transferred to the test for a particular design alternative.

Once the modeling of the requirements and tests are complete, models of the possible system
topologies are needed. A very simple hydraulic circuit for the log splitter will be used as the
system topology under consideration. In this design, the wedge of the log splitter is pushed
by a hydraulic piston which provides the force necessary to split the wood. An engine powers a
constant displacement pump that, when engaged, causes fluid to flow through the system pushing
the cylinder. The system topology modeled in SysML is shown in Figure 6. This model of the
topology is a specialization of the system boundary. It realizes the rod interface which splits the
wood and the control interface that receives input from the user of the log splitter.

Since the log splitter is comprised of common modular components, we can reduce the mod-
eling effort by storing these components in a model library and reusing them. The library model
for the cylinder is shown in Figure 7. Within this library model, common properties and ports of
the cylinder are defined, such as the stroke length or bore diameter. This cylinder model can be
specialized by more specific types of cylinders or, as is the case here, specific vendor-provided
products which have certain values for each attribute. A combination of vendor-provided com-
ponents can represent a particular system embodiment.

Now that the systems engineering problem has been defined, the next step is to solve that
problem and find a system that fulfills the requirements.

Proc. MPM 2010 6 / 12

ECEASST

System System[Block] ibd []

rod

control
directionalValve : DirectionalValve

P T

A B

control

cylinder : Cylinder

A B

rod
housing

tank : Tank AB

pump : Pump P

T

rotational

hyd : Hydraulic Subsystem

frame : Frame housing

engine : Engine
out

mech : Mechanical Subsystem

Figure 6: A SysML model describing the Log splitter architecture. An engine provides power to
the hydraulic subsystem which is used to actuate a splitting wedge.

Cylinder BDD[Package] Cylindersbdd []

stroke : m{unit = metre}
boreDiameter : m{unit = metre}
maxPressure : Pa{unit = pascal}
rodDiameter : m{unit = metre}

«FlowPort»

«FlowPort»A : Hydraulic{direction = inout, isAtomic = false}
«FlowPort»B : Hydraulic{direction = inout, isAtomic = false}
«FlowPort»housing : Flange{direction = inout, isAtomic = false}
«FlowPort»rod : Translational{direction = inout, isAtomic = false}

«engineeringModel»

Cylinder

Figure 7: A Cylinder model from the model library.

4 Modeling and Composition of Analyses

Once the problem has been defined, it must be solved. To execute a particular set of tests, one
may need a variety of analysis models. These analysis models can then be simulated to en-
sure that a design alternative satisfies the requirements. This section addresses how a number
of these analyses can be created for a particular design alternative, and how they are converted
into executable simulations. In this case, the definition of the analysis models appears com-
pletely within SysML. When an analysis model is located outside of the SysML environment,
the ExternalModel stereotype defined in Figure 1 can be used to reference it.

Analyses are modeled within SysML as blocks with ports, equations, and properties in a port-
based modeling approach [PDSK01]. The equations in this example are purely algebraic and
modeled using the General Algebraic Modeling System (GAMS) syntax [BKM88] to allow the
problem to be solved with commercial tools. Ports are used to describe the interfaces of analyses;
these interfaces often abstract interfaces of the real components being modeled. The ports are
connected together using SysML connectors to represent connections between the interfaces. In

7 / 12 Volume 42 (2011)

SysML and Model Transformations for Systems Engineering Analysis

FluidPower FluidPower[Package] bdd []

«gamsModel»

flangeA : TransConnectorFP{causality = inout}
flangeB : TransConnectorFP{causality = inout}
portA : FluidConnectorFP{causality = inout}
portB : FluidConnectorFP{causality = inout}

«gamsModel»

CylinderFP

(GamsModelLibrary)

{force =e= ...
(Pi*0.25*sqr(size.boreDiameter)*portA.p)- ...

(Pi*0.25*(sqr(size.boreDiameter)-...
sqr(size.rodDiameter))*portB.p),

0 =e= flangeA.f + flangeB.f,
flangeB.f =e= force,

abs(length) =l= size.strokeLength,
portA.p =l= size.maxPressure,

portA.q =e= vel*0.25*Pi*sqr(size.boreDiameter),
portB.p =l= size.maxPressure,

portB.q*sqr(size.boreDiameter)+ ...
portA.q*(sqr(size.boreDiameter)-...

sqr(size.rodDiameter)) =e= 0,
size.rodDiameter =e= 0.5*size.boreDiameter,

time =g= 0.00001,
vel*time =e=length,

vel =e= flangeB.v - flangeA.v
}

stroke : m{unit = metre}
boreDiameter : m{unit = metre}
maxPressure : Pa{unit = pascal}
rodDiameter : m{unit = metre}

«FlowPort»A : Hydraulic{direction = inout, isAtomic = false}
«FlowPort»B : Hydraulic{direction = inout, isAtomic = false}
«FlowPort»rod : Translational{direction = inout, isAtomic = false}
«FlowPort»housing : Flange{direction = inout, isAtomic = false}

«engineeringModel»

Cylinder

«participant»descriptionEnd : Cylinder
«participant»analysisEnd : CylinderFP

«structure2Analysis»

Cylinder2CylinderFP

{analysisAspect = GAMS , Behavior}

«structure2Analysis»

Cylinder2CylinderFP

{analysisAspect = GAMS , Behavior}

description

1

analysis

1

Figure 8: Relationship between Cylinder and Behavior model.

some cases, these connectors represent energy flows between the ports instead of simple equality
relationships. The properties express any variables or constants that are used in the equations.

Once component-level analysis models are constructed within SysML, they can be automat-
ically composed into system-level analyses and transformed into executable simulations. A
graph-based model transformation approach is used to bridge the gap between design alterna-
tives and analyses. The transformation to executable simulations is handled in two phases. First,
the tests are transformed into a set of analysis models represented within SysML. Then, an-
other transformation is used to create an executable simulation in a format compatible with a
paradigm-specific modeling tool.

The transformation between test and analysis models is defined with the Fujaba story-diagram
[FNTZ00] semantic using the MOFLON meta-case tool [AKRS06]. As is the case with many
other graph-based model transformation approaches, the transformations are defined using a
metamodel. The metamodel in this case is a SysML metamodel that was created from the UML
metamodel and the SysML profile to simplify the use of SysML-specific constructs by reducing
the use of tool-specific stereotype semantics in the transformations. Once these transformations
are specified, MOFLON generates Java Metadata Interface (JMI) compliant code [Dir02]. This
code can be packaged within a plug-in to execute the transformations in a specific model author-
ing tool, in this case the MagicDraw UML modeling tool with a SysML plug-in [NoM].

To generate a set of analysis models, the transformation starts by identifying the tests. For
each test and system topology, a corresponding top-level analysis is created. For each compo-
nent within the topology, a corresponding component-level analysis model is instantiated and
included in the top-level analysis. The component-level analysis models are chosen based on
their associated aspects and correspondence relationships to component models, such as the one
shown in Figure 8. This particular correspondence relationship relates the cylinder component
with a model describing the cylinder’s behavior. The relationship is stereotyped with the Struc-
ture2Analysis stereotype and associated with the GAMS and Behavior aspects.

The relationship between the properties and ports of structural components and analysis mod-
els are also captured using SysML connectors. Properties from the cylinder, such as the stroke,

Proc. MPM 2010 8 / 12

ECEASST

Composition Relationship[Package] Testsbdd []

references

boundary : SystemBoundary

values

measuredMass : kg{unit = kilogram}

«test»

MassTestCase

{aspect = Mass , GAMS}

values

cost : Real
mass : kg{unit = kilogram}

«block»
«engineeringModel»

Component

«structure2TestCase»

MassTestCaseComposition

{compositionAspect = Summation }

MassTestCaseComposition

{compositionAspect = Summation }

structure

1

testCase

1

MassTestCaseComposition MassTestCaseComposition[Association Class] par []

measuredMass : kg

testCaseEnd : MassTestCase

{end = testCase }

mass : kg

structureEnd : Component

{end = structure }

Figure 9: Composition relationship for Mass test used to add up the mass of each component
into measuredMass.

are related to particular properties of the analysis. This allows the composition of the analysis
model based on any values or connections present within the structural description of the design
alternative. The use of similar templates for Finite Element Analysis (FEA) was shown by Bajaj
et al. [MP07].

After the appropriate component-level analyses are instantiated, they are composed together
using knowledge stored within composition relationships. This knowledge includes the attributes
which must be added together into a single variable (i.e. mass or cost) or the interfaces that
should be connected. Composition relationships describe how the analyses should be connected
with each other and with the test. Certain attributes of the analyses are related to particular
attributes of a given test. As an example, the composition relationship that component masses
are added into a single system mass is illustrated in Figure 9. The relationship is associated with
the summation aspect and owns a connector between the mass and measuredMass attributes
which represents that the mass from each component should be added together into a single
measuredMass attribute.

For analysis models where interfaces need to be connected appropriately, the correspondences
between the interfaces of the structural and analysis models are used to instantiate a correspond-
ing connection in the system-level structural model. In order to facilitate the creation of a deep-
nested structure, connectors are added between corresponding component and analysis models.
This also allows for traceability between the created analysis models and the original descriptive
model of the system.

The result of the first phase of the transformation is a set of system-level analysis models
generated from each test such as the one illustrated in Figure 10. This particular analysis includes
constraints generated from a composition relationship (the component masses are added into a
single attribute) and from a testable requirement (the mass should be less than 300 kg).

9 / 12 Volume 42 (2011)

SysML and Model Transformations for Systems Engineering Analysis

[Package] Analyses Analysesbdd []

«GamsVariable»measuredMass{type = free}
«OwnedGamsModel»engineAnalysis : EngineMass
«OwnedGamsModel»pumpAnalysis : PumpMass
«OwnedGamsModel»directionalValveAnalysis : ValveMass
«OwnedGamsModel»cylinderAnalysis : CylinderMass
«OwnedGamsModel»tankAnalysis : TankMass

«GamsModel»

MassTestCaseAnalysis

{measuredMass=l=300,
measuredMass=e=engineAnalysis.size.mass+pumpAnalysis.size.mass+...}

Figure 10: Analysis generated from the test for the alternatives mass.

Cylinder Id Pump Id Engine Id Valve Id
Forward

Force (N)

Total

Mass (kg)

Total

Cost ($)

Total

Time (s)

Maximize Force

(N)
HMW-5032 SKP1NN_012 DP340E NT-2020 139,833 94.9 993.5 20 2.82

Minimize Total

Time (s)
HMW-3010 SKP1NN_012 DP390E

NT_Prince-

2036
50,000 51.87 843.97 4.896 3.54

Minimize Total

Cost ($)
HMW-4010 SKP1NN_012 DP240 NT-2020 53,698 51.3 657.4 9.69 2.45

Minimize Total

Mass (kg)
PMC-5414 SNP2NN_4_0 DP160V

MSCDirect-

01825629
52,013 32.25 708.6 9.15 78.13

Component Sizing (Selection Id from Catalog) Selected Variable Values

Scenario
CPU Execution

Time (s)

Figure 11: Results from the GAMS optimization.

After the analyses are created within SysML, they need to be transformed into executable sim-
ulations. In theory, the generated simulations should test every possible design alternative using
appropriate analyses to verify whether it meets the requirements. Since testing every possible
combination would be computationally explosive, an optimization approach is used instead. The
analyses are combined into a single non-linear mixed integer programming (MINLP) problem
as demonstrated by Shah et al. [Sha10]. This MINLP problem is represented using GAMS and
solved using the Branch-And-Reduce Optimization Navigator (BARON) [Sah96] to find several
candidate alternatives that meet the requirements. A graph-based code generator specified using
MOFLON is used to create the executable simulation code in GAMS syntax. Some solutions
are shown in Figure 11. The solutions are composed of vendor products from the model library
configured into the simple topology in Figure 6. Each solution meets the requirements and also
maximizes a given objective function.

5 Discussion and Closure

As mentioned, the overall goal of MBSE is to explicitly model all aspects of the systems engi-
neering process. This should include both the actual elements (systems structure, analyses, tests,
and requirements) and the relationships between them. The overall goal is to improve traceability
and reduce tedious effort by the designer during the design process. The framework presented

Proc. MPM 2010 10 / 12

ECEASST

here addresses only a small portion of this goal by formally capturing the structure, requirements,
and tests and transforming this captured knowledge into executable simulations.

One limitation of the current framework is that the test execution order is implicitly handled
by a domain-specific solution tool. This approach would be insufficient if the analyses needed
to be executed in different modeling tools or if they modeled the problem at different levels of
fidelity. How to formally model this execution process within SysML is left for future work.

We view the work presented here as an initial step towards a more complete tool set where a
problem definition is transformed and analyzed to automatically search for good design alterna-
tives. From the problem definition, design alternatives could be automatically generated using
captured knowledge [KP09], and then each alternative could be analyzed using models at varying
levels of fidelity. The entire description of the problem could be maintained in a SysML model,
executable simulations could be generated from this model [Sha10, JPB08]. Future work will
focus on integrating each of these tasks within a common framework.

Acknowledgements: This work has been funded by Deere & Company along with the ERC
for Compact and Efficient Fluid Power, supported by the National Science Foundation under
Grant No. EEC-0540834. The authors would like to thank Roger Burkhart, Sanford Friedenthal,
Leon McGinnis, and Russell Peak for the discussions that helped crystallize the ideas presented
in this paper. The authors would also like to thank No Magic Inc. for providing access to its
MagicDraw UML/SysML tool and Andy Schürr for access to the MOFLON tool.

Bibliography

[AKRS06] C. Amelunxen, A. Konigs, T. Rotschke, A. Schurr. MOFLON: A Standard-
Compliant Metamodeling Framework with Graph Transformations. Lecture Notes
In Computer Science 4066:361, 2006.

[AR04] R. Alber, S. Rudolph. On a grammar-based design language that supports automated
design generation and creativity. In Fifth Workshop on Knowledge Intensive CAD.
P. 19. 2004.

[BKM88] A. Brook, D. Kendrick, A. Meeraus. GAMS, a user’s guide. ACM SIGNUM Newslet-
ter 23(3-4):11, 1988.

[BSS07] F. Bolognini, A. A. Seshia, A. K. Shea. A Computational Design Synthesis Method
for MEMS Using COMSOL. In COMSOL Users Conference. 2007.

[CL02] C. Chavez, C. Lucena. A metamodel for aspect-oriented modeling. In Workshop on
Aspect-Oriented Modeling with the UML at AOSD02. 2002.

[Dir02] R. Dirckze. Java Metadata Interface (JMI) Specification Version 1.0. Unisys Corpo-
ration and Sun Microsystems 2002, 2002.

[Est07] J. A. Estefan. Survey of Model-Based Systems Engineering (MBSE) Methodologies.
Technical report, California Institute of Technology, May 25 2007.

11 / 12 Volume 42 (2011)

SysML and Model Transformations for Systems Engineering Analysis

[Fis98] J. Fisher. Model-Based Systems Engineering: A New Paradigm. INCOSE INSIGHT
1:3–16, 1998.

[FMS08] S. Friedenthal, A. Moore, R. Steiner. A Practical Guide to SysML: The Systems
Modeling Language. Morgan Kaufmann, 2008.

[FNTZ00] T. Fischer, J. Niere, L. Torunski, A. Zündorf. Story Diagrams: A New Graph Rewrite
Language Based on the Unified Modeling Language and Java. In Theory and Ap-
plication of Graph Transformations, 6th International Workshop November 16-20,
1998. Volume 1764, pp. 157–167. Springer, 2000.

[IKL+97] J. Irwin, G. Kickzales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. Loingtier.
Aspect-oriented programming. Proceedings of ECOOP, IEEE, Finland, pp. 220–
242, 1997.

[ISO05] ISO/IEC. Unified Modeling Language Specification. 2005.

[Job08] J. M. Jobe. Multi-Aspect Component Models: Enabling the Reuse of Engineering
Analysis Models in SysML. Masters, Georgia Institute of Technology, 2008.

[JPB08] T. Johnson, C. Paredis, R. Burkhart. Integrating Models and Simulations of Contin-
uous Dynamics into SysML. In 6th International Modelica Conference. Modelica
Association, 2008.

[KP09] A. A. Kerzhner, C. J. J. Paredis. Using Domain Specific Languages to Capture De-
sign Synthesis Knowledge for Model-Based Systems Engineering. In ASME IDETC
& CIE. 2009.

[MP07] R. S. M. Bajaj, Peak, C. J. J. Paredis. Knowledge Composition For Efficient Analysis
Problem Formulation Part 2: Approach And Analysis Meta-Model. In ASME IDETC
& CIE. 2007.

[NoM] NoMagic. MagicDraw. http://www.magicdraw.com.

[OMG08] OMG. Systems Modeling Language v 1.1. 2008.
http://www.omg.org/docs/formal/08-11-02.pdf

[PDSK01] C. Paredis, A. Diaz-Calderon, R. Sinha, P. Khosla. Composable models for
simulation-based design. Engineering with Computers 17(2):112–128, 2001.

[SA00] A. Sage, J. Armstrong. Introduction to systems engineering. Wiley New York, 2000.

[Sah96] N. Sahinidis. BARON: A general purpose global optimization software package.
Journal of Global Optimization 8(2):201–205, 1996.

[Sha10] A. Shah. Combining mathematical programming and sysml for component sizing as
applied to hydraulic systems. Masters, Georgia Institute of Technology, 2010.

[SSS05] A. C. Starling, T. Street, K. Shea. A parallel grammar for simulation-driven mechan-
ical design synthesis. In ASME IDETC. Volume 2, pp. 24–28. 2005.

Proc. MPM 2010 12 / 12

http://www.omg.org/docs/formal/08-11-02.pdf

	Introduction
	Approach: Model Management in SysML
	Defining the Systems Engineering Problem
	Modeling and Composition of Analyses
	Discussion and Closure

