
Electronic Communications of the EASST
Volume 42 (2011)

Proceedings of the
4th International Workshop on

Multi-Paradigm Modeling
(MPM 2010)

Rule-Based Integration of
Domain-Specific Modelling Languages

Benjamin Braatz, Christoph Brandt

12 pages

Guest Editors: Vasco Amaral, Hans Vangheluwe, Cécile Hardebolle, Lazlo Lengyel
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

Rule-Based Integration of
Domain-Specific Modelling Languages

Benjamin Braatz∗, Christoph Brandt

SECAN-Lab, Université du Luxembourg, http://wiki.uni.lu/secan-lab/
benjamin.braatz@uni.lu, christoph.brandt@uni.lu

Abstract: Domain-specific modelling languages (DSMLs) can increase the accept-
ance of (semi-)formal modelling techniques. They allow all stakeholders in an ap-
plication domain to participate in the modelling process using notations that are
close to their understanding of the domain. When several groups of stakeholders
are concerned with a certain aspect of the modelled system, the question arises how
different DSMLs can be integrated with respect to this aspect. In this paper, we
propose rule-based transformations as a means to integrate heterogeneous DSMLs
overlapping on dedicated aspects. We illustrate the approach by a running example
of a small visual DSML for IT landscapes and a textual DSML for firewall config-
urations.

Keywords: Domain-specific modelling language, language integration, Resource
Description Framework, algebraic graph transformation

1 Introduction

Our motivation for the work presented in this paper is to obtain a framework for the definition
and management of families of domain-specific modelling languages (DSMLs). We use the term
DSMLs to denote small, flexible, visual and textual languages that are tailored to the needs of
their users in a certain application domain. Among other features, this framework should allow
families of integrated DSMLs, which means that several DSMLs—each created for a specific
task or a specific group of users—are integrated on their common overlapping aspects.

In Section 2, we present a running example to illustrate this requirement. This running ex-
ample comprises a visual DSML for IT landscapes and a textual DSML for firewall configura-
tions.

We use the Resource Decription Framework (RDF), defined in [KC04], to represent the ab-
stract syntax of DSMLs. This representation is introduced in Section 3. Since RDF is used as
the fundamental data structure for the Semantic Web, it is well-suited for the distributed man-
agement of models in large organisations. With this choice, we expect to reduce the effort that
is required for the creation of large integrated models from the knowledge of local users, while
also allowing decentralised workflows.

In Section 4, we introduce algebraic graph transformations on RDF graphs. Algebraic graph
transformations for RDF were proposed and developed in [BB08, Bra09]. They are used in our

∗ This author is supported by the National Research Fund, Luxembourg, and cofunded under the Marie Curie Actions
of the European Commission (FP7-COFUND).

1 / 12 Volume 42 (2011)

http://wiki.uni.lu/secan-lab/
mailto:benjamin.braatz@uni.lu
mailto:christoph.brandt@uni.lu


Rule-Based Integration of DSMLs

approach, an overview of which is given in [BB10a], to provide a single, uniform formalism for
all kinds of modifications on models—editing, migration and integration.

In Section 5, we present the integration of the languages from the running example. The
different tasks during the integration of two models are facilitated by dedicated transformation
rules for the manual, automatic and semi-automatic integration steps.

Finally, in Section 6 we discuss related work and give some concluding remarks in Section 7.

2 Running Example

In this section, we present a running example for the integration of a graphical and a textual
language. The graphical language is a DSML for IT infrastructures. The language is rather small
and simple, but a similar language for the real world would in principle work on the same level of
abstraction, tailored to the needs of the users and resembling the informal languages modellers
use today. The textual language is a language for the configuration of firewalls, where we restrict
ourselves to the specification of which ports are allowed in which direction.

In Figure 1, we show an example of the concrete syntax of these two languages and their
integration. The landscape model on the right side shows some local area networks (LANs), the
Internet as a wide area network (WAN) and the connections between them, where most of them
are protected by firewalls. For the firewalls, we also specify which protocols are allowed in which
direction. The local network LAN 1 is connected to the Internet through a demilitarised zone
(DMZ). HTTP queries are allowed from the Internet to the DMZ and vice versa and from LAN
1 through a proxy in the DMZ to the Internet. Moreover, LAN 1 can reach a backup network via
SSH. The firewall configurations on the left give a textual representation of the allowed protocols.

fw1.example.com
FROM if1 TO if2

PORT 5432 ALLOW;
FROM if2 TO if1

PORT 80 ALLOW;

fw2.example.com
FROM if1 TO if2

PORT 80 ALLOW;

fw3.example.com
FROM if2 TO if1

PORT 22 ALLOW;
FROM if2 TO if1

PORT 53 ALLOW;

fw4.example.com
FROM if1 TO if2

PORT 22 ALLOW;
FROM if2 TO if1

PORT 22 ALLOW;

LAN 1

DMZ

LAN 2

Internet

Backup

http

http

http

ssh

ssh

fw1.example.com
FROM if1 TO if2

PORT 5432 ALLOW;
FROM if2 TO if1

PORT 80 ALLOW;

fw2.example.com
FROM if1 TO if2

PORT 80 ALLOW;
FROM if2 TO if1

PORT 80 ALLOW;

LAN 1

DMZ

LAN 2

Internet

Backup

if2

if1

if2
if1

if2

if1

if2

if1

httpdb

http

http

ssh, dns

ssh

fw3.example.com
FROM if2 TO if1

PORT 22 ALLOW;
FROM if2 TO if1

PORT 53 ALLOW;

fw4.example.com
FROM if1 TO if2

PORT 22 ALLOW;

Figure 1: IT landscape and firewall configurations—language integration

Proc. MPM 2010 2 / 12



ECEASST

During the integration, we first have to identify which textual firewall configuration corres-
ponds to which firewall in the landscape diagram and which interface name to which connection.
Then, we can search for inconsistencies between the diagram and the configurations. In our ex-
ample, we find that the allowance of HTTP traffic from the DMZ to the Internet has to be added
in the configuration of Firewall fw2 and the database access from the DMZ to LAN 1 and the
DNS access from LAN 1 to the Internet were forgotten in the diagram. Moreover, the configura-
tion of firewall fw4 allowed outbound SSH traffic from the backup network to the Internet which
is not neccessary according to the diagram and, therefore, removed.

3 RDF Graphs: Abstract Syntax of DSMLs

The Resource Description Framework (RDF), defined in [KC04], provides the fundamental, gen-
eric data structure for the Semantic Web. It is used to state facts about resources that are identified
by Uniform Resource Identifiers (URIs). The facts are given by subject–predicate–object triples,
where the predicate is given by a URI and the object may also be a literal value. A set of facts is
an RDF graph, where the subjects and objects are the nodes and the facts the edges of the graph,
labelled with the corresponding predicate (which may also appear as a node). The idea is that
everyone can publish such graphs to assert certain facts and these graphs can easily be joined to
collect information from heterogeneous sources.

In Figure 2, we show how such a graph is used to represent part of an IT landscape model.
The local net LAN 1 and the Internet are represented by URIs “mod:LAN1” and “mod:INet”,
respectively, where “mod:” is a suitable namespace, e. g., “http://models.example.com/”. The
names of the networks, which are shown as inscriptions in the concrete visual representation,
are given by literal values in the abstract syntax. The predicate “rdf:type” (abbreviated as “a”) is
used to connect nodes with their types. The types as well as the predicates are defined in another
namespace “itml:”, which, e. g., might be “http://schema.example.com/”. Technically, it would
be possible to use the same namespace for both, the language elements and the model instances,
but separation of namespaces eases the distributed handling of schemas and (multiple) models
by different groups of users. The connection between LAN 1 and the Internet is represented by a
blank node “1”. Blank nodes do not have a global identity and, hence, other graphs cannot state
additional facts about entities identified by blank nodes.

Concrete
Syntax LAN 1 Internet

Abstract
Syntax

itml:LAN itml:Connect itml:WAN

mod:LAN1 1 mod:INet

“LAN 1” “Internet”a =̂ rdf:type

a a a
itml:conn itml:conn

itml:name itml:name

Figure 2: RDF graph representing the abstract syntax of a DSML model

3 / 12 Volume 42 (2011)



Rule-Based Integration of DSMLs

In Figure 3, we show how the additional notation for protocols in the IT landscape language
and the textual firewall configuration language are represented in RDF. In the landscape DSML,
the arrows around the firewalls are represented by blank nodes with type “itml:Flow”, “itml:src”
and “itml:trg” predicates indicating the direction of the arrow and “itml:prot” predicates specify-
ing which protocols are allowed in this direction. The firewall configuration language uses blank
nodes of type “fwcl:Rule” for each line in a firewall configuration, where the direction is given
by “fwcl:from” and “fwcl:to” predicates and the corresponding port by a “fwcl:port” predicate.

ssh, dns

itml:FW

mod:FW3

1 2

3

“ssh” itml:Flow “dns”

a

itml:conn itml:conn

itml:src itml:trg

itml:prot a itml:prot

fw3.example.com
FROM if2 TO if1 PORT 22 ALLOW;
FROM if2 TO if1 PORT 53 ALLOW;

fwcl:FW

http://fw3.example.com/

“if2” “if1”

4 5

“22” fwcl:Rule “53”

a

fwcl:iffwcl:if

fwcl:from

fwcl:from fwcl:to

fwcl:to

fwcl:port a a fwcl:port

Figure 3: RDF representation of firewall configurations

We choose to base our framework on RDF graphs rather than classical graphs, typed, labelled
or attributed graphs for several reasons. They are designed to work well in distributed envir-
onments due to the use of URIs for identifying nodes and predicates. With literal values as just
another type of nodes they provide a lean formalisation for graphs with all kinds of attributations,
where other approaches need much heavier formal machinery. Last but not least, we want to be
able to interface with the rest of the Semantic Web in the long run.

Regarding the semantics of the used languages, we restrict ourselves to an implicit semantics
in this paper. In [Usc03], the fact that not all applications using Semantic Web data structures
necessarily also are “semantic” is discussed. And if they do, there are several levels of se-
mantics—from informal up to machine-processable. As far as we know, there is not much work
on formalising the kinds of semantics that are needed for heterogeneous modelling languages
in the context of the Semantic Web–from operational semantics for behavioural techniques to
denotational semantics for data type specifications. It is an interesting line of further research to
develop ways to represent the semantics of DSMLs in a way that is compatible with the idea of
the Semantic Web, i. e., interoperable over distributed, heterogeneous systems and ideally also
machine-processable.

Compared to the definition of languages by meta modelling, e. g., using the Meta Object Fa-
cility (MOF), defined in [Obj06], the approach chosen here is very light-weight. RDF graphs are
supposed to be defined in a distributed manner on the Semantic Web with the help of heterogen-
eous and extendable vocabularies. In contrast to that, MOF enforces that every model strictly
conforms to a meta model, which, therefore, has to anticipate all needs of the users. Thus, the
features of RDF ideally reflect the flexibility requirements of DSMLs.

Proc. MPM 2010 4 / 12



ECEASST

In [Obj09], proposals for a mapping from MOF to RDF are requested. Such a mapping would
allow the representation of MOF meta models and corresponding models as RDF graphs and,
hence, facilitate the application of the methods of our approach to MOF meta models and models.

4 Algebraic Graph Transformations for RDF

We use rule-based, algebraic graph transformations to describe all kinds of changes on RDF
graphs in a declarative way. A comprehensive overview over the theory of algebraic graph trans-
formation can be found in [EEPT06]. The adaption of this theory to RDF was proposed in
[BB08] and continued in [Bra09].

We choose algebraic graph transformation, since it allows to treat all kinds of transformations
from language definition by grammars via model migration to language integration with a single,
uniform formalism, which can be fully implemented. Being a formal technique, it also allows to
reason formally about the effects of transformations to show, e. g., that certain derived transform-
ation rules respect a given graph grammar or that transformations are independent of each other
and can, hence, be swapped without affecting the final result of the complete transformation
sequence.

Transformations are defined by transformation rules. An example of such a rule is shown in
Figure 4. This rule removes a connection between two networks, represented by variables x and
y and adds a new connection from network x to network z, where z is not allowed to be of type
itml:WAN and it is not allowed to introduce a self connection, i. e., to assign x and z to the same
net.

L

α y

x itml:Connect
z

itm
l:conn

itml:conn

a l

I

y

x itml:Connect

z

r

R

y
x itml:Connect

β z

itml:conn
itml:conn

a

c1

N1

α y

x itml:Connect

itml:WAN z

itm
l:conn

itml:conn

a

a

c2

N2

α y
x,z

itml:Connect

itml:conn itml:conn

a

α
{del}

y

x itml:Connect

β

{add}

z

itml:conn

{del}

itml:conn

{del}
a {del}

a {add}
itml:conn{add} itml:conn

{add}

NACs:
itml:WAN

z

a

x,z

retargetConnection
Formal Structure Compact Notation

Figure 4: Example transformation rule retargetConnection

The rule consists of several RDF patterns, which are graphs with additional variables, and RDF
pattern homomorphisms, which are structure preserving maps connecting the patterns, where the
homomorphisms l and r are injective, i. e., one-to-one (visualised by the hook at the tail of the

5 / 12 Volume 42 (2011)



Rule-Based Integration of DSMLs

arrows). The difference between the left-hand side L and the interface I are the elements of the
pattern that are supposed to be deleted and the difference between I and the right-hand side R
are the elements that are supposed to be added by the rule. Moreover, there is a set of negative
application conditions (NACs), which are extensions of L and specify situations in which the rule
is not applicable, where the NACs are in an implicit conjunction, i. e., all have to be satisfied and
none of the situations is allowed. In the lower right, we show a compact notation for the rule,
where irrelevant parts of the NACs are omitted and L, I and R are shown in a single diagram with
the additional elements of L marked by “{del}” and the additional elements of R by “{add}”.

In Figure 5, we show the application of the transformation rule from Figure 4 to an example
graph. The application is determined by a match homomorphism m from the left-hand side L
to the graph G. The application of the rule is then computed by two category theoretical con-
structions, namely a minimal pushout complement (MPOC) and a pushout (PO). (See [AHS09]
for an introduction to category theory.) Intuitively, a pushout is a disjoint union over a common
interface and used to add the additional blank nodes and facts of R to the context graph D. Con-
versely, a minimal pushout complement is used to derive the context graph D by deleting the
additional blank nodes and facts of L from G.

L

α y

x itml:Connect
z

itm
l:conn

itml:conn

a l

I

y

x itml:Connect

z

r

R

y
x itml:Connect

β z

itml:conn
itml:conn

a

m (MPOC) i (PO) n

G

itml:LAN

itml:Connect

itml:WAN

mod:Net1

“Net 1”

1

mod:Net2

mod:Net3

itml:LAN

f

D

itml:LAN

itml:Connect

itml:WAN

mod:Net1

“Net 1”

mod:Net2

mod:Net3

itml:LAN

g

H

itml:LAN

itml:Connect

itml:WAN

mod:Net1

“Net 1”

2
mod:Net2

mod:Net3

itml:LAN

Figure 5: Application of transformation rule retargetConnection

The use of rule-based graph transformations for modifying RDF graphs has several advant-
ages. An implementation of a transformation engine may be reused for a multitude of purposes,
where the search for matches and the transformation only have to be implemented once and for
all. Modifications are specified on an adequate level of abstraction and automatically respect a
given grammar if they are composed from it, which is also the main advantage of using gram-
mars for language definition instead of meta modelling. Moreover, a single, uniform formalism
can be used for language definition, syntax-directed editing and complex modifications. In the
following section, we show how algebraic graph transformation rules can be used to specify the
integration of several DSMLs on overlapping aspects.

Proc. MPM 2010 6 / 12



ECEASST

5 Integration of Languages

Since, the landscape language uses the names of protocols and the configuration language uses
port numbers, we need a mapping between them, before we can start our integration effort.
This mapping is given in Figure 6, where blank nodes with corresponding int:prot and int:port
predicates are used to represent this relation.

“http”

1

“80” “ssh”

2

“22” “dns”

3

“53” “db”

4

“5432”
int

:pr
ot int:port int

:pr
ot int:port int

:pr
ot int:port int

:pr
ot int:port

Figure 6: Mapping between protocols and ports

For integrating several DSMLs, we define some sets of RDF graph transformation rules.
First, the rules in Figure 7 are used to manually establish the connection between the firewalls

in the landscape model and the corresponding configuration language snippets and the connec-
tions in the landscape and the corresponding interfaces in the configurations. This has to be done
manually, since there is not enough information in the models to deduce these correspondences
automatically. It is a constructive choice.

itml:FW

x

fwcl:FW

y

a a

int:fw

{add}

NACs:
x zint:fw

z yint:fw

intFwToFw

x

c

y

i
itm

l:c
onn

fw
cl:

if

int:fw

int:if

{add}

NACs:
c jint:if

d i
int:if

intConnToIf

Figure 7: Manual integration rules

The rule in Figure 8 can be used to automatically add lines to the firewall configurations,
where there is an additional protocol that is allowed according to the landscape model. This rule
can be applied as long as possible, since we decide to consider the landscape model as superior
in these situations.

c d

α

itml:Flow p

m i j

β

{add}
fwcl:Ruleq

itml:src itm
l:trg

a

itml:prot

fwcl:from{add}
fwcl:to

{add}

a {add}fwcl:port

{add}

int:if int:if

in
t:p

ro
t int:port

NACs:
i j

β

fwcl:Ruleq

fwcl:from fwcl:to

afwcl:port

intFlowToRule

Figure 8: Automatic integration rule

7 / 12 Volume 42 (2011)



Rule-Based Integration of DSMLs

If there is a line in the firewall configurations that has no corresponding protocol in the land-
scape model then the rules in Figure 9 are used. These rules are supposed to be applied semi-
automatically. The matches can be found automatically, but in each case two of the rules are
applicable and the user has to decide which should be applied. Either the protocol is added to
the landscape model by one of the first two rules—intRuleToExFlow if there is already another
protocol in the same direction, intRuleToNonexFlow if the arrow also needs to be created—or
the line is deleted from the firewall configuration by the third rule intDelRule.

c d

α

itml:Flow p

m i j

β

fwcl:Ruleq

itml:src itm
l:trg

a

itml:prot{add}

fwcl:from fwcl:to

afwcl:port

int:if int:if

in
t:p

ro
t int:port

NACs:

α

p

itml:prot

intRuleToExFlow

c d

α
{add}

itml:Flow p

m i j

β

fwcl:Ruleq

itml:src{add}
itm

l:trg

{add}

{add} a

itml:prot{add}

fwcl:from fwcl:to

afwcl:port

int:if int:if

in
t:p

ro
t int:port

NACs:
c d

α

itml:Flow

itml:src itm
l:trg

a

intRuleToNonexFlow

c d

p

m i j

β

{del}
fwcl:Ruleq

fwcl:from{del}
fwcl:to

{del}

a {del}fwcl:port

{del}

int:if int:if

in
t:p

ro
t int:port

NACs:
c d

α

itml:Flow p

itml:src itm
l:trg

a

itml:prot

intDelRule

Figure 9: Semi-automatic integration rules

The distinction between manual, automatic and semi-automatic rules is not visible in the rules
themselves, since they are all of the same kind as defined in Section 4. Rather, the distinction
will be made in the metadata of the rules in a future implementation, where the difference lies
in the treatment of the matches. For the manual rules, the user is required to provide the match
for rule applications, where the implementation can guide her on the choice of matches that are
legal w. r. t. the application conditions. For the automatic and semi-automatic rules, the imple-
mentation is supposed to apply them on all possible matches, where the difference is that there
are several conflicting possibilities in the semi-automatic case, which have to be resolved by the
user.

Table 1 shows a comparison of this rule-based model integration with the process of manually
integrating models or documents. In any case, the search for inconsistencies is replaced by the

Proc. MPM 2010 8 / 12



ECEASST

automatic match-finding for the integration rules. For the deterministic cases that lead to the
automatic integration rules in Figure 8, the integration can be completely executed without user
intervention, while for the non-deterministic cases that lead to the semi-automatic integration
rules in Figure 9, the user still has to decide which of the two possibilities should be executed.
When trying to manually integrate models, the much more error-prone task of constructing in-
consistency eliminations is required, while these eliminations are given once and for all in the
rule-based approach. Thus, the integration by rule-based graph transformation leads not only to
less effort for the integration but also to quality gains by reducing missed inconsistencies and
inappropriate eliminations.

Table 1: Comparison of rule-based and manual integration

Rule-Based Integration Manual Integration

Deterministic 1. Automatic Match-Finding Find Inconsistencies
2. Automatic Elimination by Rules Eliminate Inconsistencies

1. Automatic Match-Finding Find Inconsistencies
Non-Deterministic 2. Alternatives Given by Rules Construct Alternatives

3. Decision on Alternatives

This methodology can also be used to integrate models from other modelling approaches that
have a translation to RDF. For example, once a MOF to RDF mapping, as requested in [Obj09]
and already mentioned at the end of Section 3, is provided, models of MOF-based languages
can be integrated with each other and with native languages in our framework. Moreover, RDF
graph transformation rules can also be used to completely translate models between languages,
which is, however, outside the scope of the present paper.

6 Related Work

In [AFR06], the authors evaluate several DSML tools, which were available at that time, w. r. t.
a catalog of criteria. One of those criteria is the integration with other languages. The tools that
fulfil this criterion achieve integration either by building on UML or by technological integration
via the Eclipse platform. It remains unclear how gaps between similar but slightly different
concepts and structures are bridged in these solutions. We believe that our approach of rule-
based linking and modification of the models is the right answer to this problem.

In fact, most integrated modelling language families, e. g., the domain-specific ITML family,
presented in [FHK+09], and the UML, specified in [Obj10], achieve language integration a priori
by defining the common aspects on which the different languages overlap. In contrast to that, our
approach allows an a posteriori integration of languages that were designed without knowledge
of each other.

There are several approaches to language integration based on the Triple Graph Grammar
(TGG) formalism. For example, TGGs are used on top of the meta modelling environment
AToM3 in [GL08], the MOSL language, presented in [AKR06], is the basis of the MOFLON
meta modelling framework and uses TGGs in connection with MOF, OCL and story diagrams,

9 / 12 Volume 42 (2011)



Rule-Based Integration of DSMLs

and language integration with TGGs is theoretically examined in [EEH08]. In TGGs, the con-
nections between two languages are described by three graphs, one for each of the languages and
a third one describing the connection by morphisms into the other two. This structure is sim-
ultaneously built up by a TGG, where translation rules in both directions and integration rules
can be derived from the TGG. While our approach requires to design integration and possibly
also translation rules manually, it also adds the flexibility to decide for the concrete case which
is the adequate way to integrate a certain situation. For example, for the language integration
of the present paper, it is a design decision that additional elements in the network diagram are
transferred to the firewall configurations automatically, while additional rules in the firewall con-
figurations require a user decision if they are to be added to the diagram or deleted from the
configuration. Such an effect would be cumbersome to achieve with TGGs if it is at all possible.
Moreover, the treatment of all models in the same graph structure—a giant global graph (cf.
[BL07])—seems to be more appropriate for the Semantic Web and relieves us from managing
multiple graphs.

In the context of the Semantic Web and knowledge management, the problem of mapping
different ontologies is related to our present work. See [CSH06] for a survey on different ap-
proaches to ontology mapping. Our approach to integration is complimentary to the problem
of ontology mapping, alignment and integration. While we take the relations between the het-
erogeneous DSMLs as given by a user of our framework and provide means for integrating
instances of the DSMLs, ontology mapping approaches try to find similarities between concepts
in heterogeneous ontologies (semi-)automatically, but usually do not provide means for complex
structural changes in the instance integration process as they are provided by our approach.

7 Summary and Future Work

In this paper, we have shown how graph transformation rules can be used to integrate domain-
specific models that overlap on certain aspects. We have used RDF graphs for the abstract syntax
of domain-specific models. Algebraic graph transformation provides a single formalism that can
be used not only for the manual, automatic and semi-automatic integration tasks shown in this
paper but also for specifying domain-specific modelling languages by graph grammars and for
providing complex modifications like refactorings.

The main contribution of this paper is to show how our combination of RDF and algebraic
graph transformation can be used for DSMLs and especially to integrate heterogeneous DSML
models. The main benefits are the relatively lean abstract syntax graphs in comparison to, e. g.,
MOF, the possibility to treat heterogeneous models in a single, distributed graph structure, which
is achieved by using RDF, and the use of the single formalism of algebraic graph transformation
for all kinds of tasks from language definition to integration. The limits are the need to bridge
the technological gap if models from other approaches need to be imported or accessed and, up
to now, the lack of an implementation of this framework.

Currently, we are implementing this graph transformation on top of an RDF triple store. This
leads to a transformation engine, which can be used as a model repository for families of domain-
specific modelling languages according to the concepts presented in this paper. A sketch of the
architecture and protocol of this transformation engine can be found in [BB10b].

Proc. MPM 2010 10 / 12



ECEASST

References

[AFR06] D. Amyot, H. Farah, J.-F. Roy. Evaluation of Development Tools for Domain-
Specific Modeling Languages. In Gotzhein and Reed (eds.), Proc. SAM 2006.
LNCS 4320, pp. 183–197. Springer, 2006.
doi:10.1007/11951148_12

[AHS09] J. Adámek, H. Herrlich, G. E. Strecker. Abstract and Concrete Categories: The Joy
of Cats. Dover, 2009.
http://katmat.math.uni-bremen.de/acc/

[AKR06] C. Amelunxen, A. Königs, T. Rotschke. MOSL: Composing a Visual Language for
a Metamodeling Framework. In Proc. VL/HCC 2006. Pp. 81–84. IEEE, 2006.
doi:10.1109/VLHCC.2006.33

[BB08] B. Braatz, C. Brandt. Graph Transformations for the Resource Description Frame-
work. In Ermel et al. (eds.), Proc. GT-VMT 2008. Electronic Communications of the
EASST 10. 2008.
http://journal.ub.tu-berlin.de/index.php/eceasst/article/view/158

[BB10a] B. Braatz, C. Brandt. Domain-Specific Modelling Languages with Algebraic Graph
Transformations on RDF. In Proc. SLE 2010. 2010.
http://planet-sl.org/sle-conference/index.php?option=com_content&task=view&id=
162&Itemid=228

[BB10b] B. Braatz, C. Brandt. How to Modify on the Semantic Web? A Web Application
Architecture for Algebraic Graph Transformations on RDF. In Proc. SWIM 2010.
2010.
http://mais.dia.uniroma3.it/SWIM2010/Accepted_Papers.html

[BL07] T. Berners-Lee. Giant Global Graph. Blog Post, Nov. 2007.
http://dig.csail.mit.edu/breadcrumbs/node/215

[Bra09] B. Braatz. Formal Modelling and Application of Graph Transformations in the Re-
source Description Framework. PhD thesis, Technische Universität Berlin, 2009.

[CSH06] N. Choi, I.-Y. Song, H. Han. A Survey on Ontology Mapping. ACM SIGMOD Record
35(3):34–41, Sept. 2006.
doi:10.1145/1168092.1168097

[EEH08] H. Ehrig, K. Ehrig, F. Hermann. From Model Transformation to Model Integra-
tion based on the Algebraic Approach to Triple Graph Grammars. Forschungs-
bericht 2008-03, Fakultät IV, Technische Universität Berlin, 2008.
http://www.eecs.tu-berlin.de/fileadmin/f4/TechReports/2008/2008-03.pdf

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer. Fundamentals of Algebraic Graph Trans-
formation. Monographs in Theoretical Computer Science. Springer, 2006.
doi:10.1007/3-540-31188-2

11 / 12 Volume 42 (2011)

http://dx.doi.org/10.1007/11951148_12
http://katmat.math.uni-bremen.de/acc/
http://dx.doi.org/10.1109/VLHCC.2006.33
http://journal.ub.tu-berlin.de/index.php/eceasst/article/view/158
http://planet-sl.org/sle-conference/index.php?option=com_content&task=view&id=162&Itemid=228
http://planet-sl.org/sle-conference/index.php?option=com_content&task=view&id=162&Itemid=228
http://mais.dia.uniroma3.it/SWIM2010/Accepted_Papers.html
http://dig.csail.mit.edu/breadcrumbs/node/215
http://dx.doi.org/10.1145/1168092.1168097
http://www.eecs.tu-berlin.de/fileadmin/f4/TechReports/2008/2008-03.pdf
http://dx.doi.org/10.1007/3-540-31188-2


Rule-Based Integration of DSMLs

[FHK+09] U. Frank, D. Heise, H. Kattenstroth, D. F. Ferguson, E. Hadar, M. G. Waschke.
ITML: A Domain-Specific Modeling Language for Supporting Business Driven IT
Management. In Rossi et al. (eds.), Proc. DSM 2009. HSE B-108. 2009.
http://www.dsmforum.org/events/DSM09/Papers/Heise.pdf

[GL08] E. Guerra, J. de Lara. Meta-Modelling and Graph Transformation for the Definition
of Multi-View Visual Languages. In Ferri (ed.), Visual Languages for Interactive
Computing: Definitions and Formalizations. Chapter IV, pp. 74–101. Information
Science Reference, 2008.
http://astreo.ii.uam.es/~jlara/MultipleViews.pdf

[KC04] G. Klyne, J. J. Carroll. Resource Description Framework (RDF): Concepts and Ab-
stract Syntax. World Wide Web Consortium (W3C), Feb. 2004.
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/

[Obj06] Object Management Group (OMG). Meta Object Facility (MOF) Core Specification.
Jan. 2006.
http://www.omg.org/spec/MOF/2.0/

[Obj09] Object Management Group (OMG). Request for Proposal. MOF to RDF Structural
Mapping in support of Linked Open Data. Dec. 2009.
http://www.omg.org/cgi-bin/doc?ad/2009-12-09

[Obj10] Object Management Group (OMG). OMG Unified Modeling Language (OMG
UML). May 2010.
http://www.omg.org/spec/UML/2.3/

[Usc03] M. Uschold. Where are the Semantics in the Semantic Web? AI Magazine 24(3):25–
36, Fall 2003.
http://www.aaai.org/ojs/index.php/aimagazine/article/view/1716

Proc. MPM 2010 12 / 12

http://www.dsmforum.org/events/DSM09/Papers/Heise.pdf
http://astreo.ii.uam.es/~jlara/MultipleViews.pdf
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.omg.org/spec/MOF/2.0/
http://www.omg.org/cgi-bin/doc?ad/2009-12-09
http://www.omg.org/spec/UML/2.3/
http://www.aaai.org/ojs/index.php/aimagazine/article/view/1716

	Introduction
	Running Example
	RDF Graphs: Abstract Syntax of DSMLs
	Algebraic Graph Transformations for RDF
	Integration of Languages
	Related Work
	Summary and Future Work

