
Electronic Communications of the EASST
Volume 44 (2011)

Proceedings of the
Workshop on OCL and Textual Modelling

(OCL 2011)

Dynamic Validation of OCL Constraints with mOdCL

Manuel Roldán and Francisco Durán

19 pages

Guest Editors: Jordi Cabot, Robert Clarisó, Martin Gogolla, Burkhart Wolff
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Dynamic Validation of OCL Constraints with mOdCL

Manuel Roldán1∗ and Francisco Durán2†

1 mrc@lcc.uma.es
2 duran@lcc.uma.es

Dpto. de Lenguajes y Ciencias de la Computación
Universidad de Málaga, España

Abstract: This paper presents mOdCL, a Maude based evaluator of OCL expres-
sions and validator of OCL constraints. Given its OCL expression evaluator, the
use of execution strategies allows mOdCL, not only validating invariant constraints
on concrete system states, but also dynamically validating invariants and pre- and
post-conditions on the successive states obtained during system execution.

Keywords: OCL, Dynamic validation, Maude

1 Introduction

The Object Constraint Language (OCL) [OCLa] is a textual formal language which provides
the necessary formal notation to complete the UML diagrams with precise and unambiguous
specifications. An important use of OCL is to complete class diagrams with the constraints to be
satisfied. Specifically, class invariants, and pre- and post-conditions on methods can be specified
on them.

The growing interest in OCL, mainly thanks to its use in Model-Driven Software Development
(MDSD), has motivated the development of a number of tools (see, e.g., the OCL Portal [OCLb]),
which allow different kinds of analysis as, for example, consistency checks to guarantee that the
OCL constraints are not contradictory, or validation of OCL constraints.

We can find OCL tools using very different approaches. For example, the validation envi-
ronment USE [GBR07], the Dresden toolkit [Thea] or OCLE [CPC+04] are based on Java, the
proof environment HOL-OCL [BW08] is implemented as a shallow embedding of OCL into the
Higher-Order Logic (HOL), the UMLtoCSP tool [CCR07] uses Constraints Logic Programming,
etc.

Some tools validate OCL constraints directly on UML models by representing class diagrams
in the supporting formalism and checking whether such constraints hold on given system states
(snapshots), which can be obtained, for example, from object diagrams or from states of a pro-
gram being executed [RG03]. Other tools are designed to dynamically validate OCL constraints
on the implementation of UML models, typically by codifying the constraints validation some-
how and injecting it into the implementation of the system.

We present the mOdCL validator, a tool which is able to both evaluate OCL expressions
on given object configurations and execute Maude prototypes of UML models, checking the

∗ This author was supported by Spanish Research Projects TIN2008-03107 and P07-TIC-03184.
† This author was supported by Spanish Research Projects TIN2008-03107 and P07-TIC-03184.

1 / 19 Volume 44 (2011)

mailto:mrc@lcc.uma.es
mailto:duran@lcc.uma.es

Dynamic Validation of OCL Constraints with mOdCL

satisfaction of their OCL constraints. Maude [CDE+02, CDE+07] is an executable formal
specification language based on rewriting logic, with a rich set of validation and verification
tools [CDE+07, CDH+07], increasingly used as support to the development of UML, MDA,
and OCL tools (see, e.g., [BM08, RRDV07, Theb]). Furthermore, Maude has demonstrated to
be a good environment for rapid prototyping, and also for application development (see, e.g.,
[CDE+07, Chapter 20]). Moreover, Maude has shown to be very good as a logical and semantic
framework in which different logics and formalisms can be expressed and executed [MM02].
For all this, we believe that Maude is a good candidate to express prototypes of UML models
to be used to dynamically validating the OCL constraints on them. Nevertheless, we do not
intend to describe here systematic transformations of UML diagrams into Maude (for that, see,
e.g., [Kna00, FT01, MB09]). We will describe however the Maude representations of class di-
agrams and object diagrams as used by mOdCL. Some of the tools that automatically generate
Maude modules representing UML, MOF or Ecore class and object diagrams are MOVA [Theb],
MOMENT [BCR], and e-Motions [RDV09].

Some OCL tools, as the Dresden toolkit, can perform dynamic validation, but they require a
complete implementation of the system to be validated. On the other hand, the tools that support
the validation of UML models without their complete implementation can only statically validate
given snapshots representing concrete system states. Our mOdCL validator improves the existing
validation tools because it allows the user to statically and dynamically validate UML models on
very high level prototypes. This way, some errors in the model or in the constraints definition
could be detected early, during the modeling phase.

We focus here on UML class diagrams. In UML class diagrams, we can provide invariant
constraints on specific classes, as well as pre- and post-conditions on methods. The invariants
of a class must be satisfied by all objects of such a class, and pre- and post-conditions in all the
executions of the methods they are associated to. However, these constraints are not required to
be satisfied in all states of the system, but only in those relevant states [WK03]. Invariants are
required to be satisfied when an operation terminates, but not during its execution. Similarly,
pre- and post-conditions must be satisfied, respectively, before and after the execution of the
operations they are associated to.

Thus, the dynamic validation of the constraints of a model has two key parts: the identification
of those states on which constraints must be satisfied, and the evaluation of the satisfaction of
the appropriate constraints. To deal with these issues, our proposed system mOdCL includes
two differentiated components: an OCL expression evaluator and a strategy that controls the
execution of the system and checks the appropriate OCL constraints on the appropriate states.

The mOdCL evaluator can evaluate OCL expressions on object configurations. It can be used
to statically validate constraints on object diagrams or to evaluate any other OCL expression on
them. It can be used as an independent component, and has in fact already been integrated into
the e-Motions tool [RDV09, RDV10], a tool for defining the behavior of visual languages.1

Our execution strategy, named metaOCLRewrite, works on a prototype of the user’s UML

1 The e-Motions tool is a Domain Specific Modeling Language (DSML) and graphical framework developed for
Eclipse that supports the specification, simulation, and formal analysis of real-time systems. It extends standard in-
place rules so that time and action statements can be included in the behavioral specifications of a DSL. The behavioral
models generated with e-Motions can be fully integrated in MDE processes. See http://atenea.lcc.uma.es/e-Motions
for additional details.

Proc. OCL 2011 2 / 19

http://atenea.lcc.uma.es/e-Motions

ECEASST

Figure 1: Class diagram for the cinema example.

model, specified as a rewriting theory in Maude. Exploiting the metalevel capabilities of Maude,
the strategy controls the execution of the rewrite rules specifying the behavior of the system and
checks the corresponding OCL constraints on the appropriate states.

We are aware that end users are interested in validating UML diagrams, not in the validation
process itself. In practice, mOdCL users do not need any knowledge on the internals of our vali-
dation tool, the evaluator and the strategy remains hidden to them. Furthermore, the integration
of the facilities proposed here into generic development environments is a goal for us. This is,
e.g., the case in the use of mOdCL in e-Motions, where an ATL transformation is used to get
mOdCL Maude configurations from Ecore object models, using mOdCL as a backend tool to
evaluate OCL expressions.

The paper is structured as follows. Section 2 introduces a running example, which will be
used in the rest of the paper to illustrate our approach. Section 3 serves as a brief introduction
to rewriting logic and Maude, with emphasis on its support for object-oriented systems, and
covering those features of Maude relevant to understanding the current paper. Section 4 discusses
how UML concepts must be represented in Maude to be used by the mOdCL validator. Section 5
then shows how to validate OCL constraints with mOdCL. Section 6 gives some details on the
implementation of the validator. Finally, Section 7 draws some conclusions and future work.

2 Our Running Example

Figure 1 shows a class diagram which models part of a very simple ticket sale system for cinemas,
to be used along the paper.

A Cinema has a name and offers a number of sessions, for which it sells tickets, managing
the payment through a single bank. A Session has a capacity, a ticket price, start-
ing/ending times (startTime/endTime), and the tickets sold to clients. A Client knows
some cinemas, pays with a debitCard and has access to the tickets he has bought. The asso-
ciation class Ticket represents a ticket bought by a client for a given session; each ticket has a
seat number. A Bank knows the accounts that support the debit cards, modeled as a qualified
association with the debitCard number as key. Each Account has a balance.

Three public methods have been considered: goCinema, in the Client class, allows a client
purchase a ticket for a given cinema, for a given time; buyTicket, in the Cinema class, allows

3 / 19 Volume 44 (2011)

Dynamic Validation of OCL Constraints with mOdCL

to buy one ticket for the session starting at a given time; and pay, in the Bank class, allows to
charge a given amount to the account associated to a given debitCard.

We impose the avoid-overlapping OCL invariant to the Client class, which states
that a client cannot buy two tickets for overlapping sessions, and the seats-in-session
invariant to the Session class, which states that the number of tickets sold for a session does
not exceed its capacity.

context Client inv avoid-overlapping :
ticket -> forAll(T1 | ticket -> forAll(T2 |

(T1 = T2)
or (T1.session.endTime < T2.session.startTime)
or (T2.session.endTime < T1.session.startTime)))

context Session inv seats-in-session :
capacity >= ticket -> size()

The buyTicket method assumes, as a pre-condition, that the cinema must offer a session
at the requested time and, as a post-condition, that the returned value is either null or a new
ticket, which is the only ticket added to the tickets of the requested session.

context Cinema::buyTicket(st:Integer, cl:Client): Ticket
pre: session->select(S | S.startTime = st)->size() = 1
post: (result = null) or

(session->select(S | S.startTime = st).ticket
-> includes(result)

and
((session->select(S | S.startTime = st).ticket->asSet()) -
(session->select(S | S.startTime = st).ticket@pre->asSet()))
-> size() = 1)

3 Rewriting Logic and Maude

Membership equational logic (MEL) [Mes98] is a Horn logic whose atomic sentences are equal-
ities t = t ′ and membership assertions of the form t : S, stating that a term t has sort S. Such a
logic extends order-sorted equational logic, and supports sorts, subsort relations, subsort poly-
morphic overloading of operators, and definition of partial functions with equationally defined
domains.

Rewriting logic (RL) [Mes92] is a logic of change that can naturally deal with state and with
highly nondeterministic concurrent computations. In RL, the state space of a distributed system
is specified as an algebraic data type in terms of an equational specification (Σ,E), where Σ is a
signature of sorts (types) and operations, and E is a set of equational axioms. The dynamics of
a system in RL is then specified by rewrite rules of the form t → t ′, where t and t ′ are Σ-terms.
This rewriting happens modulo the equations E, describing in fact local transitions [t]E → [t ′]E
These rules describe the local, concurrent transitions possible in the system, i.e. when a part of
the system state fits the pattern t (modulo the equations E) then it can change to a new local
state fitting pattern t ′. Notice the potential of this type of rewriting, and the very high level of

Proc. OCL 2011 4 / 19

ECEASST

abstraction at which systems may be specified, to perform, e.g., rewriting modulo associativity
or associativity-commutativity.

RL is parameterized by its underlying equational logic. In what follows, we will use the
syntax of Maude [CDE+02, CDE+07], a wide spectrum programming language directly based
on RL, with MEL as its underlying equational theory, to present rewrite theories. Thus, Maude
integrates an equational style of functional programming with RL computation.

Maude supports the modeling of object-based systems by providing sorts representing the es-
sential concepts of object (Object), message (Msg), and configuration (Configuration).
A configuration is a multiset of objects and messages (with the empty syntax, associative com-
mutative, union operator __) that represents a possible system state.

Although the user is free to define any syntax for objects and messages, several additional sorts
and operators are introduced as a common notation. Maude provides sorts Oid for object identi-
fiers, Cid for class identifiers, Attribute for attributes of objects, and AttributeSet for
multisets of attributes (with _,_ as union operator). Given a class C with attributes ai of types
Si, the objects of this class are then record-like structures of the form

< O :C | a1:v1, ..., an:vn >

where O is the identifier of the object, and vi are the current values of its attributes (with appropri-
ate types). See [CDE+07] for additional details on how object-oriented systems are represented
in Maude, including explanations on how to represent inheritance, syntax for object-oriented
modules, different forms of object communication, etc.

The following Maude definitions specify a class Account of bank accounts, with messages
withdraw and transfer to operate with such bank accounts. The Account class is defined
with a single attribute balance, of sort Int, representing the balance of an account. The
withdraw message has two parameters, namely the addressee of the message and the amount
of money to withdraw from the account. The transfer message will make the amount of
money specified as its third argument to be transferred from the account given as first argument
to the one given as second argument.

sort Account .
subsort Account < Cid .
op Account : -> Account .
op balance :_ : Int -> Attribute .
op withdraw : Oid Int -> Msg .
op transfer : Oid Oid Int -> Msg .

Rules debit and transfer below represent local transitions of the system that specify the
behavior of bank accounts upon the reception of such messages. E.g., if an Account object
receives a withdrawmessage and the amount of money to withdraw is smaller or equal than the
balance of the account receiving the message, then the message is ‘consumed’ and the balance of
the account is decremented by such an amount. Notice the synchronization of Account objects
in the transfer rule.

vars A B : Oid .
vars BalA BalB M : Int .

5 / 19 Volume 44 (2011)

Dynamic Validation of OCL Constraints with mOdCL

crl [debit] :
< A : Account | balance : BalA >
withdraw(A, M)
=> < A : Account | balance : BalA - M >
if BalA >= M .

crl [tranfer] :
< A : Account | balance : BalA >
< B : Account | balance : BalB >
transfer(A, B, M)
=> < A : Account | balance : BalA - M >

< B : Account | balance : BalB + M >
if BalA >= M .

Notice that, since the __ operator is declared associative, commutative, and with identity ele-
ment, we do not need to worry about the order in which objects and messages appear in the rules.
And since rules describe local transitions, we do not need to worry about the rest of the objects
and messages in the configuration either.

Well-formedness of objects may be automatically checked by Maude’s typing system. For
example, we can add declarations constraining Account objects:

sort AccountObject .
subsort AccountObject < Object .

var O : Oid .
var Bal : Int .

mb < O : Account | balance : Bal > : AccountObject .

Notice that with these declarations, an object < O : Account | > is a valid term of sort
Object, but since the membership cannot be applied on it, it is not of type AccountObject.

4 The mOdCL Representation of UML Class and Object Diagrams

Different parts of UML and OCL have already been represented in MEL and Maude by different
authors for different purposes, and following different approaches. For instance, in the Maude-
based modeling framework MOVA [Theb], both UML class and object diagrams are formalized
as MEL theories. We follow an approach similar to those used in metamodeling frameworks
such as MOMENT [BM08], Maudeling [RRDV07], and e-Motions [RDV09], where class dia-
grams are represented as Maude object-oriented modules, and system states as configurations of
objects. There are however differences on the representation of attributes, links and methods.
And since we also provide support for dynamic validation, our configurations will be of objects
and messages. We briefly describe in the following sections the representation of class diagrams
used illustrating it with our running example.

Proc. OCL 2011 6 / 19

ECEASST

4.1 OCL Basic Types and Expressions

OCL basic predefined types are directly mapped on predefined Maude sorts. Thus, the basic OCL
types Boolean, Integer, Real and String are, respectively, mapped into the Maude predefined sorts
Bool, Int, Float, and String. User-defined types are mapped on the Maude predefined
sort Oid. OCL predefined collection types are mapped into sorts Set, Bag, OrderedSet,
and Sequence. All these sorts are subsorts of OclType, which defines any predefined OCL
type.

OCL expressions are represented as terms in the OclExp sort, providing syntax for the OCL
operators. Thus, we can represent, e.g., the seats-in-session OCL invariant presented in
Section 2 as:

op seats-in-session : -> OclExp .
eq seats-in-session

= context Session inv : capacity >= ticket -> size() .

Notice that the syntax for OCL expressions in mOdCL is close to the syntax of OCL. However,
they are defined in equations, being declared as constants for later reference. And because of
Maude limitations to define the lexical level, spaces must be left around operators to break tokens.

Invariants, pre- and post-conditions are then specified by operators inv, pre and post, to
build the OclExp to be checked when the validation process requires to check invariants, pre-
or post-conditions of a given method, respectively.

op inv : -> OclExp .
ops pre post : OpName -> OclExp .

The inv operator defines (the conjunction of) the class invariants in the system. For our
example, given the above seats-in-session expression and the avoid-overlapping
expression,

op avoid-overlapping : -> OclExp .
eq avoid-overlapping

= context Client inv :
ticket -> forAll(T1 | ticket -> forAll(T2 |

(T1 = T2)
or (T1 . session . endTime < T2 . session . startTime)
or (T2 . session . endTime < T1 . session . startTime))))

the inv constant can be defined as:

eq inv = seats-in-session and avoid-overlapping .

The pre and post operators must be defined for each method. For example, for the method
buyTicket in our running example we have:

eq pre(buyTicket)
--- the number of sessions starting at the given time must be 1
= session -> select(S | S . startTime = startTime) -> size() = 1 .

7 / 19 Volume 44 (2011)

Dynamic Validation of OCL Constraints with mOdCL

eq post(buyTicket)
= (result = null)
or
(--- tickets of the session must include the result ticket
session -> select(S | S . startTime = startTime) . ticket
-> includes(result) .

and
--- the number of tickets increases in 1 unit
((session -> select(S | S . startTime = startTime) . ticket)

-> asSet() -
(session -> select(S | S . startTime = startTime)

. ticket @pre) -> asSet()) -> size() = 1) .

4.2 The mOdCL Representation of the System Structure

In this section, we show how to represent in mOdCL the elements of given UML class models,
providing the mapping of each element in the class diagram.

Classes are represented following the standard representation of classes in Maude (see Sec-
tion 3 and [CDE+07]). The Attribute sort provides the syntax for attributes and associations
in the objects, given by its name, of sort AttributeName, and its type, of sort OclType.

op _:_ : AttributeName OclType -> Attribute [ctor] .

The only difference with the standard way to represent classes in Maude is that attributes and
associations are represented as constants of the mOdCL sort AttributeName. Thus, for the
Cinema class in our running example we have:

sort Cinema .
subsort Cinema < Cid .
op Cinema : -> Cinema [ctor] .
ops name bank session : -> AttributeName [ctor] .

Associations with multiplicity 1 are represented as attributes of sort Oid, and associations with
multiplicity * as attributes of sort Set (for Oid sets). Constraints as ordered, unique, multiplic-
ities, etc. on the associations will adjust this rule appropriately; e.g., if the association is ordered,
a sequence will be used instead of a set.

An operation op(arg1:type1,. . .,argn:typen):type is represented as a constant op,
of sort OpName (of operation names), and constants arg1, . . . , argn, of sort Arg (of argu-
ments).

Thus, e.g., for the buyTicket operation we have declarations

op buyTicket : -> OpName [ctor] .
ops startTime aClient : -> Arg [ctor] .

4.3 The System Behavior

The behavior of a system is given by the behavior of the methods specified in its class diagrams,
which invoke one to another and perform actions, and may produce changes in the state of the

Proc. OCL 2011 8 / 19

ECEASST

system. We assume a single thread of execution and synchronous method invocation: when a
given method m1 invokes a method m2, the caller gets blocked until the completion of the in-
voked method. To manage the chaining of method invocations—an invoked method can invoke
another one (or recursively to itself)—the validator uses an execution stack in which the nec-
essary information is stored. A multithreaded execution would only require to handle multiple
stacks and to identify each method invocation with the corresponding thread.

The behavior of each method will be represented as a sequence of Maude rules, and to allow
the management of the stack and transparently gather the data implied in the validation of in-
variants, and pre- and post-conditions, these rules are assumed to follow a basic scheme which
requires the use of specific messages. The use of these messages allows us to detect and han-
dle the invocation and completion of a method (call and return messages) and, once an
invoked method has been completed, to reactivate the caller (with a resume message), which
was blocked after invoking the method. This is the only assumption, the modeler can implement
the rest of the prototype according to his preferences.

The Maude rules modeling a method may need to access some information related to its in-
vocation, as the object invoking the method or the actual parameters used in the invocation. We
assume that such information is stored in an object of class Context, representing the execution
context with the appropriate information for the running method, with the form

< ctx : Context | op : m, self : id, args : vars >

where ctx is the identifier of the object, m is the name of the active method, id is the identifier
of the current object, and vars is a set of variable name - value pairs corresponding to the ar-
guments of the method invocation and local variables. The validator infrastructure is responsible
for transparently creating and handling such objects, so that the modeler can make use of it in
the rules representing the behavior of methods when the value of an argument variable or a local
variable is required.

The scheme for method definitions is as follows. First, although Maude allows any syntax
for message declarations, we assume that messages are sent using the call operator. Thus,
when the user wants to send an m(args-list) message to an object O, a call(m, O,
args-list) term is placed in the configuration of objects and messages representing the sys-
tem state. This call message is transparently processed by the validator infrastructure, which
will create an object of class Context, with the name of the invoked method, the self object, and
the actual parameters. This object is the initial execution context to be used by the specification
of the method m.

When a call message is sent in a rule to invoke a given method m, the flow of control has
to be blocked until the execution of the requested method is completed. To this end, the blocked
rule waits for a resume(m, Result) message with the result of the invoked method.

Finally, the last rule of the implementation of a method m is assumed to send a message
return(result) with the result of such a method. This return message will be transpar-
ently handled by the validator infrastructure, which will send a resume message to unblock the
caller.

Basically, mOdCL uses the call operator to detect the invocation of a method, in which case
a context for such a method is created and the necessary information is added to the execution

9 / 19 Volume 44 (2011)

Dynamic Validation of OCL Constraints with mOdCL

stack. Upon the detection of a return operator, mOdCL replaces the current context with the
one at the top of the stack, and places a resume message to proceed with the execution. We
sketch the CALL and RETURN infrastructure rules that manage these messages. Since a CALL
rule is executed after a method invocation, and a RETURN rule is executed after a method com-
pletion, it can be used from the execution strategy to determine when to validate OCL constraints.

rl [CALL] :
call(op-nm, self, args-list)
stack(... contents of the stack ...)
=> < context : Context | ... > --- new execution context

stack(... new contents of the stack ...) .

rl [RETURN] :
return(R:OclType)
< context : Context | ... > --- old execution context
stack(< new-context : Context | ...>

... rest of the contents of the stack ...)
=> resume(op-nm, R:OclType)

< new-context : Context | ... > --- new execution context
stack(... new contents of the stack ...) .

As an example, we show below some of the Maude rules to represent the system behavior
in our running example. The goCinema method begins by sending a buyTicket message
to the cinema specified as argument for the given start time. Depending on whether there are
tickets available or not for that session, a Ticket object or a null will be returned. And then,
depending on the result of this message, the ticket would be paid. We illustrate the approach by
giving a few rules.

The GO-CINEMA-1 rule is the first rule to be executed for the goCinema method (see
Section 2). Upon the occurrence of a

call(goCinema, Self, (arg(cinema, Cn), arg(startTime, St))

the CALL rule above handles the stack as appropriate and puts in the configuration an object

< ctx : Context | op : goCinema, self : Self,
args : arg(cinema, Cn), arg(startTime, St))

This rule receives the execution context in the Context object and invokes the buyTicket
method on a given cinema, to get a ticket for the session.

rl [GO-CINEMA-1] :
< ctx : Context | op : goCinema, self : Self,

args : arg(cinema, Cn), arg(startTime, St))
< Self : Client | cinema : Set{C, LC}, Atts1 >
< C : Cinema | name : Cn, session : Set{S, LS}, Atts2 >
< S : Session | startTime : St, Atts3 >
=> < Self : Client | cinema : Set{C, LC}, Atts1 >

< C : Cinema | name : Cn, session : Set{S, LS}, Atts2 >
< S : Session | startTime : St, Atts3 >

Proc. OCL 2011 10 / 19

ECEASST

< ctx : Context | op : goCinema, self : Self,
args : arg(cinema, Cn), arg(startTime, St))

call(buyTicket, C, (arg(startTime, St), arg(client, Self))) .

The BUY-TICKET-1-NO-FREE-SEATS rule below models the first execution step in the
implementation of the buyTicket method. This rule is applied if there are no free seats in the
chosen session, in which case the method execution ends, returning a null ticket in a return
message.

crl [BUY-TICKET-1-NO-FREE-SEATS] :
< ctx : Context | op : buyTicket, self : Self,

args : arg(startTime, St), arg(client, Cl))
< Self : Cinema | session : Set{S, LS}, Atts1 >
< S : Session | startTime : St, ticket : TS, capacity : C, Atts2 >
=> < Self : Cinema | session : Set{S, LS}, Atts1 >

< S : Session | startTime : St, ticket : TS,
capacity : C, Atts2 >

< ctx : Context | op : buyTicket, self : Self,
args : arg(startTime, St), arg(client, Cl))

return(null)
if size(TS) >= C .

The GO-CINEMA-2-FAIL rule is the second rule in the implementation of the goCinema
method. The flow of control is blocked after calling the buyTicket method, and it is released
when the resume message, is received. Furthermore, as this rule ends the execution of the
goCinema method, it sends a return message with the result. In this case we do not use any
information of the execution context, and therefore, we do not use the Context object.

rl [GO-CINEMA-2-FAIL] :
resume(buyTicket, null)
=> return(false) .

5 Validation of OCL Constraints

The mOdCL evaluator is the component responsible for evaluating OCL expressions on config-
urations representing given system states. It provides the eval function, which specifies how
to interpret each valid OCL expression on a given Configuration representing the system
state.

op eval : OclExp Configuration -> OclType .

For example, given the following state configuration, of sort Configuration, corre-
sponding to a given object diagram for the Cinema model,

op state : -> Configuration .
eq state
= < c : Cinema | name : "Cnml", bank : b, session : Set{s1 ; s2} >

11 / 19 Volume 44 (2011)

Dynamic Validation of OCL Constraints with mOdCL

< s1 : Session | startTime : 1100, endTime : 1230,
ticket : Set{t2}, capacity : 40, price : 5 >

< s2 : Session | startTime : 1300, endTime : 1430,
ticket : Set{t1}, capacity : 20, price : 6 >

< j : Client | cinema : Set{c}, ticket : Set{t1}, debitCard : 4 >
< m : Client | cinema : Set{c}, ticket : Set{t2}, debitCard : 7 >
< b : Bank | debitCards : qas(4, a1) $$ qas(7, a2) >
< a1 : Account | balance : 100 >
< a2 : Account | balance : 1000 >
< t1 : Ticket | seat : 1, session : s2, client : j >
< t2 : Ticket | seat : 1, session : s1, client : m > .

we can use the eval function as follows to statically validate, e.g., the above OCL expression
seats-in-session:2

Maude> red in CINEMA : eval(seats-in-session, state) .
result: true

To dynamically validate an UML model, we must provide both the Maude representation of
the system behavior and the mOdCL representation of the OCL constraints. Given the module
CINEMA, which implements our model example, according to the scheme proposed in Sec-
tion 4.3, and defines state as an initial configuration, and given the CINEMA-CONSTRAINTS
module, which defines functions inv, pre and post, as in Section 4.1, we can use the mOdCL
validate command to validate the execution of the prototype of our system as follows:

Maude> (validate CINEMA with CINEMA-CONSTRAINTS from state .)

This way, the modeler can specify a Maude prototype as usual object-oriented modules, but
taking into account that the system structure for the model must be specified according to the
description in Section 4.2, and the rules which specify the system behavior must use the basic
scheme proposed in Section 4.3, concerning the invocation of methods.

If, as in this case, the system can be executed without violating any restriction, we get its
final configuration as result. Otherwise, the execution is aborted and an error message is given,
reporting on the the state and the constraint involved in such an error.

6 The mOdCL Validator Architecture

The mOdCL validator lays on two components, the OCL evaluator and the metaOCLRewrite
strategy. In the following sections we sketch the rationale of these components.

6.1 The mOdCL Evaluator

The evaluator component has been designed as a shallow embedding of OCL in Maude. For this
purpose, it provides OCL syntax to Maude and defines an eval operator to evaluate valid OCL

2 The Maude red (or reduce) command simplifies the given term using the equations in the specified module.

Proc. OCL 2011 12 / 19

ECEASST

expressions. This is completed with the library COLLECTION, which supports the implementa-
tion of the OCL Standard Library.

The evaluator pivots around the definition of sorts OclType, to represent any predefined
OCL type, and OclExp, to represent valid OCL expressions, and works on system states rep-
resented as object configurations (of sort Configuration), where the elements in the UML
class diagram have been represented as explained in Section 4.2.

As we mentioned in Section 4.1, predefined OCL types are directly mapped on predefined
Maude types, and furthermore, collection types are built by using the facilities provided by the
COLLECTION library. All these types are subsorts of OclType.

subsort Int Float String Bool Oid < BasicType .
subsort Set Bag OrderedSet Sequence < Collection .
subsort BasicType Collection < OclType .

The SYNTAX module provides definitions for all valid OCL expressions as terms of sort
OclExp, and the EVAL module provides equations to evaluate them. The evaluation of ex-
pressions in the context of pre- and post-conditions of operations requires two system states, one
representing the state before executing the operation and another representing the state after its
completion, whereas others expressions only require the current state. Thus, we provide two
eval functions:

op eval : OclExp Configuration Configuration -> OclType .
op eval : OclExp Configuration -> OclType .

Only to provide some intuition on the general scheme used, we show the syntactic definitions
in Maude for the includes operator on OCL collections:

op _-> includes(_) : OclExp OclExp -> Bool .

vars E1 E1 : OclExp .
var C : Configuration .

eq eval(E1 -> includes(E2), C) = eval(E1, C) in eval(E2, C) .

where the infix operator _in_ is provided by the COLLECTION library to determine if a given
element is contained in a given collection.

6.2 Implementation of the metaOCLRewrite Strategy

Maude provides key metalevel functionality for metaprogramming and for writing strategies to
control the execution of systems. In general, strategies are defined in extensions of the pre-
defined META-LEVEL module by using predefined functions in it as building blocks. The
META-LEVEL module also provides sorts Term and Module, so that the representations of
a term T and of a module M are, respectively, a term T of sort Term and a term M of sort
Module. Constants (resp. variables) are metarepresented as quoted identifiers that contain
the name of the constant (resp. variable) and its type separated by a dot (resp. colon), e.g.,

13 / 19 Volume 44 (2011)

Dynamic Validation of OCL Constraints with mOdCL

’true.Bool (resp. ’B:Bool). Then, a term is constructed in the usual way, by applying an
operator symbol to a comma-separated list of terms. For example, the term eval(S, true)
of sort OclExp is metarepresented as the term ’eval[’S:State, ’true.Bool] of sort
Term. In what follows, we will use the over-line notation to denote the metarepresentation of
modules and terms.

Of particular interest for our purposes are the META-LEVEL partial functions metaReduce
and metaXapply:3

op metaReduce : Module Term ˜> Term .
op metaXapply : Module Term Qid ˜> Term .

metaReduce takes a module M and a term T , and returns the metarepresentation of the normal
form of T in M, that is, the result of reducing T as much as possible using the equations in M.
metaXapply takes as arguments a module M, a term T , and a rule label L, and returns the
metarepresentation of the term resulting from applying the rule with label L in M on the term T
once.

Rewrite systems can be executed in Maude with commands rewrite and frewrite, which use
different built-in strategies to control the way to apply the rules on the current state. However,
since we want to validate OCL constraints, we need a different way to control the rule application
that allow to detect the system states to validate, and to check the required OCL constraints.
To this end, we define a metaOCLRewrite strategy (see Figure 2), which is responsible for
monitoring rule execution.

The metaOCLRewrite strategy executes the rules modeling the system until a reached term,
representing a system state, cannot be further rewritten, or violates given constraints. In each
execution step, the strategy tries to apply all rules in the module. Once a rule can be applied,
and the corresponding constraints are satisfied, the resulting term becomes the current term and
it starts again. Otherwise, an error message is generated.

To try all the possible rules in some given order, the REW-OCL module in Figure 2 has an
ITERATOR theory as parameter. This theory defines a sort Iterator, which comes with a
function iterator that returns an iterator on the labels of a module, and functions that allow
us to iterate on them: hasNext, which determines whether there are remaining labels in the
structure; next, which returns the iterator with the next label set to be the current one; and
getLabel, which return the current label in the sequence.

The metaOCLRewrite operator uses the inv function to get the class invariants. After
using the eval function to check them on the initial state, it calls the metaOCLRewriteAux
auxiliary function to execute and validate the system according to the constraints defined.

The metaOCLRewriteAux uses the iterator to get a candidate rule. If it is not possible (not
hasNext(C)), the execution stops. Otherwise, it gets a rule label and it uses the predefined
metaXapply function to execute the rule. If it can be applied (notice the T’ :: Term to
check that the result is of a valid sort), the system state is validated; otherwise, it gets an error
term in T’, and it resumes the execution to try the next rule.

As we explained in Section 4.3, the mOdCL evaluator uses an execution stack to manage
method invocations. Basically, it executes a CALL rule after a method invocation and a RETURN
3 We have simplified the form of these functions for presentation purposes, since we do not need here their complete
functionality. See [CDE+07] for their actual descriptions.

Proc. OCL 2011 14 / 19

ECEASST

mod REW-OCL{X :: ITERATOR} is
inc META-LEVEL .
op error : String -> Msg .
op metaOCLRewrite : Module Term ˜> Term .
op metaOCLRewriteAux : Module Term X$Iterator ˜> Term .
op checkCall : Module Term ˜> Term .
op checkReturn : Module Term Term ˜> Term .

var M : Module . vars T T’ I P Q opN : Term .
var C : X$Iterator . var L : Qid .

ceq metaOCLRewrite(M, T) = metaOCLRewriteAux(M, T, iterator(M))
if I := metaReduce(M, ’inv.OclExp)
/\ metaReduce(M, ’eval[I, T]) = ’true.Bool .

ceq metaOCLRewriteAux(M, T, C) = T if not hasNext(C) .
ceq metaOCLRewriteAux(M, T, C)
= if T’ :: Term
then (if L == ’CALL

then checkCall(M, T’)
else (if L == ’RETURN

then checkReturn(M, T, T’)
else metaOCLRewriteAux(M, T’, iterator(M))
fi)

fi)
else metaOCLRewriteAux(M, T, next(C))
fi

if L := getLabel(C) /\ T’ := metaXapply(M, T, L)
[owise] .

ceq checkCall(M, T)
= if metaReduce(M, ’eval[P, T]) == ’true.Bool
then metaOCLRewriteAux(M, T, iterator(M))
else ’error[’"Precondition failed"]
fi

if opN := metaReduce(M, ’getOpName[T])
/\ P := metaReduce(M, ’pre[opN]) .

ceq checkReturn(M, T, T’)
= if metaReduce(M, ’eval[Q, T]) == ’true.Bool
then (if metaReduce(M, ’eval[I, T]) == ’true.Bool

then metaOCLRewriteAux(M, T’, iterator(M))
else ’error[’"Invariant failed"]
fi)

else ’error[’"Postcondition failed"]
fi

if opN := metaReduce(M, ’getOpName[T])
/\ Q := metaReduce(M, ’post[opN])
/\ I := metaReduce(M, ’inv.OclExp) .

endm

Figure 2: The REW-OCL module.

15 / 19 Volume 44 (2011)

Dynamic Validation of OCL Constraints with mOdCL

rule on its completion. They are infrastructure rules, hidden to the user, but we make use of
them in the metaOCLRewriteAux operation to detect a method invocation (when the label
of the executed rule is ’CALL) or a method completion (when it is ’RETURN). In these cases,
the suitable validation is performed by using the checkCall or checkReturn operators,
respectively.

Now, we can validate the dynamics of our example. Assuming a REW-OCL module which
defines the metaOCLRewrite execution strategy, and given the module CINEMA, which im-
plements our model example and defines state as an initial configuration, and given the mod-
ule CINEMA-CONSTRAINTS, which defines functions inv, pre and post as above, we can
create the CINEMA-TEST module as follows:

mod CINEMA-TEST is
inc REW-OCL{IteratorSeq} + CINEMA + CINEMA-CONSTRAINTS .

endm

And we can execute the system from its initial configuration as follows:

Maude> red metaOCLRewrite(CINEMA-TEST, state) .

This is in fact the computation that takes place when using the validate command, which
hides all references to meta-representations, stategies, etc., which are kept hidden to the user.

7 Conclusions and future work

We have presented the mOdCL system, which can both evaluate OCL expressions on given sys-
tem configurations and validate OCL constraints on the execution of Maude system prototypes.

Our validator lays on both an OCL expression evaluator and an execution strategy, which
is responsible for controlling when and how to validate each OCL constraint. The user only
has to specify the system behavior and the constraints to fulfill. The strategy is independent of
the system to validate, and this level of modularity allows us to extend the strategy if we are
interested on experimenting with new validation approaches.

We provide guidelines to represent UML class and object diagrams in mOdCL. Furthermore,
we provide a basic scheme to represent the method related concepts. The system behavior repre-
sentation must comply with the scheme proposed, but we do not impose any further restriction:
the user can complete the system according to his preferences.

We are currently working on the automatic generation of mOdCL representations from UML
class and object diagrams, and on the use of UML behavior diagrams to (semi-)automate the
Maude representation of the system behavior. Different authors have previously explored such
a approach for different purposes. First steps on the use of sequence diagrams to systematically
obtain skeletons for the system behavior representation, which can be later completed by the
modeler, have already been taken.

Given the specification of a system with its OCL constraints, many possibilities are opened
using Maude formal environment: theorem proving, model checking, reachability analysis, etc.
We are also exploring other uses of the approach, taking advantage of the Maude system and
tools around it. E.g., the possibility of using our validator in conjunction with the reachability
tools of Maude to automatically generate test case violating the OCL constraints.

Proc. OCL 2011 16 / 19

ECEASST

Bibliography

[BCR] A. Boronat, J. A. Carsı́, I. Ramos. Algebraic Specification of a Model Transfor-
mation Engine. In Baresi and Heckel (eds.), Fundamental Approaches to Software
Engineering, FASE 2006, Vienna. Proceedings. LNCS 3922, pp. 262–277. Springer.
http://dx.doi.org/10.1007/11693017 20

[BM08] A. Boronat, J. Meseguer. An Algebraic Semantics for MOF. Pp. 377–391 in [FI08].
http://dx.doi.org/10.1007/978-3-540-78743-3 28

[BW08] A. D. Brucker, B. Wolff. HOL-OCL: A Formal Proof Environment for UML/OCL.
Pp. 97–100 in [FI08].
http://dx.doi.org/10.1007/978-3-540-78743-3 8

[CCR07] J. Cabot, R. Clarisó, D. Riera. UMLtoCSP: A Tool for the Formal Verification of
UML/OCL Models Using Constraint Programming. In Stirewalt et al. (eds.), Pro-
ceedings of the Twenty-Second IEEE/ACM International Conference on Automated
Software Engineering, ASE ’07. Pp. 547–548. ACM, 2007.
http://doi.acm.org/10.1145/1321631.1321737

[CDE+02] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, J. F. Quesada.
Maude: Specification and Programming in Rewriting Logic. Theoretical Computer
Science 285(2):187–243, 2002.
http://dx.doi.org/10.1016/S0304-3975(01)00359-0

[CDE+07] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, C. L. Talcott
(eds.). All About Maude - A High-Performance Logical Framework, How to Specify,
Program and Verify Systems in Rewriting Logic. LNCS 4350. Springer, 2007.
http://dx.doi.org/http://dx.doi.org/10.1007/978-3-540-71999-1

[CDH+07] M. Clavel, F. Durán, J. Hendrix, S. Lucas, J. Meseguer, P. C. Ölveczky. The Maude
Formal Tool Environment. In Mossakowski et al. (eds.), Algebra and Coalgebra in
Computer Science, Second International Conference, CALCO 2007, Bergen, Nor-
way, August 20-24, 2007. LNCS 4624, pp. 173–178. Springer, 2007.
http://dx.doi.org/10.1007/978-3-540-73859-6 12

[CPC+04] D. Chiorean, M. Pasca, A. Cârcu, C. Botiza, S. Moldovan. Ensuring UML Models
Consistency Using the OCL Environment. ENTCS 102:99–110, 2004.
http://dx.doi.org/10.1016/j.entcs.2003.09.005

[FI08] J. L. Fiadeiro, P. Inverardi (eds.). Fundamental Approaches to Software Engineering,
11th International Conference, FASE 2008, Budapest. Proceedings. LNCS 4961.
Springer, 2008.

[FT01] J. L. Fernández-Alemán, A. Toval-Álvarez. Seamless Formalizing the UML Seman-
tics through Metamodels. In Unified Modeling Language: Systems Analysis, Design
and Development Issues. Pp. 224–248. 2001.
http://portal.acm.org/citation.cfm?id=374280.374359

17 / 19 Volume 44 (2011)

http://dx.doi.org/10.1007/11693017_20
http://dx.doi.org/10.1007/978-3-540-78743-3_28
http://dx.doi.org/10.1007/978-3-540-78743-3_8
http://doi.acm.org/10.1145/1321631.1321737
http://dx.doi.org/10.1016/S0304-3975(01)00359-0
http://dx.doi.org/http://dx.doi.org/10.1007/978-3-540-71999-1
http://dx.doi.org/10.1007/978-3-540-73859-6_12
http://dx.doi.org/10.1016/j.entcs.2003.09.005
http://portal.acm.org/citation.cfm?id=374280.374359

Dynamic Validation of OCL Constraints with mOdCL

[GBR07] M. Gogolla, F. Büttner, M. Richters. USE: A UML-based Specification Environment
for Validating UML and OCL. Science of Computer Programming 69(1-3):27–34,
2007.
http://dx.doi.org/10.1016/j.scico.2007.01.013

[Kna00] A. Knapp. Generating Rewrite Theories from UML Collaborations. In Futatsugi
et al. (eds.), CAFE: An Industrial-Strength Algebraic Formal Method. Pp. 97–120.
Elsevier, 2000.

[MB09] F. Mokhati, M. Badri. Generating Maude Specifications From UML Use Case Dia-
grams. Journal of Object Technology 8(2):319–136, 2009.
http://dx.doi.org/10.5381/jot.2009.8.2.a2

[Mes92] J. Meseguer. Conditional Rewriting Logic as a Unified Model of Concurrency. The-
oretical Computer Science 96:73–155, 1992.
http://dx.doi.org/10.1016/0304-3975(92)90182-F

[Mes98] J. Meseguer. Membership Algebra as a Logical Framework for Equational Specifi-
cation. In Parisi-Presicce (ed.), Recent Trends in Algebraic Development Techniques.
LNCS 1376, pp. 18–61. Springer, 1998.
http://dx.doi.org/10.1007/3-540-64299-4 26

[MM02] N. Martı́-Oliet, J. Meseguer. Rewriting Logic as a Logical and Semantic Framework.
In Gabbay and Guenthner (eds.). Volume 9, pp. 1–87. Kluwer Academic Publishers,
second edition, 2002.

[OCLa] Object Management Group. Object Constraint Language (OCL) Specification .
http://www.omg.org/cgi-bin/doc?formal/2010-02-01

[OCLb] OCL Portal. http://st.inf.tu-dresden.de/oclportal/.

[RDV09] J. E. Rivera, F. Duran, A. Vallecillo. A Graphical Approach for Modeling Time-
Dependent Behavior of DSLs. In Proceedings of the 2009 IEEE Symposium on Vi-
sual Languages and Human-Centric Computing (VL/HCC). VLHCC ’09, pp. 51–55.
IEEE Computer Society, Washington, DC, USA, 2009.
http://dx.doi.org/10.1109/VLHCC.2009.5295300

[RDV10] J. E. Rivera, F. Durán, A. Vallecillo. On the Behavioral Semantics of Real-Time
Domain Specific Visual Languages. In lveczky (ed.), WRLA. Rewriting Logic and
Its Applications. LNCS 6381, pp. 174–190. Springer, 2010.
http://dx.doi.org/10.1007/978-3-642-16310-4 12

[RG03] M. Richters, M. Gogolla. Aspect-Oriented Monitoring of UML and OCL Con-
straints. In In AOSD Modeling With UML Workshop, 6th International Conference
on the Unified Modeling Language. 2003.

Proc. OCL 2011 18 / 19

http://dx.doi.org/10.1016/j.scico.2007.01.013
http://dx.doi.org/10.5381/jot.2009.8.2.a2
http://dx.doi.org/10.1016/0304-3975(92)90182-F
http://dx.doi.org/10.1007/3-540-64299-4_26
http://www.omg.org/cgi-bin/doc?formal/2010-02-01
http://st.inf.tu-dresden.de/oclportal/
http://dx.doi.org/10.1109/VLHCC.2009.5295300
http://dx.doi.org/10.1007/978-3-642-16310-4_12

ECEASST

[RRDV07] J. R. Romero, J. E. Rivera, F. Durán, A. Vallecillo. Formal and Tool Support for
Model Driven Engineering with Maude. Journal of Object Technology 6(9):187–
207, 2007.
http://dx.doi.org/10.5381/jot.2007.6.9.a10

[Thea] The Dresden OCL Team. The Dresden OCL toolkit. Available at http://dresden-ocl.
sourceforge.net/.

[Theb] The MOVA Group. The MOVA tool: a validation tool for UML. Available at http:
//maude.sip.ucm.es/mova/.

[WK03] J. B. Warmer, A. Kleepe. The Object Constraint Language. Addison Wesley, 2003.

19 / 19 Volume 44 (2011)

http://dx.doi.org/10.5381/jot.2007.6.9.a10
http://dresden-ocl.sourceforge.net/
http://dresden-ocl.sourceforge.net/
http://maude.sip.ucm.es/mova/
http://maude.sip.ucm.es/mova/

	Introduction
	Our Running Example
	Rewriting Logic and Maude
	The mOdCL Representation of UML Class and Object Diagrams
	OCL Basic Types and Expressions
	The mOdCL Representation of the System Structure
	The System Behavior

	Validation of OCL Constraints
	The mOdCL Validator Architecture
	The mOdCL Evaluator
	Implementation of the metaOCLRewrite Strategy

	Conclusions and future work

