
Electronic Communications of the EASST
Volume 40 (2011)

Proceedings of the
4th International Workshop on Petri Nets and Graph

Transformation
(PNGT 2010)

RONs Revisited: General Approach to Model Reconfigurable Object
Nets based on Algebraic High-Level Nets

Claudia Ermel, Sarkaft Shareef and Winzent Fischer

19 pages

Guest Editors: Claudia Ermel, Kathrin Hoffmann
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

RONs Revisited: General Approach to Model Reconfigurable
Object Nets based on Algebraic High-Level Nets

Claudia Ermel, Sarkaft Shareef and Winzent Fischer

Institut für Softwaretechnik und Theoretische Informatik
Technische Universität Berlin, Germany

winzent.fischer@berlin.de, sarkaft@cs.tu-berlin.de, claudia.ermel@tu-berlin.de

Abstract: Reconfigurable Object Nets (RONs) have been implemented in our
group to support the visual specification of controlled rule-based transformations
of marked place/transition (P/T) nets. RONs are high-level nets (system nets) with
two types of tokens: object nets (P/T nets) and net transformation rules. System net
transitions can be of different types to fire object net transitions, move object nets
through the system net, or to apply a net transformation rule to an object net. The
disadvantage of the RON approach and tool is the limitation of object nets to P/T
nets and the limitation of the underlying semantics of RONs due to the fixed types
for system net transitions. Often, a more general approach is preferred where the
type of object nets and the behavior of reconfigurations may be defined in a more
flexible way. In this paper, we propose to use Algebraic High-Level nets with in-
dividual tokens (AHLI nets) as system nets. In this more general approach, tokens
may be any type of Petri nets, defined by the corresponding algebraic signature and
algebra. To support this general approach, a development environment for AHLI
nets is currently implemented which allows the user to edit and simulate AHLI nets.
We present the formalization of RONs as special AHLI nets and describe the current
state of the AHLI net tool environment.

Keywords: algebraic high-level net, reconfigurable Petri net, graph transformation,
tool environment, RON

1 Introduction

Reconfigurable systems may be reconfigured at run-time to adapt to a changing environment.
Application areas cover e.g. computer-supported cooperative work, multi-agent systems, dy-
namic process mining or mobile networks. One approach to combine formal modeling of dy-
namic systems and controlled model reconfiguration are reconfigurable Petri nets. The main idea
is the stepwise development of place/transition nets by applying net transformation rules [EHP+08,
PEHP08]. Think of these rules as replacement systems where the left-hand side is replaced by
the right-hand side while preserving a context. This approach is more expressive than immutable
Petri nets since it allows in addition to the well known token game a formal description and
analysis of structural changes of nets.

Recently, the RON tool [RON11, BEHM07] (Reconfigurable Object Nets), has been devel-
oped to model, simulate and analyze reconfigurable Petri nets. Simulating a RON, not only P/T

1 / 19 Volume 40 (2011)

mailto:winzent.fischer@berlin.de, \ sarkaft@cs.tu-berlin.de, \ claudia.ermel@tu-berlin.de


RONs Revisited: General Approach to Model Reconfigurable Object Nets

net transitions can be fired but also the net structure can be changed with respect to some new
requirements of the environment by applying net transformation rules. In order to control the
firing and reconfiguration of P/T nets, a high-level net (system net) is defined, where P/T nets
(object nets) and P/T net transformation rules are used as tokens. A special type of system net
transition applies a transformation rule to object nets on its pre-domain places and puts the re-
sulting object net after the net transformation step to the system net places in its post-domain.
Reconfiguration steps and object net firing steps may be interleaved. With the RON tool, it can
be analyzed whether firing steps and rule applications are in conflict.

The disadvantage of the RON approach and tool is the limitation of object nets to P/T nets
and the limitation of the underlying semantics of RONs due to four fixed types of system net
transitions. Often, a more general approach is preferred where the type of object nets and the
behavior of reconfigurations can be defined in a more flexible way.

In our approach, we propose to use Algebraic High-Level nets with individual tokens (AHLI
nets) as system nets which in turn use tokens containing flexible data. In this way, different kinds
of objects used as tokens in the system net can be defined by suitable algebraic signatures and
algebras, e.g. for simple datatypes, different kinds of Petri nets, and net transformation rules.
Even AHLI nets themselves might be used as object nets which leads to a hierarchical nesting
of nets using nets as tokens, and allows us to model reconfigurable high-level nets [BEE+09].
In a previous paper [HME05], a signature for so-called algebraic higher-order nets was defined
with the aim to define AHL nets with nets and rules as tokens. This approach was based on
classical P/T nets, where rules could not be defined that were able to change markings since
rules had to be strict on the marking. This was one motivation for us to use the definitions
of AHL nets and P/T nets with individual tokens (AHLI nets and PTI nets), where marking-
changing rules can be formulated as well. As main contribution of this paper, we formalize the
behavior of RONs by defining a special kind of AHLI nets with a signature for P/T nets and P/T
net transformation rules. Furthermore, we sketch a tool for AHLI nets that allows the user to
define algebraic signatures and algebras, to model AHLI nets in a visual editor and to simulate
their firing behavior.

The paper is structured as follows: Section 2 reviews the RON tool and sketches its limitations.
In Section 3, we formalize RONs by defining datatypes for P/T nets and P/T net transformation
rules which are used as tokens in our special kind of AHLI nets, called AHOI nets (Algebraic
Higher-Order nets with Individual tokens). Section 3.2 presents the current state of the AHLI net
tool. In Section 6, we conclude the paper and give directions for future work.

2 The RON Tool Environment for Reconfigurable Object Nets

The RON-tool [RON11, BEHM07] is a visual modeling environment supporting modelers to
edit, simulate and analyze reconfigurable P/T nets. The RON-tool has been used to model case
studies where subnets show a flexible behavior which cannot be foreseen from the beginning. Ex-
amples are a distributed producer-consumer system, where disjoint producer and consumer nets
can be connected at run-time to model trading and can be separated again after their deals have
been finished [BM08] (see Figure 1), and an emergency scenario, where a leaking gas pipeline
is fixed by fire workers, and their workflows have to be adapted to changes in the environment

Proc. PNGT 2010 2 / 19



ECEASST

(making e.g. evacuations necessary) [Tro09].
RONs are high-level nets (system nets) with two types of places, i.e. Object net places which

carry object nets as tokens, and Rule places which are marked by net transformation rules. Sys-
tem net transitions can be of type FIRE, STANDARD, SPLIT or APPLYRULE. Firing of system net
transitions thus either trigger the firing of an object net transition (type FIRE), or transport object
net tokens through the system net (type STANDARD), or apply a net transformation rule to an
object net (type APPLYRULE), or separate a single object net into its unconnected components
(type SPLIT).

A visual editor and simulator for RONs has been developed as a plug-in for ECLIPSE us-
ing the ECLIPSE Modeling Framework (EMF) and Graphical Editor Framework (GEF) plug-ins
[BEHM07]. A screenshot of the RON tool is shown in Figure 1.

Figure 1: The RON environment for P/T Net Reconfiguration

Two object nets can be seen in the upper view, a net reconfiguration rule in the center, and the
system net at the bottom, where the current object net names are written inside their correspond-

3 / 19 Volume 40 (2011)



RONs Revisited: General Approach to Model Reconfigurable Object Nets

ing object net places Producers and Consumers, and the reconfiguration rule merge is a token on
the rule place MergeRules.

In our example, RONs are applied to model a distributed system of producers and consumers
where several producers and consumers may interact with each other. In the initial state of the
sample RON in Figure 1 potential producers and consumers are distributed on different Object
net places as independent object nets without interaction. Producer object nets may fire, e.g. they
can produce items and place them on the buffer place. Firing in object nets is triggered by firing a
system net transition of type FIRE, which takes one object net with marking M from the Net place
in its pre-domain and puts the same object net, now marked by one of the possible successor
markings of M, into all of its post-domain places.

For producer-consumer interaction, a producer object net can be merged with a consumer
object net by firing the APPLYRULE system transition connect. A transition of this type takes an
object net from each of the pre-domain Net places, a rule from the pre-domain Rule place, applies
this rule to the disjoint union of all the taken object nets and puts the resulting net to all post-
domain Net places. The rule merge, depicted in the center of Figure 1, glues a producer object
net and a consumer object net by inserting a connect transition between both buffers. Note that
the system transition connect controls which producer interacts with which consumer.

By firing the FIRE transition deal, in the glued object net the consumer now can consume
items produced by the producer as long as there are tokens on the place Prod-Buffer. Moreover,
the producer may also produce more items and put them to the buffer. After the deal has been
finished, the nets are separated again by firing the APPLYRULE system transition disconnect. This
applies a rule separate (which is the inverse rule of rule merge in Figure 1 whith LHS and RHS
exchanged) to the glued net, thus deleting the connect transition from the net. Note that the
resulting net, which is put on place Prod/Cons, is still one single object net which consists of
two unconnected components. In order to split a net with two components into two object nets,
a system transition of type SPLIT is used. Firing the SPLIT system transition finishMeeting results
in two separate object nets on place ProdAndCons. In a last step, the now separated producer
and consumer nets are returned to their initial places by firing the STANDARD system transitions
ProdLeaves and ConsLeaves. STANDARD transitions simply remove a net token from each pre-
domain place and add the disjoint union of all removed object nets to each of the post-domain
Net places. In our example, the STANDARD transitions may also put the object nets back to the
“wrong” initial place. It is possible to avoid such behaviour by using APPLYRULE transitions
instead where rules check the object nets for the occurrence of a producer or consumer place,
respectively.

Up to now, the RON tool is limited to P/T nets as object nets and to the four fixed types of
system net transitions FIRE, STANDARD, SPLIT or APPLYRULE. The aim of this paper is to come
up with a more general approach and tool where the type of token objects and the behavior of
reconfigurations can be defined in a more flexible way.

3 Algebraic High-Level Nets with Individual Tokens

As formal basis of our more general approach to define RONs, we rely on AHLI nets (Algebraic
High-Level nets with Individual tokens), which we define in Section 3.1. The current state of our

Proc. PNGT 2010 4 / 19



ECEASST

AHLI net tool, an ECLIPSE plug-in, is sketched in Section 3.2.

3.1 Algebraic High-Level Nets with Individual Tokens (AHLI Nets)

AHLI nets [MGE+10] are a new formal definition of Algebraic High-Level (AHL) nets [PER95],
where in addition to classical AHL nets [PER95], tokens are defined as individual objects. The
overall motivation for this is a closer relationship to graph transformation systems, with the aim
to translate Petri net firing behavior and net reconfigurations to graph transformation rules for
simulation and analysis. In [MEE11], it has been shown already that for P/T nets with individual
tokens, a category can be defined in a way that a suitable functor maps P/T net transformation
systems to graph transformation systems with equivalent behavior. It remains to show similar
properties also for the category of AHLI nets.

In this section, we review the basic definitions for AHLI nets from[MGE+10].

Definition 1 (Algebraic High-Level Nets with Individual Tokens) We define a marked AHL net
with individual tokens, short AHLI net, as AN = (Σ,P,T, pre, post,cond, type,A, I,m), where

• AN = (Σ,P,T, pre, post,cond, type,A) is a classical AHL net with

– signature Σ = (S,OP,X) of sorts S, operation symbols OP and variables X = (Xs)s∈S,
– sets of places P and transitions T ,
– pre, post : T → (TOP(X)⊗P)⊕1, defining the transitions’ pre- and postdomains,
– cond : T →P f in(Eqns(S,OP,X)) assigning a finite set of Σ-equations (L,R,X) as

firing conditions to each transition,
– type : P→ S typing the places of the signature’s sorts,
– a Σ-algebra A,

• I is the (possibly infinite) set of individual tokens of ANI, and

• m : I→ A⊗P is the marking function, assigning the individual tokens to the data elements
on the places. m(I) defines the actual set of data elements on the places of ANI. m does
not have to be injective.

Remark 1 (Individual tokens vs. classical algebraic data tokens) Each AHLI net with finite
individual token marking (I,m) can be interpreted as a classical AHL net with marking

M = ∑
(a,p)∈A⊗P

|m−1(a, p)|(a, p) = ∑
i∈I

m(i)

where |m−1(a, p)| denotes the cardinality of individual tokens in I that m maps to (a, p).
The main difference to classical AHL nets is that in AHLI nets, we can distinguish tokens of

the same algebraic value on the same place. Moreover, the individuals equip data tokens with
identities. When firing a transition, we now can relate the input and output tokens so that a
token’s history can be traced along the firing steps.

1 TOP(X)⊗P = {(t, p) ∈ TOP(X)×P|t ∈ TOP,type(p)(X)}, i.e the pairs where term t is of sort type(p).

5 / 19 Volume 40 (2011)



RONs Revisited: General Approach to Model Reconfigurable Object Nets

Example 1 Figure 2 shows the graphical representation of an AHLI net with

• signature Σ = ({s1,s2,s3}, {t11 :→ s1, t12 :→ s1, t2 :→ s2, t3 :→ s3}),
• algebra carrier sets As1 = {a1,b1,c1},As2 = {a2,b2},As3 = {a3,b3,c1}
• pre(t) = (t11, p1)⊕ (t12, p1)⊕ (t2, p2), post(t) = (t3, p3),

• type(p1) = s1, type(p2) = s2, type(p3) = s3,

• cond(t) = /0,

• I = {x1,y1,x2,x3}, m(x1) = m(y1) = (a1, p1),m(x2) = (a2, p2),m(x3) = (a3, p3),

Note that the algebraic value of an individ-
ual token is given next to the dashed arc
to its carrying place. In the following, if a
transition has an empty set of conditions
we just denote the transition name without
an explicit /0 below.

t

∅

p1:

s1

p2:

s2

p3:

s3

t11⊕t12

t2

t3

x1

y1

x2

x3

a1

a2

a1

a3

Figure 2: Example AHLI net

In Definition 2, we define firing steps in AHLI nets. We have to take into account assign-
ments evaluating the variables at the arcs and in the transition conditions to check for enabled
transitions. Therefore, we first introduce some additional notations:

• Var(t)⊆ X is the set of variables occurring in equations and on the environment arcs of t,

• CP = (A⊗P) = {(a, p) ∈ A×P|a ∈ Atype(p)} as the set of consistent value/place pairs,

• CT = {(t,asg) ∈ T × (Var(t)→ A)|∀(L,R,X) ∈ cond(t) : asg(L) = asg(R)}
as the set of consistent transition assignments, i.e. all firing conditions of t are valid when
evaluated with the variable assignment asg2,

• preA, postA : CT→ CP⊕, defined by

preA(t,asg) = (asg⊗ idP)
⊕ (pre(t)) ,

postA(t,asg) = (asg⊗ idP)
⊕ (post(t))

We can express e.g. the concrete required number of a token (a, p) for t to fire under as-
signment asg with preA(t,asg)(a, p) by interpreting the monoid preA(t,asg) as a function
CP→ N. Similarly, we get the produced number of (a, p) with postA(t,asg)(a, p).

Definition 2 (Firing Behavior of AHLI nets) A consistent transition assignment (t,asg) ∈ CT
for an AHLI net ANI = (Σ,P,T, pre, post,cond, type,A, I,m) is enabled under a token selection
(M,m,N,n), where M ⊆ I , m is the token mapping of ANI, N is a set with (I \M)∩N = /0, and
n : N→ A⊗P is a function, if it meets the following token selection condition:

∑
i∈M

m(i) = preA(t,asg)∧∑
i∈N

n(i) = postA(t,asg)

2 where asg : TOP(X) → A is the evaluation of Σ-terms over variables in X to values in A. Technically, asg =
xeval(asg)A results from a free construction over asg.

Proc. PNGT 2010 6 / 19



ECEASST

If such an asg-enabled t fires, the successor marking (I′,m′) is given by

I′ = (I \M)∪N, m′ : I′→ A⊗P with m′(x) =

{
m(x), x ∈ I \M
n(x), x ∈ N

leading to ANI′=(AN, I′,m′) as the new AHLI net in the firing step ANI 〉−t,asg−−→ANI′ via (M,m,N,n).

Remark 2 (Token Selection) The purpose of the token selection is to specify exactly which
tokens should be consumed and produced in the firing step. Thus, M ⊆ I selects the individual
tokens to be consumed, and N contains the set of individual tokens to be produced3. Functions
m and n relate the tokens to their place/value pairs. It would be sufficient to consider only the
restriction m|M here or to infer it from the net but as a compromise on symmetry and readability
we denote m in the token selection.

In [MGE+10], also AHLI net morphisms are defined which extend classical AHL net mor-
phisms to individual tokens. It is shown that AHLI nets and AHLI net morphisms form a cat-
egory AHLINets. Moreover, AHLINets, together with a set of AHLI net transformation rules
according to the double pushout approach are shown in [MGE+10] to be M -adhesive transfor-
mation systems [EGH10], i.e. important results like the Local Church-Rosser and the Parallelism
Theorem hold for AHLI net transformations.

3.2 The AHLI Net Tool

Tool support for AHLI nets has been implemented in our group4 which allows the user to model
and simulate AHLI nets in a visual editor.

Based on the Eclipse Modeling Framework [EMF11], the AHLI net environment comprises
components to define algebraic signatures Σ and Σ-algebras, as well as a visual editor for AHLI
nets which also serves as simulation viewer.

Creating Algebraic Signatures and Algebras

The main challenge while implementing an AHLI net editor except for the graphical editor itself
is to provide a user-friendly way of creating an algebraic signature along with its algebras. This
includes the evaluation of terms over the signature in a given algebra.

To provide a user-friendly editor for algebraic signatures, the XTEXT framework [Xte10] was
used: from a textual grammar of algebraic signatures defined in EBNF, XTEXT generates a tex-
tual editor along with an EMF model for algebraic signatures5. The editor generated by XTEXT

has been extended by additional validation and formatting features. The validation feature en-
hances the checks performed by the editor for syntactical correctness of the algebraic signature,

3 We require that (I \M)∩N = /0 must hold because it is impossible to add an individual token to a net that already
contains this token.
4 Available at the TFS update site http://tfs.cs.tu-berlin.de/software, packages agg, ahli, alspec and muvitor
5 The grammar even defines algebraic specifications, i.e. signatures together with equations. Since AHLI nets are
signature-based, the equation part may be used by the language designers for documentation purposes, but satisfaction
of equations by terms is not checked by the tool.

7 / 19 Volume 40 (2011)

http://tfs.cs.tu-berlin.de/software


RONs Revisited: General Approach to Model Reconfigurable Object Nets

whereas the formatting feature provides the layout of the notation as it is used in the literature
(e.g. [EM85]). Figure 3 shows the editor for algebraic signatures where a simple signature
SimpleNat for natural numbers has been edited. The figure also shows an example for an error
message which has been issued due to a syntax error of the specified signature.

Figure 3: Editor for algebraic signatures of the AHLI net tool.

Using the editor, on the abstract syntax level, an algebraic signature is defined as model in-
stance of the EMF model for algebraic signatures. Thus, other EMF-based tools may use the
EMF model for signatures and model instances without caring for our textual representation of
an algebraic signature. A Σ-algebra over a given algebraic signature Σ can be defined by the
user of the AHLI net tool by implementing a suitable Java class. This allows us to use Java data
types such as Integer to implement sorts from the signature. As example, Listing 1 shows the
Java class SimpleN implementing an algebra for the signature SimpleNat in Figure 3. The evalua-
tion of terms of the signature to elements of the given algebra is provided by an evaluator class
written especially for this purpose. This evaluator provides evaluation of terms with and without
variables.

Listing 1: Java class SimpleN implementing an algebra of signature SimpleNat

1 p u b l i c c l a s s SimpleN {
2 p u b l i c s t a t i c f i n a l I n t e g e r ZERO = I n t e g e r . va lueOf ( 0 ) ;
3

4 p u b l i c s t a t i c I n t e g e r add ( I n t e g e r i1 , I n t e g e r i 2 ) {
5 re turn ( i 1 + i 2 ) ; }
6 p u b l i c s t a t i c I n t e g e r mul t ( I n t e g e r i1 , I n t e g e r i 2 ) {
7 re turn ( i 1 ∗ i 2 ) ; }
8 p u b l i c s t a t i c I n t e g e r succ ( I n t e g e r i ) {
9 re turn ( i + 1 ) ; }

10 }

The Visual AHLI Net Editor and Simulator

The heart of the AHLI net tool is the EMF model for AHLI nets shown in Figure 4. The main
class AHLINet defines two attributes specId and algebraId which are references (IDs) of the

Proc. PNGT 2010 8 / 19



ECEASST

corresponding extensions used as signature and algebra for the AHLI net. Moreover, an AHLINet
contains Places, Transitions and Tokens. A Transition contains Arcs and Conditions. A Token holds a
Java object as content (its value)6.

Figure 4: EMF model for AHLI nets

The main component of the visual editor is the tree editor, which contains all model elements
of an AHLI net. The model elements can be altered by the user via context menus, which
show the appropriate selection of actions that can be performed on the currently selected model
element. Additionally there exists a graphical view of the AHLI net. The graphical view provides
also context menus and a tool palette with a set of tools to alter the model graphically. Figure 5
shows the editor with the tree editor, the graphical view and the tool palette. In the tree editor,
the elements of the SimpleNat signature and algebra can be seen. The visual editor panel contains
an AHLI net with one transition modeling the addition of two natural numbers.

The key benefit of modeling an AHLI net using a tool is to be able to actually simulate the
firing behavior of the net. This means to calculate the activation state of a transition (the consis-
tent transition assignments) and the successor marking of a firing step. In the visual AHLI net
tool, a transition firing step is triggered by the transition’s context menu. One of the possible
consistent transition assignments is selected randomly, and the successor marking is shown after
completion of the firing step.

Note that in the current state of the AHLI net editor, tokens on AHLI net places are string
representations of the data contained in them. One of the main tasks is to provide an adequate
visualization for complex data representing e.g. P/T nets or P/T net transformation rules. The
extension mechanism of ECLIPSE is well suited to achieve this goal and it we plan to implement
an extension point supporting the flexible visualization of data structures.

6 The classes AHLINet, Place, Transition and Arc also inherit from class NamedElement, i.e. they have name
attributes which are not shown in Figure 4.

9 / 19 Volume 40 (2011)



RONs Revisited: General Approach to Model Reconfigurable Object Nets

Figure 5: Visual AHLI net editor with the simple Nat example

4 Formalizing RONs as Special AHLI Nets

In this section we formalize RONs as a special type of AHLI nets: the data structure for tokens
formalizes P/T nets and P/T net transformation rules, and operations to fire P/T net transitions, to
compose and decompose P/T nets, and to apply net transformation rules to P/T nets. Section 4.1
defines this data type, and in Section 4.2 we show how the four standard transition types of RONs
are specified.

4.1 Definition of AHOIPTI Nets

We now formalize RONs as special AHLI nets. That is, we define data types for AHLI net tokens
which correspond to P/T nets and P/T net transformation rules, respectively, to model the token
types in RONs. More precisely, we here use the formal definition of P/T nets with individual
tokens (PTI nets [MGE+10, MGH11]) where classical P/T nets are extended by individual tokens
in a similar way as we generalized AHL nets to AHLI nets. To distinguish this special kind of
AHLI nets from general AHLI nets introduced in Section 3.1, we call AHLI nets with PTI net
tokens AHOIPTI nets (Algebraic Higher-Order nets with Individual Tokens). AHOIPTI nets are
AHLI nets with a well-defined signature ΣPT I and a fixed ΣPT I-Algebra APT I .

Definition 3 (Algebraic Higher-Order Nets with Individual Tokens (AHOIPTI Nets)) An AHOIPTI

net AHOIPTI = (Σ,P,T, pre, post,cond, type,A, I,m), is an AHLI net according to Definition 1
with Σ = (ΣPT I) (see Definition 4), and a ΣPT I-Algebra APT I (see Definition 5).

With the signature ΣPT I for AHOIPTI nets in Definition 4, we can use PTI nets as object nets
in AHOIPTI nets, and PTI net transformation rules as rule tokens.

Proc. PNGT 2010 10 / 19



ECEASST

Definition 4 (Signature ΣPT I for AHOIPTI Nets)

ΣPT I = sorts : Transition,Bool,Mor,Rule,
Ob jectNet,ONMSet,Selection,

opns : tt, ff :→ Bool
enabled : Ob jectNet Transition Selection→ Bool
fire : Ob jectNet Transition Selection→ Ob jectNet
applicable : Rule Mor→ Bool
transform : Rule Mor→ Ob jectNet
empty : ONMSet→ Bool
coproduct : Ob jectNet Ob jectNet→ Ob jectNet
isomorphic : Ob jectNet Ob jectNet→ Bool
left : Rule→ Ob jectNet
insert : Ob jectNet ONMSet→ ONMSet
make : Ob jectNet→ ONMSet
splittable : Ob jectNet→ Bool
dom,cod : Mor→ ObjectNet
split : ObjectNet→ ONMSet

vars : X := (Xs),s ∈ {Transition,Bool,Mor,Rule,Ob jectNet,ONMSet,Selection}

Sort ObjectNet denotes object nets (PTI Nets) over sets P0,T0 and I0, Rule denotes PTINet
transformation rules, ONMSet denotes the monoid over the set of object nets, Mor denotes PTI
net morphisms, Selection represents the set of the token selections, and Transition the set of
object net transitions.

The semantics of the operation symbols in ΣPT I is formally defined by the ΣPT I-Algebra APT I

in Definition 5.
Constant enabledA takes an object net (PTI net) from set AOb jectNet , one of its transitions from

set ATransition and a token selection from set ASelection and returns ttA (true) if the transition is
enabled to be fired under this token selection, otherwise ffA (false). If a given transition of an
object net is enabled to be fired, operation fireA returns the object net with its successor marking
after firing this transition.

To model rule application, operation applicableA checks whether a rule is applicable to an
object net at a given match morphism. Operation transformA applies the rule at this match if
applicable (since the match is a morphism, the object net the rule is applied to can be inferred as
the morphism’s codomain), realizing the rule-based transformation of an object net. Operations
dom (resp. cod) yield the domain (resp. codomain) of a given morphism.

For moving object nets and rules through the system net, composing them by disjoint union
and splitting a disjoint union into component nets, we need some auxiliary operations: coproductA
builds the disjoint union of two given object nets, operation emptyA checks whether a given set
of object nets is empty, the isomorphicA operation checks whether two given object nets are iso-
morphic to each other, operation insertA adds an object net to a sum of object nets, operation
makeA generates a sum of object nets containing exactly one given object net, splittableA checks
whether an object net is the disjoint union of more than one component of object nets, and finally,
the splitA operation generates from an object net with n components a sum of n object nets.

11 / 19 Volume 40 (2011)



RONs Revisited: General Approach to Model Reconfigurable Object Nets

Definition 5 (ΣPT I-Algebra APT I of AHOI Nets)
APT I = ATransition := T0, ABool := {true, false},

AOb jectNet := PTIobject∪{undef},
with PTIobject:= {NI|NI = (P,T, pre, post, I,m),P⊆ P0,T ⊆ T0, I ⊆ I0}

AMor := { f | f : NI1→ NI2 PT I Morphism with NI1, NI2 ∈ PT Iob ject}
ARule := {r|r = ((L i1←− I i2−→ R),NAC) rule with in jections i1, i2

and NAC ⊆ {c|(c : L→ Nac)}},
AONMSet := A⊕Ob jectNet ,
ASelection := {(M,m,N,n)|M,N ⊆ I0,m : M→ P0,n : N→ P0}
ttA := true ∈ ABool , ffA := false ∈ ABool
enabledA : AOb jectNet ×ATransition×ASelection→ ABool

(on, t,s) 7→


ttA , for on = (P,T, pre, post, I,m), t ∈ T , s = (M,m,N,n)

and t is enabled under s
ffA , else.

fireA : AOb jectNet ×ATransition→ AOb jectNet

(on, t,s) 7→

{
(P,T, pre, post, I′,m′) , if enabledA(on, t,s) = ttA
undef , else.

for: on = (P,T, pre, post, I,m), I′ = (I\M)∪N,

m′ = I′→ P with : m′(x) =

{
m(x) , if x ∈ I\M
n(x) , else.

applicableA : ARule×AMor→ ABool

(r, f ) 7→

{
ttA , if r is applicable at match f
ff A , else.

transformA : ARule×AMor→ AOb jectNet

(r, f ) 7→

{
NI2 , if applicableA(r, f ) = ttA
undef , else.

with the direct transformation is written as: NI1
r, f
=⇒ NI2

emptyA : AONMSet→ ABool

(m) 7→

{
ttA , if m = 0
ffA , else.

coproductA : AOb jectNet ×AOb jectNet → AOb jectNet

(NI1,NI2) 7→

{
undef , if NI1 = undef or NI2 = undef
NI3 , else.

with:
NI3 = (P3,T3, pre3, post3, I3,m3), P3 = P1]P2, T3 = T1]T2

pre3 : T3→ P⊕3 , pre3(t) =

{
pre1(t) , if t ∈ T1

pre2(t) , else.

post3 : T3→ P⊕3 , post3(t) =

{
post1(t) , if t ∈ T1

post2(t) , else.

Proc. PNGT 2010 12 / 19



ECEASST

isomorphicA : AOb jectNet ×AOb jectNet → ABool

(on1,on2) 7→

{
ttA , if on1 ∼= on2

ffA , else.
on1 ∼= on2 : there is a PT I−Morphism f : on1→ on2
with: f = ( fP, fT , fI), and fP, fT , fI are bijection functions.

insertA : AOb jectNet ×AONMSet→ AONMSet
insert(n,m) = m⊕n

makeA : AOb jectNet → AONMSet
(n) 7→ n

splittableA : AOb jectNet → ABool

(n) 7→



ttA , if ∃ n1,n2 ∈ AOb jectNet ,

with :
coproduct(n1,n2) = n
and n1 6= /0
and n2 6= /0

ffA , else.
domA : AMor→ AOb jectNet

domA( f : on1→ on2) = on1
codA : AMor→ AOb jectNet

codA( f : on1→ on2) = on2

splitA : AOb jectNet → AONMSet

(n) 7→



makeA(n) , if splittable(n) = ffA or n = undef
insertA(n1,splitA(n2)) , else.

with :
splittable(n1) = ffA
and coproduct(n1,n2) = n
and n1 6= /0
and n2 6= /0

4.2 Expressing RON Transition Types in AHOI Nets

Using the signature ΣPT I and the ΣPT I-algebra APT I introduced in Section 4, we now can express
the firing behavior of RONs in AHOI nets. The four transition types available for RONs corre-
spond to constructions of AHOI net parts as follows:

Transitions of kind STANDARD

These transitions are used in RONs to move (or copy) object net or rule tokens in the system net
without actually changing object nets. We can realize the behavior of STANDARD transitions
using an AHOIPTI net transition with the firing condition {on′ = on1 coproduct (on2 coproduct
(on3...coproduct onn))..)} where oni, i ∈ {1, ..,n} are object nets (data elements from AObjectNet)

13 / 19 Volume 40 (2011)



RONs Revisited: General Approach to Model Reconfigurable Object Nets

from the pre domain of the transition to which the coproduct operation is applied iteratively.
The result on′ of the operation is the object net constructed as disjoint union of all oni. The
net on′ is put onto all object net places in the STANDARD transition’s post domain. In addition,
the STANDARD transition may take a rule from a Rule place in its pre-domain and puts copies
of this rule to all post domain Rule places. Figure 6 shows how RON STANDARD transitions are
modelled as AHOI net transitions. Note that we here depict a scheme for all possible STANDARD
transitions with an arbitrary number of object net places in the pre- and post-domains, and an
arbitrary number of Rule places in the post-domain.

Figure 6: Modelling RON STANDARD transitions in AHOIPTI nets

Transitions of kind FIRE

A FIRE transition in a RON takes an object net from its pre domain place (there must be exactly
one), fires a selected enabled transition t of this object net, and puts copies of the object net with
the successor marking to all post-domain places. The condition set for an AHOI net transition
modeling a FIRE transition is defined by {enabled(on, t) = tt, on′ = f ire(on, t)}, where on is
the PTI net from the pre-domain, t is the transition of on that has to be fired, and on′ is object net
with the successor marking. Figure 7 shows how FIRE transitions are modelled in AHOI nets.

Figure 7: Modelling RON FIRE transition in AHOIPTI nets

Proc. PNGT 2010 14 / 19



ECEASST

Transitions of kind APPLYRULE

In RONs, APPLYRULE transitions take a rule from the only Rule place in the pre-domain, apply
this rule to the disjoint union of all object nets taken from Ob jectNet places in the pre-domain,
and put the transformed object net to all Ob jectNet places in the post-domain. Moreover, the
rule is moved to the post-domain Rule place.

The condition set for an AHOIPTI net transition modeling an APPLYRULE transition is defined
by {dom(m) = left(r), cod(m) = on, applicable(r,m) = tt, on′ = transform(r,m)}, where r is
the rule to be applied to a net n in the codomain of a morphism m, n′ is the resulting net after
applying the rule r if it is applicable at match morphism m, XRule is the set of the variables of the
sort Rule, and XMor is the set of the variables of the sort Mor. Figure 8 shows how APPLYRULE
transitions are modeled in AHOIPTI nets.

Figure 8: Modelling RON APPLYRULE transitions in AHOIPTI nets

Transitions of kind SPLIT

In RONs, a SPLIT transition has exactly one pre-domain place and one post-domain place, both
of kind Ob jectNet. The transition takes an object net from the pre-domain place and puts all
unconnected components of this object net as new object nets to the post-domain place. This
kind of transition is the most complicated transition to be modelled in AHOIPTI nets. The main
problem is how to split one object net (PTI net) consisting of n components into n independent
single object nets. We use the recursive operation splitA that uses the operations insertA, makeA

and splittableA. The operation makeA makes a set containing a net that cannot be split, otherwise
the operation insertA puts the nets stepwise recursively in a set. The split operation in AHOI nets
is well-defined, because it puts only those nets that consist of exactly one component into the
sum of the split net, and the termination is also ensured.

In order to simulate the firing of a transition of kind SPLIT in AHOI nets we need two more
transitions and one more place then in RONs. Note that for one firing step of a SPLIT transition
in a RON, we get a firing sequence in the AHOIPTI net. In this sequence, transition SPLIT is
fired once, making a sum of component nets from the original object net. Afterwards, transition

15 / 19 Volume 40 (2011)



RONs Revisited: General Approach to Model Reconfigurable Object Nets

SELECT1 fires as many times as there are unconnected components in this sum. Each time, one
unconnected component is put to the PTIobject place in the bottom, while the sum containing
the remaining unconnected components is put back to the ONMSet place. When there is only
one component left in this sum, transition SELECT2 is fired, which puts this last remaining
component as object net to the PTIobject place. Figure 9 shows how a SPLIT transition from
RONs is modeled as AHOI net.

Figure 9: Modelling RON SPLIT transitions in AHOIPTI nets

5 Related Work

There exist related approaches and tools that follow the “nets as tokens”-paradigm, based on
elementary object nets introduced in [Val98]. Mobile object net systems [FK04] are an algebraic
formalization of the elementary object nets that are closely related to our approach. Mobile
object net systems are implemented in the Renew tool [KMR03]. The data types, respectively
the colors represent the nets that are the token nets. Our approach goes beyond those approaches
as we may additionally have rules as tokens, and transformations of nets as operations. In [KR03]
concurrency aspects between token nets have been investigated, but naturally not concerning net
transformations. In [LO04], rewriting of Petri nets in terms of graph grammars are used for the
reconfiguration of nets as well, but this approach lacks the “nets as tokens”-paradigm.

Recently, research has been done to translate Petri net transformation systems of different
categories to graph transformation systems in a semantically equivalent way [MEE11]. On this
basis, we will now be able to analyse confluence of reconfiguration and firing steps by using the
AGG graph transformation analyser [AGG10]. The implementation of the AHLI net tool will
serve as basis for future extensions towards analysing the behavior of reconfigurable systems.

Proc. PNGT 2010 16 / 19



ECEASST

6 Conclusion and Future Work

In this paper we formalized the approach and tool for Reconfigurable Object Nets (RONs) to a
special kind of AHLI nets, called AHOIPTI nets. We defined an algebraic signature and algebra
that formally specify RONs. This fixes a formal semantics for RONs, using a framework that
can easily be extended towards other kinds of Petri nets as token objects (e.g. using AHLI nets
and AHLI net transformation rules as tokens).

Moreover, in future work, this formal basis will be used to analyse the behavior of AHOIPTI

nets and object net reconfiguration based on the interleaving semantics of the corresponding
graph transformation system, including rules for firing and for reconfiguration. This semantics
specifies the equivalent re-orderings of a given transformation sequence. Formal equivalence re-
sults (e.g. on permutation equivalence [HCEK10]) allow all equivalent transformation sequences
to be constructed in an efficient way. In [Sha10], the permutation equivalence analysis has been
performed exemplarily for the producer/consumer system AHOIPTI net on the level of object
nets.

We have described in this paper an ongoing implementation of a flexible AHLI net tool en-
vironment that supports editing and simulation of AHLI nets in general. In particular, up to
now AHLI nets with primitive data types as tokens can be edited and simulated in the visual
modeling environment. The visual appearance of different token types in AHLI nets shall be
implemented using the extension points of the AHLI net tool. With respect to the tool, the next
steps will be to provide pre-defined visual layouts for AHOIPTI nets (P/T nets and P/T net trans-
formation rules as tokens) as well as algebraic specifications and algebras for nets with AHLI
nets and AHLI net transformation rules as tokens, and for other kinds of reconfigurable dynamic
modeling techniques.

References

[AGG10] TFS-Group, TU Berlin. AGG. 2010.
http://tfs.cs.tu-berlin.de/agg

[BEE+09] E. Biermann, H. Ehrig, C. Ermel, K. Hoffmann, T. Modica. Modeling Multicast-
ing in Dynamic Communication-based Systems by Reconfigurable High-level Petri
Nets. In Proc. Int. Symposium on Visual Languages and Human-Centric Computing
(VL-HCC’09). Pp. 47–50. IEEE, 2009.

[BEHM07] E. Biermann, C. Ermel, F. Hermann, T. Modica. A Visual Editor for Reconfigurable
Object Nets based on the ECLIPSE Graphical Editor Framework. In Proc. 14th
Workshop on Algorithms and Tools for Petri Nets (AWPN’07). GI, 2007.

[BM08] E. Biermann, T. Modica. Independence Analysis of Firing and Rule-based Net
Transformations in Reconfigurable Object Nets. In Proc. Workshop on Graph Trans-
formation and Visual Modeling Techniques (GT-VMT’08). Volume 10. ECEASST,
2008.

17 / 19 Volume 40 (2011)

http://tfs.cs.tu-berlin.de/agg


RONs Revisited: General Approach to Model Reconfigurable Object Nets

[EGH10] H. Ehrig, U. Golas, F. Hermann. Categorical Frameworks for Graph Transformation
and HLR Systems based on the DPO Approach. Bulletin of the EATCS 102:111–
121, 2010.
http://tfs.cs.tu-berlin.de/publikationen/Papers10/EGH10.pdf

[EHP+08] H. Ehrig, K. Hoffmann, J. Padberg, C. Ermel, U. Prange, E. Biermann, T. Modica.
Petri Net Transformations. In Petri Net Theory and Applications. Pp. 1–16. I-Tech
Education and Publication, 2008.

[EM85] H. Ehrig, B. Mahr. Fundamentals of Algebraic Specification 1: Equations and Ini-
tial Semantics. EATCS Monographs on Theoretical Computer Science 6. Springer,
Berlin, 1985.

[EMF11] Eclipse Consortium. Eclipse Modeling Framework (EMF) – Version 2.5. 2011.
http://www.eclipse.org/emf

[FK04] B. Farwer, M. Köhler. Mobile Object-Net Systems and their Processes. Fundamenta
Informaticae 60(1–4):113–129, 2004.

[HCEK10] F. Hermann, A. Corradini, H. Ehrig, B. König. Efficient Analysis of Permutation
Equivalence of Graph Derivations Based on Petri Nets . ECEASST 29:1–15, 2010.

[HME05] K. Hoffmann, T. Mossakowski, H. Ehrig. High-Level Nets with Nets and Rules as
Tokens. In Proc. of 26th Intern. Conf. on Application and Theory of Petri Nets and
other Models of Concurrency. LNCS 3536, pp. 268–288. Springer, 2005.

[KMR03] M. Köhler, D. Moldt, H. Rölke. Modelling Mobility and Mobile Agents Using
Nets within Nets. In Proc. Int. Conf. on Applications and Theory of Petri Nets
(ICATPN’03). LNCS 2679, pp. 121–139. Springer, June 2003.

[KR03] M. Köhler, H. Rölke. Concurrency for mobile object net systems. Fundamenta In-
formaticae, 54(2-3), 2003.

[LO04] M. Llorens, J. Oliver. Structural and Dynamic Changes in Concurrent Systems: Re-
configurable Petri Nets. IEEE Transactions on Computers 53(9):1147–1158, 2004.

[MEE11] M. Maximova, H. Ehrig, C. Ermel. Formal Relationship between Petri Net and
Graph Transformation Systems based on Functors between M-adhesive Categories.
In Ehrig et al. (eds.), Proc. of 4th Workshop on Petri Nets and Graph Transformation
(PNGT). Volume 40. ECEASST, 2011.

[MGE+10] T. Modica, K. Gabriel, H. Ehrig, K. Hoffmann, S. Shareef, C. Ermel, U. Golas,
F. Hermann, E. Biermann. Low- and High-Level Petri Nets with Individual Tokens.
Technical report 2009/13, Technische Universität Berlin, 2010.
http://www.eecs.tu-berlin.de/menue/forschung/forschungsberichte/2009

[MGH11] T. Modica, K. Gabriel, K. Hoffmann. Transformation of Petri Nets with Individ-
ual Tokens. In Ehrig et al. (eds.), Proc. of 4th Workshop on Petri Nets and Graph
Transformation (PNGT). Volume xx. ECEASST, 2011. Submitted.

Proc. PNGT 2010 18 / 19

http://tfs.cs.tu-berlin.de/publikationen/Papers10/EGH10.pdf
http://www.eclipse.org/emf
http://www.eecs.tu-berlin.de/menue/forschung/forschungsberichte/2009


ECEASST

[PEHP08] U. Prange, H. Ehrig, K. Hoffman, J. Padberg. Transformations in Reconfig-
urable Place/Transition Systems. In Concurrency, Graphs and Models. LNCS 5065,
pp. 96–113. Springer, 2008.

[PER95] J. Padberg, H. Ehrig, L. Ribeiro. Algebraic High-Level Net Transformation Systems.
Mathematical Structures in Computer Science 5:217–256, 1995.

[RON11] TFS, TU Berlin. Reconfigurable Object Nets. 2011.
http://www.tfs.cs.tu-berlin.de/roneditor

[Sha10] S. Shareef. Formal Modelling and Analysis of Reconfigurable Object Nets Based on
the RON Editor. Master’s thesis, TU Berlin, Fak. IV, 2010.

[Tro09] F. Trollmann. Modeling Emergency Scenarios using Algebraic Higher Order Nets.
Master’s thesis, Technische Universität Berlin, 2009.

[Val98] R. Valk. Petri Nets as Token Objects: An Introduction to Elementary Object Nets. In
Proc. Int. Conf. on Application and Theory of Petri Nets (ICATPN ’98). LNCS 2987,
pp. 1–25. Springer, 1998.

[Xte10] Eclipse Consortium. Xtext - Language Development Framework – Version 1.0.
2010.
http://www.eclipse.org/Xtext/

19 / 19 Volume 40 (2011)

http://www.tfs.cs.tu-berlin.de/roneditor
http://www.eclipse.org/Xtext/

	Introduction 
	The RON Tool Environment for Reconfigurable Object Nets
	Algebraic High-Level Nets with Individual Tokens
	Algebraic High-Level Nets with Individual Tokens (AHLI Nets)
	The AHLI Net Tool

	Formalizing RONs as Special AHLI Nets 
	Definition of AHOIPTI Nets
	Expressing RON Transition Types in AHOI Nets

	Related Work
	Conclusion and Future Work

