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Abstract: Various kinds of graph transformations and Petri net transformation sys-
tems are examples of M -adhesive transformation systems based on M -adhesive
categories, generalizing weak adhesive HLR categories. For typed attributed graph
transformation systems, the tool environment AGG allows the modeling, the simu-
lation and the analysis of graph transformations. A corresponding tool for Petri net
transformation systems, the RON-Environment, has recently been developed which
implements and simulates Petri net transformations based on corresponding graph
transformations using AGG. Up to now, the correspondence between Petri net and
graph transformations is handled on an informal level. The purpose of this paper is
to establish a formal relationship between the corresponding M -adhesive transfor-
mation systems, which allow the translation of Petri net transformations into graph
transformations with equivalent behavior, and, vice versa, the creation of Petri net
transformations from graph transformations. Since this is supposed to work for dif-
ferent kinds of Petri nets, we propose to define suitable functors, called M -functors,
between different M -adhesive categories and to investigate properties allowing us
the translation and creation of transformations of the corresponding M -adhesive
transformation systems.

Keywords: M -adhesive transformation system, equivalence, graph transformation,
Petri net transformation, M -adhesive category

1 Introduction

Modeling the adaptation of a dynamic system to a changing environment gets more and more im-
portant. Application areas cover e.g. computer supported cooperative work, multi agent systems
or mobile networks. One approach to combine formal modeling of dynamic systems and con-
trolled model adaption are reconfigurable Petri nets. The main idea is the stepwise development
of place/transition nets by applying net transformation rules [EHP+08, PEHP08]. This approach
increases the expressiveness of Petri nets and allows in addition to the well known token game a
formal description and analysis of structural changes.

Rule-based Petri net transformation is related to graph transformation [EEPT06]. For typed
attributed graph transformation systems, the well-established tool AGG [AGG09] allows the
modeling, the simulation and the analysis of graph transformations. Recently, a tool for recon-
figurable Petri nets, called RON-Tool [TFS07, BEHM07] (Reconfigurable Object Nets), exe-
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Translation and Creation of Transformations

cutes and analyzes Petri net transformations based on corresponding graph transformations us-
ing AGG. As a matter of fact, the correspondence between Petri net and graph transformations
is handled on an informal level up to now. Since both graph and net transformation systems
are formally defined, the aim of this paper is to propose formal criteria ensuring a semantical
correspondence of reconfigurable Petri nets and their corresponding representations as graph
transformation systems.

An M -adhesive transformation system is a general categorical transformation framework
based on M -adhesive categories, which rely on a class M of monomorphisms, generalizing
weak adhesive HLR categories. The double-pushout approach, based on categorical construc-
tions, is a suitable description of transformations leading to results like the Local Church-Rosser,
Parallelism, Concurrency, Embedding, Extension, and Local Confluence Theorems [EEPT06].

A set of rules over an M -adhesive category according to the double-pushout approach consti-
tutes an M -adhesive transformation system [EGH10].

Aiming for a more general approach to ensure a semantical correspondence of different trans-
formation systems, we establish a formal relationship between two corresponding M -adhesive
transformation systems. This correspondence allows us especially the translation of Petri net
transformations into graph transformations and, vice versa, the creation of Petri net transforma-
tions from graph transformations in order to analyze the behavior of Petri net transformation
systems by analyzing their translation in terms of typed attributed graph transformation sys-
tems using the tool AGG [AGG09]. We propose to define suitable functors, called M -functors,
between different M -adhesive categories and to investigate properties, which allow us the trans-
lation and creation of transformations of the corresponding M -adhesive transformation systems.

The paper is structured as follows: Section 3 introduces the formal notions M -adhesive trans-
formation systems and M -functors. The first main result given in Section 4 states that an M -
functor translates rules in a way that applicablility and transformation results are translated as
well. Vice versa, the second main result states that an M -functor also creates applicability of
rules in the other direction. Section 5 applies these new main result to the translation and creation
of Petri net transformations by constructing and analyzing an M -functor from the category of
place/transition nets to the category of typed attributed graphs with corresponding type graph1.
In Section 6, we conclude and propose interesting future research directions.

2 Related Work

In [MM90], Meseguer and Montanari represented Petri nets as graphs equipped with operations
for composition of transitions. They introduced categories for Petri nets with and without initial
markings and functors expressing duality and invariants. Their constructions provide a formal
basis for expressing concurrency in terms of algebraic structures over graphs and categories.
Based on categorical Petri nets, in [DS02], Petri nets are related to automata with concurrency
relations by establishing a correspondence as coreflection between the associated categories. A
first approach to relate Petri nets and graph transformation systems has been proposed by Kre-
owski in [Kre81], where Petri net firing behavior is expressed by graph transformation rules. In
our approach, we want to consider Petri net transformations in addition. Moreover, we aim for a

1 For the results in Section 5, we give only proof ideas. More detailed proofs are given in [MEE11].
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more general approach that establishes a semantical correspondence not only between Petri net
and graph transformation systems but between any kind of formally defined rule-based transfor-
mation systems that can be generalized as M -adhesive transformation systems.

In order to transform not only graphs, but also high-level structures as Petri nets and alge-
braic specifications, high-level replacement (HLR) categories were established in [EHKP91a,
EHKP91b], which require a list of so-called HLR properties to hold. They were based on a
morphism class M used for the rule morphisms. This framework allowed a rich theory of trans-
formations for all HLR categories, but the HLR properties were difficult and lengthy to verify
for each category. Combining adhesive categories [LS04] and HLR categories lead to (weak)
adhesive HLR categories in [EHPP06] and to M -adhesive categories in [EGH10], where a sub-
class M of monomorphisms is considered and only pushouts over M -morphisms have to fulfill
the van Kampen property (a certain compatibility of pushouts and pullbacks). Not only many
kinds of graphs, but also different kinds of place/transition nets and algebraic high-level nets are
M -adhesive and also weak adhesive HLR categories which allows the application of the theory
to all these kinds of structures [EEPT06, PE07, MGE+09]. In fact, all results in [EEPT06] for
weak adhesive HLR categories are also valid for M -adhesive categories [EGH10].

3 M -Adhesive Categories, Transformation Systems and M -Functors

An M -adhesive category [EGH10], consists of a category C together with a class M of monomor-
phisms as defined in Definition 1 below. The concept of M -adhesive categories generalises that
of weak adhesive, adhesive HLR and adhesive categories [LS04]. The category of typed at-
tributes graphs and several categories of Petri nets are weak adhesive HLR (see [EEPT06]) and
hence also M -adhesive.

Definition 1 (M -Adhesive Category)
An M -adhesive category (C,M ) is a category C together with a class M of monomorphisms
satisfying

• C has pushouts (POs) and pullbacks (PBs) along M -morphisms,

• M is closed under composition, decomposition, POs and PBs,

• POs along M -morphisms are M -VK-squares, i.e.
the VK-property holds for all commutative cubes, where
the given PO with m ∈M is in the bottom, the back faces
are PBs and all vertical morphisms a,b,c and d are in M .
The VK-property means that the top face is a PO iff the
front faces are PBs.

A
B

C
D

A′
B′

C′
D′ m

f
g

n

m′
f ′

g′n′
a

b

c
d

Definition 2 (M -Adhesive Transformation System and Independence)
Given an M -adhesive category (C,M ).

• An M -adhesive transformation system AS = (C,M ,P) has in addition a set P of produc-

tions of the form ρ = (L l←− K r−→ R) with l,r ∈M .
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A direct transformation G
ρ,m
=⇒ H via production ρ and

match m consists of two POs (1) and (2) as shown in the
diagram to the right, where n : R→ H is called comatch of
m. A production ρ is applicable via m to G, if we have a
PO complement D in (1), such that (1) becomes a PO.

L K R

G D H

(1) (2)

l r

m n

• Two (direct) transformations G
ρ1,m1
=⇒ H1 and G

ρ2,m2
=⇒ H2 are called parallel independent, if

there are morphisms d12 : L1→ D2, d21 : L2→ D1 such that l∗1 ◦d21 = m2 and l∗2 ◦d12 =

m1. Dually G
ρ1,m1
=⇒ H1 and H1

ρ2,m2
=⇒ H2 are sequentially independent if H1

ρ1
−1,n1
=⇒ G and

H1
ρ2,m2
=⇒ H2 are parallel independent, where ρ1

−1 = (R1
r1←−K1

l1−→ L1) and n1 is the comatch
of m1.

R1 K1 L1 L2 K2 R2

H1 D1 G D2 H2

m1 d12
m2

d21

l1

l∗1

l2

l∗2

In order to study translation and creation of transformations between different M -adhesive
transformation systems we introduce the notion of an M -functor. An M -functor establishes a
semantical correspondence between different M -adhesive transformation systems.

Definition 3 (M -Functor)
A functor F : (C1,M1)→ (C2,M2) between M -adhesive categories is called M -functor, if
F (M1)⊆M2 and F preserves pushouts along M -morphisms.

On purpose we don’t require that an M -functor preserves pullbacks along M -morphisms,
VK-squares, or other properties, but later additional properties of F will be required in order to
achieve specific results.

Remark 1
If we want to consider only (direct) transformations with injective matches, as in the case of
Petri net transformations in the next section, then it is sufficient to define the functor F on
injective morphisms only. Moreover, this restriction is necessary, if F is not well-defined for
non-injective morphisms.

For this case we need to define a special kind of an M -functor: a restricted M -functor.

Definition 4 (Restricted M -Functor)
A functor F : C1|M1 → C2|M2 between M -adhesive categories (C1,M1) and (C2,M2) with
Ci|Mi the restriction of Ci to Mi-morphisms for i = 1,2 is called a restricted M -functor, if
F (M1) ⊆M2 and F translates POs along M1-morphisms in (C1,M1) into POs along M2-
morphisms in (C2,M2).
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4 Translation and Creation of Transformations

To obtain a semantical correspondence between any two transformation systems we need to en-
sure that the respective transformation systems together with their relevant properties are trans-
lated and reflected properly.

Given an M -adhesive transformation system AS1 = (C1,M1,P1) with an M -adhesive cat-
egory (C1,M1) and productions P1. We want to translate transformations from AS1 to AS2 =
(C2,M2,P2) with M -adhesive category (C2,M2) and suitable productions P2. This can be done
using an M -functor F : (C1,M1)→ (C2,M2) for P2 = F (P1).

Theorem 1 (Translation of Transformations)
An M -functor F : (C1,M1)→ (C2,M2) translates applicability of productions, construction
of (direct) transformations , as well as parallel and sequential independence of transformations.

Proof.
AS2 = (C2,M2,F (P1)) is a well-defined M -adhesive transformation system, because F trans-
lates M1-morphisms into M2-morphisms for the productions and each direct transformation

G
ρ,m
=⇒ H in AS1 given by pushouts (1) and (2) leads to a direct transformation F (G)

F (ρ),F (m)
=⇒

F (H) in AS2 given by pushouts (3) and (4), because F preserves pushouts along M -morphisms.

L K R

G D H

(1) (2)

l r

m ⇒
F (L) F (K) F (R)

F (G) F (D) F (H)

(3) (4)

F (l) F (r)

F (m)

Moreover, the functor property of F implies that F translates parallel and sequential indepen-
dence of transformations.

As shown above, we need for translation of transformations from AS1 to AS2 only the basic
properties of an M -functor. This is no longer true for creation of transformations in AS1 from
transformations in AS2 with P2 = F (P1) as above.

Definition 5 (Creation of Applicability and Direct Transformations)

1. An M -functor F : (C1,M1)→ (C2,M2) creates applicability of a production ρ = (L l←−
K r−→ R) to object G, if applicability of F (ρ) to F (G) with match m′ : F (L)→F (G)
implies applicability of ρ to G with some match m : L→ G and F (m) = m′.

2. F creates direct transformations, if for each direct transformation F (G)
F (ρ),m′
=⇒ H ′ in AS2

there is a direct transformation G
ρ,m
=⇒ H in AS1 with F (m) = m′ and F (H)∼= H ′ leading

to F (G)
F (ρ),F (m)

=⇒ F (H) in AS2:

5 / 18 Volume 40 (2011)



Translation and Creation of Transformations

F (L) F (K) F (R)

F (G) D′ H ′

(1) (2)

F (l) F (r)

m′ ⇒
L K R

G D H

(3) (4)

l r

m

3. F creates parallel (and similarly sequential) independence, if parallel independence of

F (H1)
F (ρ1),F (m1)⇐= F (G)

F (ρ2),F (m2)
=⇒ F (H2) in AS2 implies parallel independence of H1

ρ1,m1⇐=
G

ρ2,m2
=⇒ H2 in AS1.

Remark 2
If F creates parallel (sequential) independence, then F characterises parallel (sequential) in-
dependence, i.e., parallel (sequential) independence in AS1 is equivalent to parallel (sequential)
independence in AS2, because F already preserves parallel (sequential) independence by Theo-
rem 1.

In the following we formulate the properties for an M -functor F , such that we have cre-
ation of applicability, direct transformations and parallel (sequential) independence. But first we
review the notion of initial pushouts motivated by Remark 3 below.

Definition 6 (Initial Pushout)

Given a morphism f : G → G′ in an M -adhesive category
(C,M ). (1) is an initial pushout (IPO) over f with boundary
B, context C and b,c ∈M , if
(1) is PO ∧ ∀ POs (2) over f (defined by the outer diagram) with
h,h′ ∈M =⇒
∃!b∗ : B→ B′,c∗ : C→C′. h◦b∗ = b ∧ h′ ◦ c∗ = c ∧ (3) is a PO.

B G
B′

(2)

C G′
C′

(1)(3)

=

=

b
b∗

k

h

c

c∗

k′

h′

f

Remark 3
For each match m : L→G with initial pushout (4) and b ∈M1, a

production ρ = (L l←−K r−→R) is applicable with match m : L→G,
iff the following “gluing condition” is satisfied:
there is b′ : B→ K in M1 with l ◦b′ = b. In this case the pushout
complement D in (5) can be constructed as pushout of b′ ∈M1
and a leading to h : C→ D,k : K→ D and an induced morphism
d : D→G, s.t., (5) is pushout and (7) commutes (see [EEPT06]).

B L K

C G D

(4) (5)

(6)

(7)

b l

a

b′

h

k

d

m

Definition 7 (Properties of M -Functors)

1. An M -functor F : (C1,M1)→ (C2,M2) creates morphisms, if for all m′ : F (L)→F (G)
in (C2,M2) there is exactly one morphism m : L→ G with F (m) = m′.

2. F preserves initial pushouts, if for each initial pushout (IPO) (1) over m : L→G, also (2)
is initial pushout over F (m) : F (L)→F (G).
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B

(1)

L

C G

b

m ⇒IPO in (C1,M1) IPO in (C2,M2)

F (B)

(2)

F (L)

F (C) F (G)

F (b)

F (m)

This leads to the following theorem on creation of transformations by M -functors:

Theorem 2 (Creation of Transformations)
Given an M -functor F : (C1,M1)→ (C2,M2) with initial pushouts in (C1,M1), which creates
morphisms and preserves initial pushouts, then F creates applicability of productions, direct
transformations, as well as parallel and sequential independence of transformations.

Proof.
1. F creates applicability of productions
Given ρ = (L l←−K r−→ R) and match m′ : F (L)→F (G), s.t., F (ρ) is applicable to m′. Since F
creates morphisms we have a unique m : L→ G with F (m) = m′. Let (1) be an initial pushout
over m in the diagram below. By assumption on F , (2) is initial pushout over F (m) and
(4),(5) are POs. This means, that F (ρ) is applicable to m′ = F (m). According to Remark 3,
this implies the existence of b′′ : F (B)→F (K) in M2 with F (l)◦b′′ = F (b).

L K RB

C G D H

(3) (6)(1)

l r

m

b′

a

b

⇐
F (L) F (K) F (R)F (B)

F (C) F (G) D′ H ′

(4) (5)(2)

F (l) F (r)

m′

b′′

F (b)

F (a)

Since F creates morphisms there is a unique morphism b′ : B→ K with F (b′) = b′′. More-
over, uniqueness of creation of morphisms implies l◦b′= b and hence b′ ∈M1 by decomposition
property of M1. Hence the gluing condition is satisfied and we have applicability of ρ to G with
match m : L→ G and F (m) = m′ with pushout complement D in (3).

2. F creates direct transformations

Given the direct transformation F (G)
F (ρ),m′
=⇒ H ′ in AS2 by pushouts (4) and (5) in (C2,M2).

We have already constructed pushout (3) in (C1,M1) and can construct pushout (6) along
r ∈M1 leading to a direct transformation G

ρ,m
=⇒ H. Since F preserves pushouts along M -

morphisms and pushout complements in (C2,M2) and they are unique up to isomorphism. We

have F (D)∼= D′, F (H)∼= H ′ and hence also F (G)
F (ρ),F (m)

=⇒ F (H) in AS2.

3. F creates parallel (sequential) independence

By parallel independence of F (H1)
F (ρ1),F (m1)⇐= F (G)

F (ρ2),F (m2)
=⇒ F (H2) in AS2 we have mor-
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phisms d′12 : F (L1)→ F (D2) with F (l∗2) ◦ d′12 = F (m1) and d′21 : F (L2)→ F (D1) with
F (l∗1) ◦ d′21 = F (m2) leading to corresponding morphisms d12 : L1 → D2 and d21 : L2 → D1
with l∗2 ◦ d12 = m1 and l∗1 ◦ d21 = m2, because F creates morphisms uniquely and preserves
composition.

Remark 4 For the case described in the Remark 1 we have to show for Theorem 1 that F
translates pushouts of M1-morphisms in (C1,M1) into pushouts of M2-morphisms in (C2,M2).
For Theorem 2 we need in addition, that F creates M -morphisms, i.e., for each (m′ : F (L)→
F (G)) ∈M2 there is exactly one morphism (m : L→ G) ∈M1 with F (m) = m′ and F pre-
serves initial pushouts over M1-morphisms. Note, that we cannot replace the M -adhesive cate-
gories (Ci,Mi) for i = 1,2 by (Ci|Mi ,Mi), because (Ci|Mi ,Mi) are in general not M -adhesive.

5 Translation and Creation of Petri Net Transformations

According to our overall aim in Section 1 we want to construct a functor from Petri nets to typed
attributed graphs and show how to apply the main results of Theorem 1 and Theorem 2 in order
to translate and create Petri net transformations using graph transformations. For this purpose
we review on one hand the M -adhesive categories (PTINet,M1) of Petri nets with individual
tokens and class M1 of all injective morphisms, which is defined and shown to be M -adhesive
in [MGE+09]. On the other hand we review typed attributed graphs (AGraphsATG,M2), which
are shown to be M -adhesive in [EEPT06] and we define a suitable attributed Petri net type graph
AT G = PNT G. Moreover we construct a functor F between both categories, which, however,
is only defined on injective morphisms M1.

Note, that we do not use Petri nets with “classical initial markings”, known as Petri net systems
[Rei85], because the corresponding M -adhesive category requires a class M leading to Petri net
rules which are marking preserving. Marking preserving rules are not adequate to model firing
steps as direct transformations since tokens must not be created or deleted. Other choices for
(C1,M1) would be Petri nets without initial marking or algebraic high-level nets (see [EEPT06,
Rei85, MGE+09]).

In fact, we can construct a functor F : PTINet|M1 → AGraphsPNTG|M2 between the cate-
gories restricted to M -morphisms, but not an M -functor F : (PTINet,M1)→ (AGraphsPNTG,
M2), because F is not well-defined on non-injective morphisms (see counterexample in Figure 1
below, where F ( f ) does not preserve attributes in and wpre). This means, we proceed as dis-
cussed in Remark 4, which allows the application of Theorem 1 and Theorem 2 in order to obtain
translation and creation of Petri net transformations with injective morphisms. For application
of Theorem 1 we need steps 1.-5., and for Theorem 2 in addition steps 6. and 7.

1. Definition of Petri nets with individual Tokens: PTINet.

2. Definition of typed attributed graphs over Petri net type graph PNT G: AGraphsPNTG.

3. Translation of PTI nets into PNT G-typed attributed graphs (definition of functor F on
objects).

4. Translation of restricted PTINet-morphisms into restricted AGraphsPNTG-morphisms (def-
inition of functor F : PTINet|M1 → AGraphsPNTG|M2 on morphisms).
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5. F translates pushouts of M1-morphisms in (PTINet,M1) into pushouts of M2-morphisms
in (AGraphsPNTG,M2).

6. F creates M1-morphisms.

7. F preserves initial pushouts over M1-morphisms.

Figure 1: Counterexample for general (non-injective) morphisms

5.1 Petri Nets with Individual Tokens: PTINet

For classical place / transition (P/T) nets N we adopt the approach of Meseguer and Montanari
[MM90] using free commutative monoids P⊕ over P, where N = (P,T, pre, post) with places P,
transitions T , functions pre, post : T → P⊕ and markings M ∈ P⊕.
Petri nets NI =(P,T, pre, post, I,m) with individual tokens are place/transition nets N =(P,T, pre,
post) together with a set I of individual tokens and a marking function m : I→P assigning a place
m(x) ∈ P to each x ∈ I. Therefore two (or more) different individual tokens x,y ∈ I may be on
the same place, i.e. m(x) = m(y), while in the standard “collective token approach” the marking
M ∈ P⊕ tells us only how many tokens we have on each place, but we are not able to distinguish
between two tokens on the same place.

A formal definition of a Petri net with individual tokens is as follows ([MGE+09]).

Definition 8 (Petri Net with Individual Tokens)
A Petri net with individual tokens NI = (P,T, pre, post, I,m) is given by a classical P/T net
N = (P,T, pre : T → P⊕, post : T → P⊕), where P⊕ is the free commutative monoid over P, a
(possibly infinite) set of individual tokens I, and the marking function m : I → P, assigning to
each individual token x ∈ I the corresponding place m(x) ∈ P.

PTINet-morphisms now define not only a mapping between two P/T nets but also between
their individual tokens:

Definition 9 (PTINet-Morphism)
A PTINet-morphism f : NI1→ NI2 is given by a triple of functions f = ( fP : P1→ P2, fT : T1→
T2, fI : I1→ I2), such that the following diagrams commute with pre and post respectively.
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Translation and Creation of Transformations

T1

=

P1
⊕

T2 P2
⊕

pre1

post1
fT fP

⊕

pre2

post2

I1

=

P1

I2 P2

m1

fI fP

m2

It is also shown in [MGE+09], that (PTINet,M1) with the class M1 of all injective morphisms
is an M -adhesive category, where pushouts and pullbacks are constructed componentwise (see
Figure 2, where (1) is an example for a pushout in (PTINet,M1), with individual tokens colored
in black).

Figure 2: PO in PTINet

In the following we only consider the restriction of PTINet to M1-morphisms, PTINet|M1 , in
order to define the functor F in Subsection 5.4, because F is not well-defined on general mor-
phisms. But we use the M -adhesive category (PTINet,M1) in order to define pushouts, because
(PTINet|M1 ,M1) is not M1-adhesive due to the well-known fact, that the induced morphism of
M1-morphisms is in general not an M1-morphism.

5.2 Typed Atributed Graphs over Petri Net Type Graph PNTG

According to [EEPT06] the category (AGraphsATG,M2) of typed attributed graphs with class
M2 of all injective morphisms with isomorphism on the data type part is M -adhesive, where
pushouts along M2-morphisms are constructed componentwise in the graph part.
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Place Token

Trans nat

token2place

place2trans

trans2place weightpost

weightpre

in

out

Place Token

Trans
in : nat
out : nat

place2trans
weightpre : nat

trans2place
weightpost : nat

token2place

Σ−nat sorts : nat
opns : z :→ nat

succ : nat→ nat

NAT NATnat = N
znat = 0 ∈ N
succnat : N→ N x 7→ x+1

Figure 3: Type graph PNTG with data type signature Σ−nat and algebra NAT

Objects in AGraphs are pairs (G,D) of an E-Graph G with sig-
nature E (shown to the right), and Σ−nat data type D, where in
the following we only use D = TΣ−nat ∼= NAT . This means, G
is given by G = (V G

G ,V G
D = N,EG

G ,E
G
NA,E

G
EA,(s

G
j , t

G
j ) j∈{G,NA,EA}),

where V G
G resp. V G

D are the graph resp.-data nodes of G, EG
G , EG

NA,

EG VG

ENA

VD

EEA

sG

tG sNA

tNA

sEA

tEA

resp. EG
EA are the graph edges resp. node attribute and edge attribute edges of G and sG

j , t
G
j are

corresponding source and target functions for the edges.
In our case, the type graph ATG is the Petri net type graph PNTG shown in Figure 3 with

data type signature Σ−nat and algebra TΣ−nat ∼= NAT for rules and graphs, where the E-Graph
of PNTG is shown on the left and its attribute notation on the right of Figure 3. Objects
in AGraphsPNTG are pairs (AN, type) with attributed graph AN = (G,D) with D = NAT and
AGraphs-morphism type : (G,D)→ (PNTG,Dfin) with final Σ−nat data type Dfin. Morphisms in
AGraphsPNTG are defined componentwise and are type compatible with morphisms in AGraphs.
Four sample morphisms in AGraphsPNTG are shown in Figure 4, where a pushout is constructed.

5.3 Translation of PTI Nets into PNTG-typed Attributed Graphs

A formal definition of the functor F on objects is given as follows.

Definition 10 (Translation of PTINet-Objects)
Given a PTI net NI = (P,T, pre, post, I,m). We define the object F (NI) = ((G,NAT ), type) in
AGraphsPNTG with type : (G,NAT )→ (PNT G,D f in) and G = (V G

G ,V G
D = N,EG

G ,E
G
NA,E

G
EA,

(sG
j , t

G
j ) j∈{G,NA,EA}) as follows, where we use the following abbreviations: token2place , to2p,

place2trans, p2t, trans2place, t2p,weightpre ,wpre,weightpost ,wpost and pre(t)(p)= nP ∈
N for pre(t) = ∑p∈P nP · p ∈ P⊕ and similar for post(t)(p).
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Figure 4: PO in AGraphsPNTG

V G
G = P]T ] I

EG
G = EG

to2p]EG
p2t ]EG

t2p with

EG
to2p = {(x, p) ∈ I×P | m(x) = p} , EG

p2t = {(p, t) ∈ P×T | pre(t)(p)> 0} and

EG
t2p = {(t, p) ∈ T ×P | post(t)(p)> 0}

EG
NA = EG

in ]EG
out with

EG
in = {(t,n, in) | (t,n) ∈ T ×N∧|• t|= n} ,

EG
out = {(t,n,out) | (t,n) ∈ T ×N∧|t • |= n} ,

where •t and t• are the pre- and post-domains of t ∈ T with cardinalities | • t| and |t • |.
EG

EA = EG
wpre
]EG

wpost
with

EG
wpre

=
{
(p, t,n) ∈ EG

p2t ×N | pre(t)(p) = n
}

EG
wpost

=
{
(t, p,n) ∈ EG

t2p×N | post(t)(p) = n
}

sG
G, t

G
G : EG

G →V G
G defined by sG

G(a,b) = a resp. tG
G(a,b) = b

sG
NA : EG

NA→V G
G , tG

NA : EG
NA→ N defined by sG

NA(t,n,x) = t resp. tG
NA(t,n,x) = n

sG
EA : EG

EA→ EG
G defined by sG

EA(p, t,n) = (p, t) and sG
EA(t, p,n) = (t, p)

tG
EA : EG

EA→ N defined by tG
EA(p, t,n) = n and tG

EA(t, p,n) = n
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The corresponding type-morphism is given in Definition 11 below.

An example for using the functor F on objects is shown in Figure 4, where the four typed
attributed graphs are translations of the corresponding four PTI nets in Figure 2.

Definition 11 (AGraphsPNTG-Morphism type)
The AGraphsPNTG-morphism type : (G,NAT )→ (PNT G,D f in) is given by final morphism of
data types and typeG : G→ PNT G given by E-graph morphism typeG = (typeVG , typeVD , typeEG ,
typeENA , typeEEA) where

typeVG : V G
G →V PNT G

G with x 7→ Place (x ∈ P), x 7→ Trans (x ∈ T ), x 7→ Token (x ∈ I)

typeVD : N→ D f innat with x 7→ nat (x ∈ N)
typeEG : EG

G → EPNT G
G with x 7→ y for x ∈ EG

y and y ∈ {to2p, p2t, t2p}
typeENA : EG

NA→ EPNT G
NA with x 7→ y for x ∈ EG

y and y ∈ {in,out}
typeEEA : EG

EA→ EPNT G
EA with x 7→ y for x ∈ EG

y and y ∈ {wpre,wpost}

5.4 Translation of Restricted PTINet-Morphisms into Restricted
AGraphsPNTG-Morphisms

We now define the functor F : PTINet|M1 → AGraphsPNTG|M2 on injective morphisms. A
counterexample for the translation of non-injective morphisms is given in Figure 1, examples for
injective morphisms in Figure 2 and corresponding translated morphisms in Figure 4.

Definition 12 (Translation of PTINet-Morphisms)
For each PTINet-morphism f : NI1 → NI2 with f = ( fP, fT , fI) ∈M1, i.e. fP, fT , fI injective,
we define F ( f ) : F (NI1)→F (NI2) where
F (NIi) = (ViG,N,EiG,EiNA,EiEA,(si j, ti j) j∈{G,NA,EA}) with i = 1,2
by F ( f ) = f ′ = ( f ′VG

, f ′VD
, f ′EG

, f ′ENA
, f ′EEA

) with

f ′VG
: V1G→V2G with ViG = Pi]Ti] Ii for i = 1,2 by f ′VG

= fP] fT ] fI

f ′VD
: N→ N by f ′VD

= idN
f ′EG

: E1G→ E2G with EiG = Eito2p]Ei p2t ]Eit2p by

f ′EG
(x, p) = ( fI(x), fP(p)) for (x, p) ∈ E1to2p

f ′EG
(p, t) = ( fP(p), fT (t)) for (p, t) ∈ E1 p2t

f ′EG
(t, p) = ( fT (t), fP(p)) for (t, p) ∈ E1t2p

f ′ENA
: E1NA→ E2NA with EiNA = Eiin]Eiout by

f ′ENA
(t,n, i) = ( fT (t),n, i) for (t,n, i) ∈ E1in]E1out ∧ i ∈ {in,out}

f ′EEA
: E1EA→ E2EA with EiEA = Eiwpre ]Eiwpost by

f ′EEA
(p, t,n) = ( fP(p), fT (t),n) for (p, t,n) ∈ E1wpre

f ′EEA
(t, p,n) = ( fT (t), fP(p),n) for (t, p,n) ∈ E1wpost

13 / 18 Volume 40 (2011)



Translation and Creation of Transformations

Lemma 1 (Well-Definedness of Morphism Translation)
For each f : NI1→ NI2 in PTINet with f ∈M1 is F ( f ) : F (NI1)→F (NI2) in AGraphsPNTG
well-defined with F ( f ) ∈M2. Moreover F preserves inclusions.

Proof.
A detailed proof is given in [MEE11] showing the following steps:

1. f ′VG
, f ′VD

, f ′EG
, f ′ENA

, f ′EEA
are well-defined w.r.t. codomain.

2. The components of F ( f ) are compatible with sources and targets.

3. The components of F ( f ) are compatible with typing morphisms.

4. f ∈M1 (inclusion) implies F ( f ) ∈M2 (inclusion).

5.5 Translation of Pushouts

We have to show, that if (1) is a PO in PTINet with fi ∈M1, then we have that (2) is a PO in
AGraphsPNTG with F ( fi) ∈M2.

NI0

(1)

NI1

NI2 NI3

f1

f2 f4

f3

F (NI0)

(2)

F (NI1)

F (NI2) F (NI3)

F ( f1)

F ( f2) F ( f4)

F ( f3)

Since POs in PTINet are constructed componentwise, we know that the P-, T - and I-components
of (1) are POs in Sets. Since also POs in AGraphsATG and AGraphsPNTG are constructed com-
ponentwise we have to show that the VG-, VD-, EG-, ENA- and EEA-components of (2) are POs in
Sets. This is clear for the VG-components fiVG

= fiP] fiT ] fiI , because POs are compatible with
coproducts and for fiD, because all components are identities. For the EG-component we have
to show, that (3) is PO in Sets, which follows if (4) and similar (4a) resp. (4b) with “to2p” and
“ fiI× fiP” replaced by “p2t” and “ fiP× fiT ” resp. “t2p” and “ fiT × fiP” are POs.

E0G

(3)

E1G

E2G E3G

F ( f1)G

F ( f2)G F ( f4)G

F ( f3)G

E0to2p

(4)

E1to2p

E2to2p E3to2p

f1I× f1P

f2I× f2P f4I× f4P

f3I× f3P

For the ENA- and EEA components, it is sufficient to show POs (5) and (6) and similar (5a)
with “in” replaced by “out” and (6a) with “pre” replaced by “post”.

E0in

(5)

E1in

E2in E3in

f1T × idN

f2T × idN f4T × idN

f3T × idN

E0wpre

(6)

E1wpre

E2wpre E3wpre

f1P× f1T

f2P× f2T f4P× f4T

f3P× f3T
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All these diagrams commute, because each product component commutes by assumption.
But it is more difficult to show explicitly, that they are POs (see for example Lemma 2 below),
because products of POs are in general not POs. An example is the translation of the PO in
PTINet shown in Figure 2 to the PO in AGraphsPNTG shown in Figure 4.

Lemma 2 (Translation of Pushouts)
Diagrams (4) and (4a) are pushouts.
Proof. See [MEE11].

5.6 Creation of Injective Morphisms

Given F (NI1),F (NI2) and f ′ : F (NI1)→F (NI2) ∈M2 with type compatible morphisms

f ′VG
: V1G→V2G with ViG = Pi]Ti] Ii for i = 1,2

f ′VD
: N→ N with f ′VD

= idN
f ′EG

: E1G→ E2G with EiG = Eito2p]Ei p2t ]Eit2p

f ′ENA
: E1NA→ E2NA with EiNA = Eiin]Eiout

f ′EEA
: E1EA→ E2EA with EiEA = Eiwpre ]Eiwpost

Define f : NI1→ NI2 with NI j = (Pj,Tj, pre j, post j, I j,m j) for j = 1,2 by
f = ( fP : P1→ P2, fT : T1→ T2, fI : I1→ I2) with

fT (t) = f ′VG
(t) for t ∈ T1 ⊆V1G

fP(p) = f ′VG
(p) for p ∈ P1 ⊆V1G

fI(x) = f ′VG
(x) for x ∈ I1 ⊆V1G

Well-definedness of f : NI1 → NI2 ∈M1 follows from Lemma 3 below, where the proof of
part 2 is based on Lemma 4. The proofs of both Lemma are given in [MEE11].

Lemma 3 (Well-Definedness of Creation of Injective
Morphisms)
Given the construction above for f : NI1 → NI2. The
following holds:

1. f ′VG
(t) ∈ T2, f ′VG

(p) ∈ P2, f ′VG
(x) ∈ I2, and

2. squares (1),(2) to the right commute with injec-
tive fP, fT , fI .

T1

(1)

P1
⊕

T2 P2
⊕

pre1

post1

fT fP
⊕

pre2

post2

I1

(2)

P1

I2 P2

m1

fI fP

m2

Lemma 4 (PTI-Morphism-Lemma)
f : NI1→ NI2 is an injective PTINet-morphism⇔
f = ( fP, fT , fI) is injective with 1−4, where

1. ∀t ∈ T1.p ∈ •t⇔ fP(p) ∈ • fT (t) and ∀t ∈ T1.p ∈ t•⇔ fP(p) ∈ fT (t)•

2. ∀(p, t) ∈ P1⊗T1 = E1 p2t . (p, t,n) ∈ E1wpre ⇔ ( fP(p), fT (t),n) ∈ E2wpre and
∀(t, p) ∈ T1⊗P1 = E1t2p. (t, p,n) ∈ E1wpost ⇔ ( fT (t), fP(p),n) ∈ E2wpost
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3. ∀t ∈ T1.
card(•t) = n⇔ card(• fT (t)) = n and card(t•) = n⇔ card( fT (t)•) = n with
•t = {p ∈ P1 | pre1(t)(p)> 0} and t•= {p ∈ P1 | post1(t)(p)> 0}

4. ∀x ∈ I1.(x, p) ∈ E1to2p⇔ ( fI(x), fP(p)) ∈ E2to2p

5.7 Preservation of Initial Pushouts

The proof of this property is based on the initial PO constructions for PTINet in [MGE+09]
and for AGraphsATG in [EEPT06]. Details of the proof are given in [MEE11]. An example
is given in Figure 5, where (1) is an initial PO over f in PTINet, (2) the induced PO over
F ( f ), and the initial PO over F ( f ) in AGraphsPNTG is given by the outer diagram with corners
B′,C′,F (L),F (G). Since i′ and j′ are isomorphisms, diagram (2) is already initial PO over
F ( f ).

Figure 5: Preservation of Initial Pushouts

6 Conclusion and Future Work

As pointed out already in Section 1 we want to develop a general framework to establish a for-
mal relationship between different M -adhesive transformation systems based on M -adhesive
categories. The main idea is to construct a suitable M -functor between the corresponding M -
adhesive categories, which translates pushouts, creates morphisms and preserves initial pushouts.
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This allows by Theorem 1 and Theorem 2 the translation and creation of transformations between
the corresponding M -adhesive transformation systems, including parallel and sequential inde-
pendence of transformations. Moreover, we have discussed the restriction to injective matches
via M1-morphisms, which requires only a functor for M1-morphisms.
In Section 5 we have discussed a corresponding functor from Petri nets with individual tokens to
typed attributed graphs. We have verified that this functor translates pushouts of M1-morphisms,
creates M1-morphisms and preserves initial pushouts over M1-morphisms, which allows the ap-
plication of Theorem 1 and Theorem 2 in connection with Remark 4.

In future work, we will provide sufficient conditions in order to ensure that the M−functor
preserves initial pushouts2. In the long run, this should allow the analysis of interesting prop-
erties of Petri net transformation systems, like termination and local confluence in addition to
parallel and sequential independence, using corresponding results and analysis tools like AGG
for graph transformation systems. Moreover, it is interesting to study the relationship between
other M -adhesive transformation systems using this approach, e.g. high-level Petri nets and
typed attributed graphs as well as triple graphs and flattening of triple graphs.

Acknowledgements: Some of the authors are partly supported by the German Research Coun-
cil project Behaviour Simulation and Equivalence of Systems Modelled by Graph Transformation
(Behaviour-GT).
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