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Abstract: Various kinds of graph transformations and Petri net transformation sys-
tems are examples of .# -adhesive transformation systems based on .# -adhesive
categories, generalizing weak adhesive HLR categories. For typed attributed graph
transformation systems, the tool environment AGG allows the modeling, the simu-
lation and the analysis of graph transformations. A corresponding tool for Petri net
transformation systems, the RON-Environment, has recently been developed which
implements and simulates Petri net transformations based on corresponding graph
transformations using AGG. Up to now, the correspondence between Petri net and
graph transformations is handled on an informal level. The purpose of this paper is
to establish a formal relationship between the corresponding .# -adhesive transfor-
mation systems, which allow the translation of Petri net transformations into graph
transformations with equivalent behavior, and, vice versa, the creation of Petri net
transformations from graph transformations. Since this is supposed to work for dif-
ferent kinds of Petri nets, we propose to define suitable functors, called .# -functors,
between different .# -adhesive categories and to investigate properties allowing us
the translation and creation of transformations of the corresponding .# -adhesive
transformation systems.

Keywords: .7 -adhesive transformation system, equivalence, graph transformation,
Petri net transformation, .# -adhesive category

1 Introduction

Modeling the adaptation of a dynamic system to a changing environment gets more and more im-
portant. Application areas cover e.g. computer supported cooperative work, multi agent systems
or mobile networks. One approach to combine formal modeling of dynamic systems and con-
trolled model adaption are reconfigurable Petri nets. The main idea is the stepwise development
of place/transition nets by applying net transformation rules [EHP 08, PEHP08]. This approach
increases the expressiveness of Petri nets and allows in addition to the well known token game a
formal description and analysis of structural changes.

Rule-based Petri net transformation is related to graph transformation [EEPTO06]. For typed
attributed graph transformation systems, the well-established tool AGG [AGG09] allows the
modeling, the simulation and the analysis of graph transformations. Recently, a tool for recon-
figurable Petri nets, called RON-Tool [TFS07, BEHMO7] (Reconfigurable Object Nets), exe-
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cutes and analyzes Petri net transformations based on corresponding graph transformations us-
ing AGG. As a matter of fact, the correspondence between Petri net and graph transformations
is handled on an informal level up to now. Since both graph and net transformation systems
are formally defined, the aim of this paper is to propose formal criteria ensuring a semantical
correspondence of reconfigurable Petri nets and their corresponding representations as graph
transformation systems.

An ./ -adhesive transformation system is a general categorical transformation framework
based on ./ -adhesive categories, which rely on a class .# of monomorphisms, generalizing
weak adhesive HLR categories. The double-pushout approach, based on categorical construc-
tions, is a suitable description of transformations leading to results like the Local Church-Rosser,
Parallelism, Concurrency, Embedding, Extension, and Local Confluence Theorems [EEPT06].

A set of rules over an . -adhesive category according to the double-pushout approach consti-
tutes an . -adhesive transformation system [EGH10].

Aiming for a more general approach to ensure a semantical correspondence of different trans-
formation systems, we establish a formal relationship between two corresponding .# -adhesive
transformation systems. This correspondence allows us especially the translation of Petri net
transformations into graph transformations and, vice versa, the creation of Petri net transforma-
tions from graph transformations in order to analyze the behavior of Petri net transformation
systems by analyzing their translation in terms of typed attributed graph transformation sys-
tems using the tool AGG [AGG09]. We propose to define suitable functors, called .# -functors,
between different ./ -adhesive categories and to investigate properties, which allow us the trans-
lation and creation of transformations of the corresponding .7 -adhesive transformation systems.

The paper is structured as follows: Section 3 introduces the formal notions .7 -adhesive trans-
formation systems and .# -functors. The first main result given in Section 4 states that an .Z -
functor translates rules in a way that applicablility and transformation results are translated as
well. Vice versa, the second main result states that an .# -functor also creates applicability of
rules in the other direction. Section 5 applies these new main result to the translation and creation
of Petri net transformations by constructing and analyzing an . -functor from the category of
place/transition nets to the category of typed attributed graphs with corresponding type graph'.
In Section 6, we conclude and propose interesting future research directions.

2 Related Work

In [MMO90], Meseguer and Montanari represented Petri nets as graphs equipped with operations
for composition of transitions. They introduced categories for Petri nets with and without initial
markings and functors expressing duality and invariants. Their constructions provide a formal
basis for expressing concurrency in terms of algebraic structures over graphs and categories.
Based on categorical Petri nets, in [DS02], Petri nets are related to automata with concurrency
relations by establishing a correspondence as coreflection between the associated categories. A
first approach to relate Petri nets and graph transformation systems has been proposed by Kre-
owski in [Kre81], where Petri net firing behavior is expressed by graph transformation rules. In
our approach, we want to consider Petri net transformations in addition. Moreover, we aim for a

1 For the results in Section 5, we give only proof ideas. More detailed proofs are given in [MEEI1].
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more general approach that establishes a semantical correspondence not only between Petri net
and graph transformation systems but between any kind of formally defined rule-based transfor-
mation systems that can be generalized as .# -adhesive transformation systems.

In order to transform not only graphs, but also high-level structures as Petri nets and alge-
braic specifications, high-level replacement (HLR) categories were established in [EHKP91a,
EHKP91b], which require a list of so-called HLR properties to hold. They were based on a
morphism class .# used for the rule morphisms. This framework allowed a rich theory of trans-
formations for all HLR categories, but the HLR properties were difficult and lengthy to verify
for each category. Combining adhesive categories [L.SO4] and HLR categories lead to (weak)
adhesive HLR categories in [EHPP06] and to .# -adhesive categories in [EGH10], where a sub-
class .# of monomorphisms is considered and only pushouts over . -morphisms have to fulfill
the van Kampen property (a certain compatibility of pushouts and pullbacks). Not only many
kinds of graphs, but also different kinds of place/transition nets and algebraic high-level nets are
A -adhesive and also weak adhesive HLR categories which allows the application of the theory
to all these kinds of structures [EEPT06, PE07, MGE109]. In fact, all results in [EEPT06] for
weak adhesive HLR categories are also valid for .# -adhesive categories [EGH10].

3 ./ -Adhesive Categories, Transformation Systems and .Z -Functors

An ./ -adhesive category [EGH10], consists of a category C together with a class .# of monomor-
phisms as defined in Definition 1 below. The concept of .# -adhesive categories generalises that
of weak adhesive, adhesive HLR and adhesive categories [LS04]. The category of typed at-
tributes graphs and several categories of Petri nets are weak adhesive HLR (see [EEPT06]) and
hence also .# -adhesive.

Definition 1 (.#-Adhesive Category)
An . -adhesive category (C,.#) is a category C together with a class .# of monomorphisms
satisfying

e C has pushouts (POs) and pullbacks (PBs) along .# -morphisms,

e _/ is closed under composition, decomposition, POs and PBs,

e POs along .# -morphisms are .#-VK-squares, i.e. Al m

. / | B/
the VK-property holds for all commutative cubes, where f 1
the given PO with m € .# is in the bottom, the back faces ¢ 7’ g lb
are PBs and all vertical morphisms a,b,c and d are in ./ . D _A-.M
The VK-property means that the top face is a PO iff the ¢ ! - "[ 2 B
front faces are PBs. cZl d /

n D

Definition 2 (.#-Adhesive Transformation System and Independence)
Given an ./ -adhesive category (C,.Z).

e An ./ -adhesive transformation system AS = (C,.#,P) has in addition a set P of produc-
tions of the form p = (L LrL R) withl,re /.
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A direct transformation G 22 H via production p and L R
match m consists of two POs (1) and (2) as shown in the

diagram to the right, where n : R — H is called comatch of l (1) l (2) ln
m. A production p is applicable via m to G, if we have a G D H
PO complement D in (1), such that (1) becomes a PO.

e Two (direct) transformations G AR Hy and G 2 H, are called parallel independent, if

there are morphisms dyo : L1 — Dz, d>1 : Ly — Dy such that [*{ ody; = my and [*50dp =

ml. Dually G2 H; and H pEG H, are sequentlally 1ndependent if Hy pl:& G and

-1

H, e H, are parallel independent, where p; ~" = (R, &K hy L) and n; is the comatch

Ofml.

R1<—K1—>L1 L2<—K2—>R2
l l B \\ / e l l
L’ m S
H H,

In order to study translation and creation of transformations between different .# -adhesive
transformation systems we introduce the notion of an .Z -functor. An . -functor establishes a
semantical correspondence between different .# -adhesive transformation systems.

Definition 3 (. -Functor)
A functor % : (Cy,.#1) — (C,,.#>) between . -adhesive categories is called .# -functor, if
F (M) C M, and F preserves pushouts along .# -morphisms.

On purpose we don’t require that an ./ -functor preserves pullbacks along .# -morphisms,
VK-squares, or other properties, but later additional properties of .%# will be required in order to
achieve specific results.

Remark 1

If we want to consider only (direct) transformations with injective matches, as in the case of
Petri net transformations in the next section, then it is sufficient to define the functor .% on
injective morphisms only. Moreover, this restriction is necessary, if .% is not well-defined for
non-injective morphisms.

For this case we need to define a special kind of an . -functor: a restricted .# -functor.

Definition 4 (Restricted .# -Functor)

A functor .# : Cy| 4, — Ca| 4 between .# -adhesive categories (Cy,.#}) and (C,, .#>) with
Ci|.4 the restriction of C; to .Z;-morphisms for i = 1,2 is called a restricted .# -functor, if
F (M) C > and F translates POs along .#-morphisms in (Cy,.#)) into POs along .-
morphisms in (Cy, .#53).
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4 Translation and Creation of Transformations

To obtain a semantical correspondence between any two transformation systems we need to en-
sure that the respective transformation systems together with their relevant properties are trans-
lated and reflected properly.

Given an . -adhesive transformation system AS; = (Cy,.#,,P;) with an .# -adhesive cat-
egory (Cy,.#)) and productions P;. We want to translate transformations from AS; to AS, =
(Cyo, >, Py) with . -adhesive category (C,,.#/,) and suitable productions P. This can be done
using an .# -functor .Z : (Cy,.#1) — (Cy, #) for P, = .7 (Py).

Theorem 1 (Translation of Transformations)
An M -functor F : (Cy,.#1) — (Cy,.#>) translates applicability of productions, construction
of (direct) transformations , as well as parallel and sequential independence of transformations.

Proof.
ASy = (Cy, Mo, F (P)) is a well-defined . -adhesive transformation system, because .% trans-

lates .#-morphisms into .#,-morphisms for the productions and each direct transformation

G 22 H in AS; given by pushouts (1) and (2) leads to a direct transformation .7 (G) #) L

F (H) in AS; given by pushouts (3) and (4), because .# preserves pushouts along .# -morphisms.

DL 70" 72 7 (R)
ml ) l @ l = s @ | @ |
G D H F(G) < F(D) > Z(H)

Moreover, the functor property of .# implies that .% translates parallel and sequential indepen-
dence of transformations. ]

As shown above, we need for translation of transformations from AS; to AS, only the basic
properties of an .# -functor. This is no longer true for creation of transformations in AS; from
transformations in AS, with P, = % (P;) as above.

Definition S (Creation of Applicability and Direct Transformations)

1. An .Z-functor .% : (Cy,.#1) — (C,,.#>) creates applicability of a production p = (L L
K 5 R) to object G, if applicability of .Z(p) to . (G) with match m’ : .Z (L) — .7 (G)

implies applicability of p to G with some match m : L — G and % (m) = m'.

2. .7 creates direct transformations, if for each direct transformation .% (G) 2L pt in AS>

there is a direct transformation G 22 H in AS; with .Z (m) = m’ and .Z (H) = H' leading

0 7(G) 7 2ZL" Z(H) in AS,:
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70" 27 7 (r) L<~t—Kk—">R
ml miel = e e
FG) <D - B G---D---or oI

3. % creates parallel (and similarly sequential) independence, if parallel independence of
7(p), 7 7 7 . . . . m
F(Hy) FeLZm) g (G) TPk L m) g (H,) in AS; implies parallel independence of H; gl

p2,m>

G'= H, in AS).
Remark 2
If F creates parallel (sequential) independence, then .% characterises parallel (sequential) in-
dependence, i.e., parallel (sequential) independence in AS; is equivalent to parallel (sequential)

independence in AS,, because .# already preserves parallel (sequential) independence by Theo-
rem 1.

In the following we formulate the properties for an .# -functor .%, such that we have cre-
ation of applicability, direct transformations and parallel (sequential) independence. But first we
review the notion of initial pushouts motivated by Remark 3 below.

Definition 6 (Initial Pushout) h
Given a morphism f : G — G’ in an ./#-adhesive category B q
(C,.#). (1) is an initial pushout (IPO) over f with boundary b TB— G
B, context C and b,c € A, if (2) k’t (3) lk (1) lf
(1)isPO AV POs (2) over f(defined by the outer diagram) with LC-S o
h,hIEJ//: C =
Ab*:B—B,c*:C—C.hob*=b N Hoc*=cA(3)isaPO. \h//
Remark 3

For each matchm : L — G with initial pushout (4) and b € ./, a . L R
production p = (L iy &R R) is applicable with matchm : L — G, B ) (2) Y %
iff the following “gluing condition” is satisfied: |
there is b’ : B — K in .#, withlob' = b. In this case the pushout al (4) lm (5) 1k
complement D in (5) can be constructed as pushout of b’ € .# c G <--- ;)
and a leading toh : C — D,k : K — D and an induced morphism (1) 4a
d:D — G, s.t., (5) is pushout and (7) commutes (see [EEPT06]). T -

Definition 7 (Properties of .# -Functors)

1. An.#-functor .7 : (Cy,.#1) — (Ca,.#,) creates morphisms, if forall m' : Z (L) — % (G)
in (C,,.#,) there is exactly one morphism m : L — G with % (m) =m'.

2. .7 preserves initial pushouts, if for each initial pushout (IPO) (1) over m : L — G, also (2)
is initial pushout over % (m) : % (L) — % (G).
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B—t1p 7B Y7 w)
IPO in (Cy,.#)) l lm — l (2) lﬂ(m) IPO in (Cy,.#5)
cC——G F(C) - Z(G)

This leads to the following theorem on creation of transformations by . -functors:

Theorem 2 (Creation of Transformations)

Given an M -functor F : (Cy, 1) — (Ca, . #>) with initial pushouts in (Cy,.#\ ), which creates
morphisms and preserves initial pushouts, then F creates applicability of productions, direct
transformations, as well as parallel and sequential independence of transformations.

Proof.

1. .F creates applicability of productions

Given p = (L Ay &8 R) and match m’ : # (L) — Z(G), s.t., F(p) is applicable to m’. Since .#
creates morphisms we have a unique m : L — G with .% (m) = m’. Let (1) be an initial pushout
over m in the diagram below. By assumption on .#, (2) is initial pushout over .% (m) and
(4),(5) are POs. This means, that .% (p) is applicable to m’ = .7 (m). According to Remark 3,
this implies the existence of " : % (B) — .7 (K) in ., with Z (1) ob" = Z(b).

- v

Bt g 26770 Y7107 7 )

la 1) lm ® e = el @ v l 5) l
Y Y

C——>G—--D--->H F(C) > F(G) «— D) — &

Since .% creates morphisms there is a unique morphism 4’ : B — K with .% (b') = b”. More-
over, uniqueness of creation of morphisms implies /o’ = b and hence b’ € .4} by decomposition
property of .#,. Hence the gluing condition is satisfied and we have applicability of p to G with
match m : L — G and .% (m) = m’ with pushout complement D in (3).

2. F creates direct transformations

Given the direct transformation .% (G) 7L it in AS, by pushouts (4) and (5) in (Cy,.#5).

We have already constructed pushout (3) in (Cy,.#)) and can construct pushout (6) along
r € #) leading to a direct transformation G 2% H. Since F preserves pushouts along ./ -
morphisms and pushout complements in (C,,.#5) and they are unique up to isomorphism. We

7 (p).7
have .7 (D) =2 D', #(H) = H' and hence also .% (G) F(2), L) F(H) in AS;.

3. F creates parallel (sequential ) independence

By parallel independence of .7 p«; ) pg( ) Z (H,) in AS; we have mor-

7/18 Volume 40 (2011)



Translation and Creation of Transformations Eﬁ

phisms dj, : .# (L) — # (D) with Z(I*;) od}, = F(m) and d, : F (L) — Z(D;) with
F(I*1) odb, = F (my) leading to corresponding morphisms dj, : Ly — D and da : Ly — D
with "5 odip = my and [*1 o dy; = my, because .% creates morphisms uniquely and preserves
composition. 0

Remark 4  For the case described in the Remark | we have to show for Theorem I that .
translates pushouts of .#/-morphisms in (Cy,.#1) into pushouts of .#,-morphisms in (Cy, . #>).
For Theorem 2 we need in addition, that % creates .4 -morphisms, i.e., for each (m' : % (L) —
F(G)) € M, there is exactly one morphism (m : L — G) € .#, with % (m) =m' and F pre-
serves initial pushouts over .#1-morphisms. Note, that we cannot replace the ./ -adhesive cate-
gories (C;, #;) fori=1,2 by (Ci|. 4, #;), because (C;| 4, #;) are in general not .# -adhesive.

5 Translation and Creation of Petri Net Transformations

According to our overall aim in Section 1 we want to construct a functor from Petri nets to typed
attributed graphs and show how to apply the main results of Theorem 1 and Theorem 2 in order
to translate and create Petri net transformations using graph transformations. For this purpose
we review on one hand the ./ -adhesive categories (PTINet,.#)) of Petri nets with individual
tokens and class .#) of all injective morphisms, which is defined and shown to be .# -adhesive
in [MGE"09]. On the other hand we review typed attributed graphs (AGraphsyrg,.#>), which
are shown to be .# -adhesive in [EEPT06] and we define a suitable attributed Petri net type graph
AT G = PNTG. Moreover we construct a functor .% between both categories, which, however,
is only defined on injective morphisms ..

Note, that we do not use Petri nets with “classical initial markings”, known as Petri net systems
[Rei85], because the corresponding ./ -adhesive category requires a class ./ leading to Petri net
rules which are marking preserving. Marking preserving rules are not adequate to model firing
steps as direct transformations since tokens must not be created or deleted. Other choices for
(C1,.#1) would be Petri nets without initial marking or algebraic high-level nets (see [EEPT06,
Rei85, MGE09)).

In fact, we can construct a functor .# : PTINet| ,, — AGraphspnrg|.4, between the cate-
gories restricted to .# -morphisms, but not an .# -functor .% : (PTINet,.#) — (AGraphspnrg,
), because .# is not well-defined on non-injective morphisms (see counterexample in Figure 1
below, where .7 (f) does not preserve attributes in and w,.). This means, we proceed as dis-
cussed in Remark 4, which allows the application of Theorem 1 and Theorem 2 in order to obtain
translation and creation of Petri net transformations with injective morphisms. For application
of Theorem 1 we need steps 1.-5., and for Theorem 2 in addition steps 6. and 7.

1. Definition of Petri nets with individual Tokens: PTINet.

2. Definition of typed attributed graphs over Petri net type graph PNT G: AGraphspntg.

3. Translation of PTI nets into PNT G-typed attributed graphs (definition of functor .% on
objects).

4. Translation of restricted PTINet-morphisms into restricted AGraphspytg-morphisms (def-
inition of functor .# : PTINet| ,, — AGraphspntg|.4, on morphisms).

Proc. PNGT 2010 8/18



Eg ECEASST

5. 7 translates pushouts of .#}-morphisms in (PTINet,.# ) into pushouts of .Z,-morphisms
in (AGraphspnyg, #2).

6. .# creates .#-morphisms.

7. F preserves initial pushouts over .Z}-morphisms.

pPlace
@ 2 3 @ (p1.t): p2t (p2, t): p2t

t;:Trans

Wpre=2 o=
: w2 |
out=0
Vf ‘ () £ AGraphspxrg
pi2:Place
(P12, 1) p2t
5 Wpre=3
t,:Trans
in=1
out=0)

Figure 1: Counterexample for general (non-injective) morphisms

5.1 Petri Nets with Individual Tokens: PTINet

For classical place / transition (P/T) nets N we adopt the approach of Meseguer and Montanari
[MMO90] using free commutative monoids P® over P, where N = (P, T, pre, post) with places P,
transitions T, functions pre, post : T — P¥ and markings M € P®.

Petrinets NI = (P, T, pre, post,I,m) with individual tokens are place/transition nets N = (P, T, pre,
post) together with a set I of individual tokens and a marking function m : I — P assigning a place
m(x) € P to each x € I. Therefore two (or more) different individual tokens x,y € I may be on
the same place, i.e. m(x) = m(y), while in the standard “collective token approach” the marking
M € P? tells us only how many tokens we have on each place, but we are not able to distinguish
between two tokens on the same place.

A formal definition of a Petri net with individual tokens is as follows ((MGE™09]).

Definition 8 (Petri Net with Individual Tokens)

A Petri net with individual tokens NI = (P, T, pre,post,I,m) is given by a classical P/T net
N = (P,T,pre: T — P¥ post : T — P?), where P? is the free commutative monoid over P, a
(possibly infinite) set of individual tokens /, and the marking function m : I — P, assigning to
each individual token x € I the corresponding place m(x) € P.

PTINet-morphisms now define not only a mapping between two P/T nets but also between
their individual tokens:

Definition 9 (PTINet-Morphism)
A PTINet-morphism f : NI} — NI, is given by a triple of functions f = (fp: P, = P, fr : T —
T, fi : I} — b), such that the following diagrams commute with pre and post respectively.

9/18 Volume 40 (2011)
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prei
T —= p° L =5 p
posty
frl = lfﬁte fll = lfP
prez
T, —= p° L2 p
posty

It is also shown in [MGE09], that (PTINet,.# ) with the class .#; of all injective morphisms
is an ./ -adhesive category, where pushouts and pullbacks are constructed componentwise (see
Figure 2, where (1) is an example for a pushout in (PTINet,.# ), with individual tokens colored
in black).

1

A4

(1

7]
\
c a’ @

2

Y

a (X ‘

Figure 2: PO in PTINet

In the following we only consider the restriction of PTINet to ./ -morphisms, PTINet| 4, , in
order to define the functor .% in Subsection 5.4, because % is not well-defined on general mor-
phisms. But we use the . -adhesive category (PTINet,.#) ) in order to define pushouts, because
(PTINet| ,,,.#,) is not .#,-adhesive due to the well-known fact, that the induced morphism of
-morphisms is in general not an .#-morphism.

5.2 Typed Atributed Graphs over Petri Net Type Graph PNTG

According to [EEPTO06] the category (AGraphsarg,.#5) of typed attributed graphs with class
> of all injective morphisms with isomorphism on the data type part is .# -adhesive, where
pushouts along .#,-morphisms are constructed componentwise in the graph part.

Proc. PNGT 2010 10/18
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Place rokenplace Token Place rokeplace Token
placedtrans trans2place place2trans
trans2place weight post L weight o : nat weightpre : nat
LTI
weight pre ; v
in P Trans
_________ i —_
TransCZZ-””__"C 3 nat | in : nat
out 1 | A
-—-- out : nat
Y. —nat | sorts: nat NAT | NAT,,; =N
opns: z:— nat Znat =0 €N
succ : nat — nat succpgt - N—-N  x+—>x+1

Figure 3: Type graph PNTG with data type signature X — nat and algebra NAT

Objects in AGraphs are pairs (G, D) of an E-Graph G with sig- Eg ¢, Vo
nature E (shown to the right), and ¥ — nat data type D, where in SEA fe SNA
the following we only use D = Ty_,,, = NAT. This means, G / \

‘o ol _ (yG yG _ G G G (G (G

is given by G = (Vg,Vy = N EG, Eyy ER,y, (7,1} )j.dG’NA’EA}), Ega Ena
where Vg resp. V5 are the graph resp.-data nodes of G, ES, E ﬁA, tEA\* Vi ‘/tNA

resp. EgA are the graph edges resp. node attribute and edge attribute edges of G and sJG,tjG are
corresponding source and target functions for the edges.

In our case, the type graph ATG is the Petri net type graph PNTG shown in Figure 3 with
data type signature X—nat and algebra Tx_,,, = NAT for rules and graphs, where the E-Graph
of PNTG is shown on the left and its attribute notation on the right of Figure 3. Objects
in AGraphspnyg are pairs (AN,type) with attributed graph AN = (G,D) with D = NAT and
AGraphs-morphism type : (G,D) — (PNTG, Dy;,) with final X—nat data type Dj,. Morphisms in
AGraphspntg are defined componentwise and are type compatible with morphisms in AGraphs.
Four sample morphisms in AGraphspnrg are shown in Figure 4, where a pushout is constructed.

5.3 Translation of PTI Nets into PNTG-typed Attributed Graphs

A formal definition of the functor .# on objects is given as follows.

Definition 10 (Translation of PTINet-Objects)
Given a PTI net NI = (P, T, pre, post,I,m). We define the object .7 (NI) = ((G,NAT),type) in
AGraphspnrg with type : (G,NAT) — (PNTG,Dy;,) and G = (VS,V§ =N,ES ES, ES,,

(S?aij)jE (GNAE A}) as follows, where we use the following abbreviations: token2place £ to2p,

place2trans £ p2t,trans2place 2 12p, weight . £ Wpre, Weight pog = Wpost and pre(t)(p) =np €
N for pre(t) = ¥ ,epnp - p € P¥ and similar for post(t)(p).
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L T
1) to2, (b,p)): to2p
(@pp-to2p pi:Place !
(p1, t): p2t
Fb) Wpre=2
= t;:Trans
in=1
out=1
(tLp2): 2p
Wposr=1
F1a) @ 70
A
Z(C a’: T oken F(G)
€0 o2 F1O [Token] mzp’
p’1:Place (c'.p'): to2p — . b Token
Lty): . (b'.py): loZp
2 i;zt lizpzt (p'1.t'): p2t !
" Wpre=2
t';:Trans -
; t';:Trans
in=1 ff(c) Ii”:]
D)t ou=t " out=1
12,
(- Wpo=1 ’ l (/L) p2t (t'1p2):12p

- ('t p2t
)85 Place', 2 [ " Trans e § Il’l Wore=2 T47 Trans
d'\p’): to2) in= 2.riace 2 S
(d'.p): to2p m[ 11 @ py: toZp P —
out=
. t=1
-d : Token — 4~ Token ou

(t2p'3): 2p .

Figure 4: PO in AGraphspntc

VE=PyTWI
E¢ =ES,,WES WES, with
EGy, = {(x,p) € 1x P |m(x) = p}, ES = {(p.1) € PxT | pre(t)(p) > 0} and
ES,={(t,p) €T x P| post(t)(p) > 0}
ES, = ESWES, with
ES ={(t,n,in) | (t,n) €T x NA|et| =n},
ES, = {(t,n,out) | (t,n) € T xNA|te| =n},
where of and re are the pre- and post-domains of 7 € T'with cardinalities |e¢| and |t e |.
Ef,=E] WE]  with
EJ ={(p,t;n) € Epzt x N pre(t)(p) = n}
EWpost ={(r,p,n) € E3, xN| post(t =n}
s8,18 ES — V& defined by s8(a,b) = a resp. t&(a,b) =b
sGa EGy — VS, 19, ESy — N defined by s$,(t,n,x) =1 resp. t9,(t,n,x) =n
5@, ES, — ES defined by s$,(p,t,n) = (p,t) and s&,(t,p,n) = (t,p)
18, ES, — N defined by tS,(p,t,n)=n and tS,(t,p,n) =n
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The corresponding type-morphism is given in Definition 11 below.

An example for using the functor .# on objects is shown in Figure 4, where the four typed
attributed graphs are translations of the corresponding four PTI nets in Figure 2.

Definition 11 (AGraphspntg-Morphism fype)

The AGraphspntg-morphism type : (G,NAT) — (PNTG,Dy;,) is given by final morphism of
data types and type® : G — PNTG given by E-graph morphism type® = (typev,.typev,,typeg,,
IYPCEN, s typeEEA) where

VPNTG

typey, : V§ — VE with x — Place (x € P), x+— Trans (x € T), x — Token (x € 1)

typey, : N — Dy, . with x> nat (x € N)

EPNTG with x+— y for eryG and y € {to2p, p2t,12p}

typeg, :Eg —
typeg,, : Exy — EXNTC with x—y for x € E)G and y € {in,out}

typeg,, : Efy — Epy ¢ with x>y for x € EY and y € {Wpre, Wpos }

5.4 Translation of Restricted PTINet-Morphisms into Restricted
AGraphspyTg-Morphisms

We now define the functor .% : PTINet| ,, — AGraphspntg| 4, on injective morphisms. A
counterexample for the translation of non-injective morphisms is given in Figure 1, examples for
injective morphisms in Figure 2 and corresponding translated morphisms in Figure 4.

Definition 12 (Translation of PTINet-Morphisms)
For each PTINet-morphism f : NI} — NI, with f = (fp, fr,f1) € A\, i.e. fp,fr,fi injective,
we define .7 (f) : #(NI,) — % (NI,) where

F (NI) = (Vig,N, Eig, Eina, Eiga; (8ij51i7) jc (6 na g4y
by Z(f) = f" = (Fg: N JEg TEgas TE,) With
fvg :Vig = Vag with Vig =PWTWI; for i=1,2 by fy. = fp¥fr¥f
f(,D :N— N by f(,D:idN
[t : Eig = Eag with Eig = Ejyp0, WE; 0 W Ejp, by
T, (x,p) = (fi(x), fe(p)) for (x,p) € Eis02p
Jeg(p,1) = (fp(p), fr(t)) for (p,t) € Eipy
fe(t.p) = (fr(t), fp(p)) for (t,p) € Eipyp
Stnn  Eina = Eana with Ejyg = Ejj WE;,, by
f/gNA (t,n,i) = (fr(t),n,i) for (t,n,i) € E1;, WE o Ni € {in,out}
Sty Erga — Expa with Eigy = E;,, WE,, by
feen(pst,n) = (fe(p), fr(t),n) for (p,t,n) € Eny,,
fte,(t,p:n) = (fr(1), fe(p),n) for (t,p.n) € Eyy,,,

) withi=1,2
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Lemma 1 (Well-Definedness of Morphism Translation)
Foreach f: NI, — NI, in PTINet with f € 4, is F(f) : % (NI,) — % (NL) in AGraphspntg
well-defined with .7 (f) € #>. Moreover F preserves inclusions.

Proof.

A detailed proof is given in [MEE11] showing the following steps:
Lo for fps JEg s Sy JE, are well-defined w.r.t. codomain.
2. The components of .7 ( f) are compatible with sources and targets.
3. The components of .% ( f) are compatible with typing morphisms.

4. f € ., (inclusion) implies .7 (f) € .#, (inclusion).

5.5 Translation of Pushouts

We have to show, that if (1) is a PO in PTINet with f; € ., then we have that (2) is a PO in
AGraphspntg With y(f,) € M.

Nl —2 s Ny Z (NIy) F) Z(NI)
le (1) lf4 y(fz)l (2) ly(ﬂ)
NL —L s NI Z (NL) 75 F (NL)

Since POs in PTINet are constructed componentwise, we know that the P-, T'- and /-components
of (1) are POs in Sets. Since also POs in AGraphsarg and AGraphspnrg are constructed com-
ponentwise we have to show that the V-, Vp-, Eg-, Eya- and Ega-components of (2) are POs in
Sets. This is clear for the Vg-components fiy,, = fipW fir W fij, because POs are compatible with
coproducts and for f;,, because all components are identities. For the Eg-component we have
to show, that (3) is PO in Sets, which follows if (4) and similar (4a) resp. (4b) with “to2p” and
“fiy x fip” replaced by “p2t” and “f;p X fiy” resp. “t2p” and “fi; x fip” are POs.

F(f) X fi
EOG J’ ElG EOm2p M E1t02p
y(fz)al (3) lf(ﬂ)c far szpl (4) lﬁu X fap
F(f3) X f
EZG #> E3G E2t02p M E3t02p

For the Eys- and Eg4 components, it is sufficient to show POs (5) and (6) and similar (5a)
with “in” replaced by “out” and (6a) with “pre” replaced by “post”.

id
Eojn M’ Eiin EOWpre M Elwpre
fr % ile (5) lfé&T X idy fap % fZTl (6) lf4p X far
id
E2in M’ E?in E Wpre M E3wp,g
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All these diagrams commute, because each product component commutes by assumption.
But it is more difficult to show explicitly, that they are POs (see for example Lemma 2 below),
because products of POs are in general not POs. An example is the translation of the PO in
PTINet shown in Figure 2 to the PO in AGraphspntg shown in Figure 4.

Lemma 2 (Translation of Pushouts)

Diagrams (4) and (4a) are pushouts.
Proof. See [MEEI11]. ]

5.6 Creation of Injective Morphisms
Given .7 (NI,),.-# (NL) and f' : .7 (NI,) — % (NL,) € .#, with type compatible morphisms

fre :Vig = Vag with Vig = BWTWi; for i=1,2
fio NN with f, = idy
ft, : E1g = Eag with Eig = Ejy,0, WEj 0 WEjp),
JEy,  Eina = Eana With Ejng = Eijy WE;y,
JEpy t Etga = Eapa with Eipy = E;y,  WE;,
Define f : NI} — NI, with NI; = (P;,T;, pre;, post;,Ij,m;) for j=1,2by
f=(fp:PL =P, fr:Ti = T, fi: I — b) with
fr(t) = fy,(t) for 1€ Ty CVig
fr(p) = fy,(p) for pe P CVig
Ji(x) = fy,(x) for xel; CVig

Well-definedness of f : NI} — NI, € .#, follows from Lemma 3 below, where the proof of
part 2 is based on Lemma 4. The proofs of both Lemma are given in [MEE11].

Lemma 3 (Well-Definedness of Creation of Injective

MOl‘phiSl’nS) pre; m
Given the construction above for f : NI} — NL. The T e P® L —— P
following holds: le (1) l 1 f,l (2) l fr
! / /
1 fVG(t)ET2> fVG(p)EP27 fVG(X)Elz, and Tzﬂ Pz@ ]2_2> P
posty

2. squares (1),(2) to the right commute with injec-

tive fPufTqu‘

Lemma 4 (PTI-Morphism-Lemma)
f NI} = NDL is an injective PTINet-morphism <
f=(fp, fr, f1) is injective with 1 — 4, where

1. VieTi.pcets fp(p) Eofr(t) and Vt € Ty.p €Ete & fp(p) € fr(t)e

2. V(p,l) eh®T :E1p2t' (pvtan) € Elw]m, - (fP(P)JCT(I)a”) € Ezwpm and
V(t,p) € i ® P = E1ppp- (t,pyn) € Evyy,,, < (f1(1), fp(P):1) € Eny,,
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3. VteT.
card(et) =n < card(efr(t)) =n and card(te) =n < card(fr(t)e) = n with
ot ={p & Pr[prei(t)(p) >0} and re={p € Pi|posti(t)(p) >0}

4. Vxe Il'(x7p) € E1t02p ~ (fl(x)va(p)) € E2t(12p

5.7 Preservation of Initial Pushouts

The proof of this property is based on the initial PO constructions for PTINet in [MGE"09]
and for AGraphsayg in [EEPTO06]. Details of the proof are given in [MEE11]. An example
is given in Figure 5, where (1) is an initial PO over f in PTINet, (2) the induced PO over
Z(f), and the initial PO over .Z (f) in AGraphspnrg is given by the outer diagram with corners
B ,C',7(L),Z(G). Since i’ and j’ are isomorphisms, diagram (2) is already initial PO over
Z(f)-

b’ \
B 18) L)
(a,p)): to2p (b.py): to2p
(p1.1): p2t
i’ Fb) Wpre=2
——————————————— > >
t;:Trans
in=1
out=1
(t.p2): 12p
[ pz:Place | =1
lac -v.'Place Wost
px:Place [p2Place |
: F(a 2 ¢ F7
¢ i ol )y F(G) 7
¢ '~ Token Cc’ F(C) ' c: ": Token
(c'.p’1): 102p ©p'):102p (@'p): t102p
p’1:Place
. t")_: P2 (p_,_.t ’)7"71'721 (p'1.t'): p2t
Wpre=2 Wpre=2 _ Wpre=2
t',.:Trans t I 77rans T Trans
in=1 J’ in=1 F(c) in=1
out=1 gl out=1
(t'Lp):t2p (t',p'2): 12p
Wpos =1 0 t): .
; P t"): p2t (p'1.t'): p2t .
=l V=2 wLL:p
(d',py): to2p t'>:Trans (d'p): to2p t'y: Trans e E
in=1 . in=1 Rl t . Trans
out=1 out=1 d’: Token in=1
out=1
- (tsp's): 2p - (tp’s): 2p ” PR
post

e /

Figure 5: Preservation of Initial Pushouts

6 Conclusion and Future Work

As pointed out already in Section 1 we want to develop a general framework to establish a for-
mal relationship between different ./ -adhesive transformation systems based on .# -adhesive
categories. The main idea is to construct a suitable .# -functor between the corresponding . -
adhesive categories, which translates pushouts, creates morphisms and preserves initial pushouts.
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This allows by Theorem 1 and Theorem 2 the translation and creation of transformations between
the corresponding .# -adhesive transformation systems, including parallel and sequential inde-
pendence of transformations. Moreover, we have discussed the restriction to injective matches
via .Z/1-morphisms, which requires only a functor for .} -morphisms.

In Section 5 we have discussed a corresponding functor from Petri nets with individual tokens to
typed attributed graphs. We have verified that this functor translates pushouts of .#;-morphisms,
creates .1 -morphisms and preserves initial pushouts over .#-morphisms, which allows the ap-
plication of Theorem 1 and Theorem 2 in connection with Remark 4.

In future work, we will provide sufficient conditions in order to ensure that the .# —functor
preserves initial pushouts”. In the long run, this should allow the analysis of interesting prop-
erties of Petri net transformation systems, like termination and local confluence in addition to
parallel and sequential independence, using corresponding results and analysis tools like AGG
for graph transformation systems. Moreover, it is interesting to study the relationship between
other .# -adhesive transformation systems using this approach, e.g. high-level Petri nets and
typed attributed graphs as well as triple graphs and flattening of triple graphs.

Acknowledgements: Some of the authors are partly supported by the German Research Coun-
cil project Behaviour Simulation and Equivalence of Systems Modelled by Graph Transformation
(Behaviour-GT).
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