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Abstract: Reconfigurable place/transition systems are Petri nets with initial mark-
ings and a set of rules which allow the modification of the net structure during run-
time. They have been successfully used in different areas like mobile ad-hoc net-
works. In most of these applications the modification of net markings during runtime
is an important issue. This requires the analysis of the interaction between firing and
rule-based modification. For place/transition systems this analysis has been started
explicitly without using the general theory of M -adhesive transformation systems,
because firing cannot be expressed by rule-based transformations for P/T systems in
this framework. This problem is solved in this paper using the new approach of P/T
nets with individual tokens. In our main results we show that on one hand this new
approach allows to express firing by transformation via suitable transition rules. On
the other hand transformations of P/T nets with individual tokens can be shown to
be an instance of M -adhesive transformation systems, such that several well-known
results, like the local Church-Rosser theorem, can be applied. This avoids a sepa-
rate conflict analysis of token firing and transformations. Moreover, we compare
the behavior of P/T nets with individual tokens with that of classical P/T nets. Our
new approach is also motivated and demonstrated by a network scenario modeling
a distributed communication system.

Keywords: Petri net transformation, reconfigurable place/transition systems, Petri
nets with individual tokens, collective token approach, network scenario

1 Introduction

Petri nets are one of the main formalisms to describe and analyze concurrent processes. They
have been a promising candidate for formal extensions on the one hand, but on the other hand
∗ This work has been partly funded by the research project forMAlNET (see tfs.cs.tu-berlin.de/formalnet) of the
German Research Council and by the Integrated Graduate Program on Human-Centric Communication at Technische
Universität Berlin
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also for integrations with different formal techniques to capture more complex aspects.
A theory of rule-based transformation based on double pushout (DPO) graph transformation

[EEPT06] is available for place/transition (P/T) systems, i. e. P/T nets with an initial marking.
This transformation of P/T systems changing their net structure has been successfully used for
modeling adaptive workflows and mobile ad-hoc networks in [HME05, BDHM06].

P/T systems have been shown to form a weak adhesive high-level replacement (HLR) category
with the class of all marking-strict morphisms [PEHP08]. This allows us to apply all the results
for weak adhesive HLR transformation systems concerning the local Church-Rosser theorem,
parallelism, and concurrency of transformations as shown in [EEPT06] also to transformation
systems of P/T systems. In this paper, we use the notion of M -adhesive category [EGH10]
which is short for vertical weak adhesive HLR category. In M -adhesive categories Van Kampen
(VK) squares only need to satisfy the vertical VK-property, i. e. the VK-property has to hold for
cubes where the vertical morphisms are in M . In contrast, for a weak adhesive HLR categories
it is required that the VK-property does also hold for cubes, where the horizontal morphisms
are in M . However, as shown in [EGH10] all the main results of [EEPT06] are still valid for
M -adhesive categories.

The concept of Petri systems leads to a category PTSys with morphisms allowing to increase
the number of tokens on corresponding places. Unfortunately, (PTSys,Min j) with the class
Min j of all injective morphisms is not M -adhesive in contrast to (PTSys,Mstrict), where Mstrict

is the class of injective morphisms where the number of tokens on corresponding places is equal
[Pra08]. Using marking-strict morphisms, we can not formulate adequate transformation rules
for P/T systems that change markings. This is inconvenient because marking-changing rules are
essential to express token firing by transformation via suitable transition rules and for modeling
communication systems and platforms with Petri nets, especially for realizing multicasting of
data tokens in high-level nets [BEE+09].

To overcome this restriction, we present a new Petri net formalism, called “place/transition
nets with individual tokens” or short PTI nets, together with a rule-based transformation ap-
proach. The difference between PTI nets and P/T systems concerns the representation of net
markings: for the new individual approach, we propose a net’s marking as a set of individuals
instead of a (collective) sum of a monoid. The formal definition of nets with individual tokens
still follows the concept “Petri nets are monoids” from [MM90].

The paper is structured as follows: Section 2 introduces PTI nets, their firing behavior, and
rule-based transformation of PTI nets based on graph transformation with double pushouts. We
demonstrate that the new concept of P/T nets with individual tokens is compatible with the con-
cept of P/T systems using a construction that maps PTI nets to corresponding P/T systems. For
this purpose we define an equivalence relation on the class of PTI nets, such that the equiva-
lence classes are in one-to-one correspondence to the P/T systems. Moreover, we show that the
construction preserves and reflects the firing behavior. As a running example, we demonstrate a
simple network model that can be reconfigured by rule applications that add new clients to the
network.

As first main result we show in Section 3 that the category of PTI nets with the class of all in-
jective morphisms forms an M -adhesive category which allows to formulate marking changing
rules. This important result is the basis for further results concerning analysis. First, we formu-
late a necessary and sufficient gluing condition for the applicability of transformation rules in the
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given M -adhesive category of PTI nets. Then, we demonstrate the equivalence of firing steps
with corresponding transition firing rules. The second main result shows that token firing can
be expressed by rule-based transformation based on suitable transition rules, leading to a local
Church-Rosser theorem for rule applications and firing steps.

In the concluding Section 4, we give an outlook on algebraic high-level nets with individual
tokens for modeling especially highly dynamic structures and complex behavior in the area of
communication platforms in an adequate way.

2 P/T Nets with Individual Tokens

In this section we introduce our new concept of P/T nets with individual tokens (PTI nets) and
compare it to the classical concept of P/T systems with initial markings. Furthermore, we define a
rule-based transformation of PTI nets in the sense of rule-based graph transformation [EEPT06].
As an example, we demonstrate a simple model of a distributed reconfigurable network.

2.1 P/T Nets with Individual Tokens and their Relationship to P/T Systems

The notion of nets with individual tokens was mentioned first in [Rei85] where it was used to
describe “tokens that can be identified as individual objects”. The main contribution of that
article was the definition of markings as multisets of distinguished elements rather than amounts
of indistinguishable black tokens. In the end, individual tokens in that context is a synonym for
what by now is known as data tokens in high-level nets.

Further, there is the notion of token individuality that has been coined in [GP95] as “individual
token interpretation” of firing steps, which entitles the definition of processes from [GR83]. Un-
der the individual approach, firing sequences consider not only the number and value of tokens
(as in the collective approach) but also their history of tokens. In [vG05], the author investi-
gates the collective/individual dichotomy of firing steps and the expressive power of the different
firing rules w. r. t. labeled transition step systems. [BMMS99] formalizes the individual token
interpretation of firing steps categorically with a functorial individual firing semantics.

We try to combine aspects of both approaches dealing with individual tokens. On the one hand,
we need a concept of individual tokens on the syntactical level of Petri systems like in [Rei85] in
order to gain benefits for the transformation of marked Petri nets. With such individual tokens,
rules can match specific tokens which allows us to formulate rules for manipulating markings
freely without necessarily changing the net’s structure as in the category PTSys of P/T systems,
i. e. P/T nets with collective markings (cf. [EHP+07]). On the other hand, we need individual
“black” tokens like in [GP95] without presuming different data values for the tokens, because
we also want to have low-level Petri nets with individual tokens.

For this purpose, we introduce the new notion of place/transition nets with individual tokens
(PTI nets), their firing behavior, and application of PTI transformation rules.

Definition 1 (Place/Transition Nets with Individual Tokens (PTI)) We define a marked P/T net
with individual tokens, short PTI net, as NI = (PN, I,m), where

• PN = (P,T, pre, post : T → P⊕) is a classical P/T net, where P⊕ is the free commutative
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monoid over P,

• I is the finite set of individual tokens of NI, and

• m : I→ P is the marking function, assigning the individual tokens to the places.

Further, we denote the environment of a transition t ∈ T as

ENV(t) = {p ∈ P | pre(t)(p) 6= 0∨ post(t)(p) 6= 0} ⊆ P

Example 1 (Place/Transition Nets with Individual Tokens) Figure 1 shows an example of a PTI
net modeling a simple network which consists of several clients. These clients can communicate
with each other only indirectly via switches by sending or receiving data packages represented
by black tokens. If a client wants to send data to another client which is connected to a different
switch then it first has to send the data to the switch to which it is connected. The switch can
then forward the data to the respective other switch which sends the data to the addressee. Each
client Clientx has a complement place Cx which represents the free data capacity of this client.
The net has a marking of individual tokens I = {i1, . . . , i7}. The individual tokens are mapped to
the corresponding places by a marking function m with m(i1) = C2, m(i2) = m(i3) = m(i4) =
Client1, m(i5) = m(i6) = Client2 and m(i7) = Switch1.

Client1 Client2

send1 rec1 send2 rec2

Switch1

C1 C2
i1

i5 i6

i7

i2 i3

i4

forward1forwardn

Figure 1: PTI net (SimpleNetwork, I,m)

Every P/T net with individual tokens corresponds to a P/T system in the collective approach
as defined in [EHP+07]. The following construction Coll flattens a PTI net to a P/T system with
collective marking by forgetting the individuality of token elements.

Definition 2 (Collective Construction for PTI Nets) Given a PTI net NI = (PN, I,m), we define
Coll(NI) = (PN,µ) where µ = ∑i∈I m(i) ∈ P⊕PN .

Note that we can denote the collective marking alternatively as the sum with explicit coeffi-
cients µ = ∑p∈PPN |m

−1(p)| · p.

Next, we define an equivalence relation ≈ on PTI nets and show that two PTI nets are equiv-
alent if and only if they correspond to the same P/T system with collective marking. Moreover,
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we show that for every collective P/T system there is at least one corresponding PTI net. This
allows us to show that our individual approach and the collective approach are compatible with
each other, in the sense that the class PTSys of all P/T systems corresponds bijectively to the
quotient PTINets/≈ where all equivalent PTI nets are identified.

Definition 3 (Equivalence of PTI Nets) We call two PTI nets NI = (PN, I,m) and NI′ =
(PN′, I′,m′) equivalent and write NI ≈ NI′, if PN = PN′ and there exists a bijective function
f : I→ I′ with m′ ◦ f = m.

Note that because bijective functions are closed under composition and inversion, ≈ is an
equivalence relation.

Lemma 1 (Collective Equality and Equivalence) For any two PTI nets NI = (PN, I,m) and
NI′ = (PN′, I′,m′) hold the equivalence

Coll(NI) = Coll(NI′)⇔ NI ≈ NI′

Proof. We assume Coll(NI) = (PN,µ), Coll(NI′) = (PN′,µ ′), and that P is the set of places of
PN (and also of PN’).
“⇒”: From Coll(NI) = Coll(NI′) we get PN = PN′ and ∑i∈I m(i) = µ = µ ′ = ∑i∈I′ m′(i). We
construct a bijection f : I→ I′ compatible with m and m′.

Choose for each place p∈ P an arbitrary bijection fp : m−1(p)→m′−1(p) between the subsets
of tokens of I and I′ that are mapped to p by m and m′, respectively. Such bijections exist
because from the µ = µ ′ we get by the equality of their coefficients for all p ∈ P that |m−1(p)|=
|m′−1(p)|. Consider the function f : I → I′ with f (x) = fp(x) for x ∈ m−1(p), which is well-
defined because I =

⋃
p∈P m−1(p), I′ =

⋃
p∈P m′−1(p) and the preimage subsets of m and m′ are

disjoint. Moreover, f is bijective and for all p ∈ P and all x ∈ m−1(p) we have m′ ◦ f (x) =
m′( fp(x)) = p = m(x) from which we conclude NI ≈ NI′.
“⇐”: From NI ≈ NI′, we get PN = PN′ and bijective f : I → I′ with m′ ◦ f = m. We have to
show that µ = µ ′:

µ = ∑
i∈I

m(i) = ∑
i∈I

m′ ◦ f (i) = ∑
p∈P
|(m′ ◦ f )−1(p)| · p f bij.

= ∑
p∈P
|m′−1(p)| · p = ∑

i∈I′
m′(i) = µ

′.

Lemma 2 (Coll is surjective) For every P/T system (PN,µ), there is a PTI net NI with Coll(NI)=
(PN,µ).

Proof. Let P be the set of places of PN. For µ = ∑p∈P λp · p, consider for each p ∈ P a set Ip

of λp elements with all Ip being mutually disjoint. We choose NI = (PN, I,m) with I =
⋃

p∈P Ip

and m : I → P with m(x) = p for x ∈ Ip. Hence, Coll(NI) = (PN, µ̂) with µ̂ = ∑i∈I m(i) =
∑p∈P ∑i∈Ip m(i) = ∑p∈P λp · p = µ .

Theorem 1 The quotient PTINets/≈ of the class of all PTI nets by their equivalence relation
corresponds bijectively to the class PT Sys of all P/T systems.
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PTINets

n &&

Coll // PTSys

PTINets/≈
i

99

Proof. Consider the function i : PTINets/≈→ PTSys with i([NI]≈) = Coll(NI). Note that i◦n =
Coll, where n is the natural function mapping a PTI net to its equivalence class. By Lemma 1,
we get that i is well-defined and injective because all PTI nets in the same equivalence class have
the same collective construction to which only elements of this particular equivalence class are
mapped by Coll and i, respectively. By Lemma 2, i is also surjective and hence bijective.

2.2 Firing of P/T Nets with Individual Tokens

Now, we define firing steps of transitions in PTI nets. Due to the fact that the tokens have
identities, we have to consider a possible firing step in the context of a specific selection of
tokens because there may be several valid firing steps for a transition under a particular marking.

Definition 4 (Firing of PTI Nets) A transition t ∈ T in a PTI net NI = (P,T,pre,post,I,m) is
enabled under a token selection (M,m,N,n), where

• M ⊆ I, m is the token mapping of NI,

• N is a set with (I \M)∩N = /0, n : N→ P is a function,

if it meets the token selection condition ∑
i∈M

m(i) = pre(t)∧ ∑
i∈N

n(i) = post(t)

If an enabled transition t fires, the follower marking (I′,m′) is given by

I′ = (I \M)∪N, m′ : I′→ P with m′(x) =

{
m(x), x ∈ I \M
n(x), x ∈ N

leading to NI′ = (P,T, pre, post, I′,m′) as the new PTI net in the firing step NI 〉−t,S−→ NI′ via S =
(M,m,N,n).

Remark 1 (Token Selection) The purpose of the token selection is to specify exactly which
tokens should be consumed and produced in the firing step. Thus, M ⊆ I selects the individual
tokens to be consumed, and N contains the set of individual tokens to be produced. Clearly,
(I \M)∩N = /0 must hold because it is impossible to add an individual token to a net that already
contains this token. m and n relate the tokens to their carrying places. It would be sufficient to
consider just the restriction m|M here or to infer it from the net but as a compromise on symmetry
and readability we denote m in the token selection.

Example 2 (Firing of PTI Nets) Consider again the PTI net (SimpleNetwork, I,m) in Figure 1.
We want to fire the transition send2 to send one data package from Client2 to the switch. Even
though we have only black tokens, we have to choose which of the tokens on the place Client2
should be consumed by the transition, because the tokens have identities. We decide to take
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the token i6. So we have a token selection S = (M,m,N,n) with M = {i6}, m(i6) = Client2,
N = {i8, i9}, n(i8) = C2 and n(i9) = Switch1.

Now, send2 is enabled under selection S because there is

m(i6) = Client2 = pre(send2) and n(i8)⊕n(i9) = C2⊕Switch1 = post(send2)

which means that it meets the token selection condition. Hence, there is a firing step

(SimpleNetwork, I,m) 〉−send2,S−−−−→ (SimpleNetwork, I′,m′)

with I′ = {i1, i2, i3, i4, i5, i7, i8, i9} and a mapping m′ of the individuals to places as derived from
m and n.

We can show that the firing behavior of our individual approach is compatible with the well-
known firing behavior of the collective approach since a firing step in one representation implies
a firing step in the respective other one.

Theorem 2 (Coll preserves and reflects Firing Behavior)

1. Given a PTI net NI with transition t ∈ TNI enabled under token selection S = (M,m,N,n) with
firing step NI 〉−t,S−→ NI′, then t is enabled in Coll(NI) with firing step Coll(NI) 〉−t→ Coll(NI′).

2. Vice versa, given an enabled transition t in Coll(NI) with Coll(NI) 〉−t→ (PN′,µ ′), there exists a
token selection S = (M,m,N,n) such that t is enabled in NI under S with firing step NI 〉−t,S−→ NI′

and Coll(NI′) = (PN′,µ ′).

Proof. Assume NI = (P,T, pre, post, I,m) and Coll(NI) = (P,T, pre, post,µ).

1. Transition t is enabled in Coll(NI) under µ because pre(t) t enabled
= ∑i∈M m(i)

M⊆I
≤ ∑i∈I m(i)= µ .

Firing changes just the markings, so we have NI′ = (P,T, pre, post, I′,m′) and Coll(NI′) =
(P,T, pre, post,µ ′). We show that µ ′ is the marking resulting from firing t in Coll(NI).

µ	 pre(t)⊕ post(t)

= ∑
i∈I

m(i)	∑
i∈M

m(i)⊕∑
i∈N

n(i) (def. Coll, t enabled in NI under S)

= ∑
i∈I\M

m(i)⊕∑
i∈N

n(i) = ∑
i∈(I\M)]N

m′(i) (def. m′ as in Definition 4)

= ∑
i∈I′

m′(i) = µ
′ (defs. Coll and I′ as in Definition 4)

2. Because transition t is enabled in Coll(NI) and we have pre(t) ≤ µ = ∑i∈I m(i), we can
choose for each p ∈ P a subset Mp ⊆ m−1(p) such that |Mp| = pre(t)(p). Note that m(x) = p
for x ∈Mp. Similarly, we choose for each p ∈ P a set Np such that |Np|= post(t)(p) and all Np

being mutually disjoint and disjoint to I \
⋃

p∈P Mp.
Consider the selection S=(M,m,N,n) with M =

⋃
p∈P Mp, N =

⋃
p∈P Np, and function n : N→

P with n(x) = p for x ∈ Np. The transition t is enabled in NI under S because ∑i∈M m(i) =
∑p∈P ∑i∈Mp m(i) = ∑p∈P|Mp| · p = ∑p∈P pre(t)(p) · p = pre(t) and analogously for N, n, and
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post. For the firing step NI 〉−t,S−→ NI′, we have NI′ = (P,T, pre, post, I′,m′) according to Def-
inition 4 and PN′ = (P,T, pre, post) because firing changes the marking, only. We show for
Coll(NI′) = (PN′, µ̂) that µ ′ = µ̂ . The arguments are analogous to the ones for the equa-
tions for item 1. µ ′ = µ	 pre(t)⊕ post(t) = ∑i∈I m(i)	∑i∈M m(i)⊕∑i∈N n(i) = ∑i∈I\M m(i)⊕
∑i∈N n(i) = ∑i∈(I\M)]N m′(i) = ∑i∈I′ m′(i) = µ̂ .

Corollary 1 (Equivalent Firing Behavior) Given PTI nets NI1 ≈ NI2 and a firing step NI1 〉−t,S−→
NI′1. Then there is a corresponding firing step NI2 〉−t,S

′
−−→ NI′2 with NI′1 ≈ NI′2.

Proof. By Lemma 1 we have Coll(NI1) = (PN,µ) = Coll(NI2) and by Theorem 2 there is

a firing step (PN,µ) 〉−t→ (PN,µ ′) = Coll(NI′1), implying a reflected step NI2 〉−t,S
′
−−→ NI′2 with

Coll(NI′2) = (PN,µ ′) =Coll(NI′1). Hence, by Lemma 1 there is NI′1 ≈ NI′2.

2.3 Transformation of P/T Nets with Individual Tokens

The structure of a P/T system can be changed by the application of transformation rules using
the double pushout (DPO) approach (see [EEPT06]). For the definition of transformation rules
for PTI nets we need the following definition of PTI net morphisms.

Definition 5 (PTI Net Morphisms and Category PTINets) Given two PTI nets
NIi = (Pi,Ti, prei, posti, Ii,mi), i ∈ {1,2}, a PTI net morphism is a triple of functions f = ( fP :
P1 → P2, fT : T1 → T2, fI : I1 → I2) : NI1 → NI2, such that the following diagrams commute
(componentwise for pre and post domains):

T1

fT

��

pre1 //

=

post1
// P⊕1

f⊕P
��

I1

fI

��

m1 //

=

P1

fP

��
T2

pre2 //
post2

// P⊕2 I2
m2 // P2

or, explicitly, that f⊕P ◦ pre1 = pre2 ◦ fT , f⊕P ◦ post1 = post2 ◦ fT , and fP ◦m1 = m2 ◦ fI .
The category PTINets consists of all PTI nets as objects with all PTI net morphisms.

Remark 2 (Choice of PTI morphisms) We are aware that there exist several different reasonable
definitions of morphisms for P/T nets in the algebraic representation with monoids of [MM90].
Although the P/T morphisms from [EEPT06], on which our PTI morphisms are based, are re-
stricted in contrast to more general definitions of P/T morphisms, e. g. consisting of arbitrary
monoid homomorphisms for the component on place monoids and partial functions for the tran-
sition components, we chose the current definition. For our simple PTI morphisms consisting
of total functions, pushouts simply can be constructed componentwise, leading to M -adhesive
categories with a class M of injective morphisms. This is no longer valid for more general
morphisms as mentioned above.

In [MGE+10], we show that PTI morphisms with injective token component preserve firing
steps. For a token-injective morphism f : NI1 → NI2, and a firing step (t,S) in NI1 is is not
possible to canonically construct a selection S′ such that ( fT (t),S′) is a firing step in NI2, but
we show that such a step exists. The reason of this is that some newly created token in NS
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may also exist in I2 \ fT (MS) so that the subset of conflicting tokens in NS has to be replaced
isomorphically such that NS becomes disjoint to I2 \ fT (MS). Up to a suitable renaming of these
conflicting individual tokens, token-injective PTI morphisms are simulations of firing behavior.

Definition 6 (PTI Transformation Rules) A PTI transformation rule is a span of injective
PTINets morphisms ρ = (L l← K r→ R).

Definition 7 (PTI Transformation) Given a PTI transformation rule ρ = (L l← K r→ R) and a
PTI net NI1 with a PTI net morphism f : L→ NI1, called the match, a direct PTI net transforma-

tion NI1 =
ρ, f
=⇒ NI2 from NI1 to the PTI net NI2 is given by the following double-pushout (DPO)

diagram in the category PTINets:

L

f
��

(PO1)

K

(PO2)

loo

��

r // R

f ∗

��
NI1 NI0oo // NI2

The application of a rule with a given match following the DPO approach means that we
compute first a pushout complement to obtain pushout (PO1) and then the pushout (PO2) in
PTINets. Note that pushouts and therefore the result of a rule application are unique only up to
isomorphism. Intuitively, everything that is matched from the left-hand side L that does not have
a preimage in the interface K is deleted leading to a context net NI0. Then the right-hand side R
is glued to the context NI0 along the interface K leading to the result NI2 of the transformation.

Remark 3 (Construction of Pushouts and Pushout Complements) Pushouts in the category
PTINets can be constructed componentwise in PTNets and Sets, where the marking func-
tion of the pushout PTI net is induced by the pushout of the token sets. Since (PTNets,M1)
and (Sets,M2) with classes M1 of injective P/T net morphisms and M2 of injective functions
are M -adhesive categories (see [EEPT06]) they have unique pushout complements along M -
morphisms. Thus, also PTINets has unique pushout complements along injective morphisms.

Example 3 (Transformation of PTI Nets) Figure 2 shows the application of a PTI rule newClient
which connects a new client with a data capacity of three tokens to an existing switch. For
simplicity reasons all morphisms in the DPO diagram are inclusions. The left-hand side L of
the rule is matched to a PTI net Network1 which already contains one Client. Since the rule is
non-deleting we obtain a context net Network0 which equals the original network. The result of
the transformation is a new PTI net Network2 where the new client has been connected to the
switch.

3 Main Results for P/T Nets with Individual Tokens

In this section, we present main results for transformation systems of PTI nets following from
the properties and results of weak adhesive high-level replacement (HLR) systems [EEPT06].
The latter are based on the notion of adhesive categories introduced in [LS04]. The results for
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Switch1

Client1 Client2

send1 rec1 send2 rec2

Switch1

C1 C2

i6i5

i2

l r

K R

Network0 Network2

i3 i4

i1

i7
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Figure 2: PTI transformation Network1
newClient
=⇒ Network2

weak adhesive HLR systems are also valid for M -adhesive transformation systems [EGH10],
which are a generalization that has been triggered by [Hei10].

3.1 P/T Nets with Individual Tokens as M -adhesive Category

In this paper, we use the notion of M -adhesive category [EGH10] which is short for vertical
weak adhesive HLR category. In M -adhesive categories Van Kampen (VK) squares only need
to satisfy the vertical VK-property, i. e. the VK-property has to hold for cubes where the vertical
morphisms are in M . In contrast, for a weak adhesive HLR categories it is required that the
VK-property does also hold for cubes, where the horizontal morphisms are in M . However, as
shown in [EGH10] all the main results of [EEPT06] are still valid for M -adhesive categories.

Theorem 3 (PTINets is M -adhesive) The category (PTINets,Min j) is an M -adhesive cate-
gory where Min j = { f ∈MorPTINets | fP, fT , fI injective}.

Proof (Idea). We already know from [EEPT06] that the category of P/T nets (without markings)
(PTNets,M ′) is weak adhesive HLR and hence also M -adhesive with M ′ being the class of
all injective Petri net morphisms. We construct a comma category over (PTNets,M ′) and an
individual marking functor such that this comma category is isomorphic to the M -category of
PTI nets with possibly infinite tokens sets and the class Min j of injective PTI net morphisms.
From a construction theorem in [Pra08] follows that this comma category is M -adhesive. A
more detailed proof can be found in [MGE+10].

Finally, the full subcategory PTINets of PTI nets with finite token sets is M -adhesive as well
for the class Min j. This is guaranteed by another construction theorem from [Pra08], as the
inclusion functor from Setsfin to Sets preserves pushouts and pullbacks.

Using this theorem, we can apply the important results for analyzing transformations from
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[EEPT06] to transformations of PTI nets, e. g. the theorems about independent rule applications
(Local Church-Rosser), concurrent rule applications, and local confluence of transformation sys-
tems.

M -adhesive transformation systems guarantee unique results of rule applications (up to iso-
morphisms). Note that morphisms of PTSys rules have to be marking-strict in order to obtain an
M -adhesive PTSys transformation system [PEHP08]. This requirement is not necessary for an
M -adhesive PTINets transformation system, allowing us to simulate the firing behavior of PTI
nets with direct transformations as we show in Subsection 3.3.

3.2 Gluing Condition for P/T Nets with Individual Tokens

In order to be able to decide whether a rule is applicable at a certain match, we formulate a gluing
condition for PTI nets, such that there exists a pushout complement of the left rule morphism and
the match if (and only if) they fulfill the gluing condition.

Definition 8 (Gluing Condition in PTINets) Given a PTI rule ρ = (L l← K r→ R), a PTI net NI
and a PTI morphism f : L→ NI (see the left part of Figure 3), we define the set of identification
points (i. e. all elements in L that are mapped non-injectively by f ) IP = IPP∪ IPT ∪ IPI with

• IPP = {x ∈ PL | ∃x′ 6= x : fP(x) = fP(x′)},

• IPT = {x ∈ TL | ∃x′ 6= x : fT (x) = fT (x′)},

• IPI = {x ∈ IL | ∃x′ 6= x : fI(x) = fI(x′)},

the set of dangling points (i. e. all places in L that would leave a dangling arc, if deleted) DP =
DPT ∪DPI with

• DPT = {p ∈ PL | ∃t ∈ TNI \ fT (TL) : fP(p) ∈ ENV (t)},

• DPI = {p ∈ PL | ∃i ∈ INI \ fI(IL) : fP(p) = mNI(i)},

and the set of gluing points (i. e. all elements in L that have a preimage in K) GP = lP(PK)∪
lT (TK)∪ lI(IK).

We say that ρ and f satisfy the gluing condition if IP∪DP⊆ GP

For the following theorem, we consider the M -adhesive category (PTINets,M ) whose mor-
phism class M contains all injective morphisms.

Theorem 4 (Gluing Condition for PTI Transformation) Given a PTI rule ρ = (L l← K r→ R)
with l,r ∈M and a match f : L→ NI into a PTI net NI = (N, I,m : I → PNI). The rule ρ is
applicable on match f , i. e. there exists a (unique up to isomorphisms) pushout complement NI0
in the diagram in Figure 3, iff ρ and f satisfy the gluing condition in PTINets.

Proof (Idea). In [MGE+10], we show that the gluing condition from Definition 8 is equivalent to
the categorical gluing condition from [EEPT06] for M -adhesive transformation systems, which
states that the boundary of an initial pushout construction over the match has to be preserved by
the rule.
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L

f
��

(PO)

Kloo

f ′

��

r // R

NI NI0oo

Figure 3: Diagram of a mached rule and the possible pushout complement

Example 4 (Gluing Condition) Consider the transformation rule deleteClient for PTINets de-
picted in Figure 4 and an inclusion match f into the PTI net (SimpleNetwork, I,m) shown in
Figure 1. The rule deleteClient and match f do not satisfy the gluing condition because due to
the fact that the individuals i2, i3 and i4 are not matched by the rule, the place Client1 is a dan-
gling point and therefore it should have a preimage in the interface K of the rule (i. e. it should
be a gluing point) in order to satisfy the gluing condition. Since this is not the case the rule is not
applicable with the given match.

Switch1Switch1

Client1

send1 rec1

Switch1

C1

l r

L K R

Figure 4: Transformation rule deleteClient for PTI nets

In contrast, the PTI transformation rule newClient shown in Figure 2 together with the match
described in Example 3 satisfies the gluing condition, because since the match is injective there
are no identification points, and the only dangling point Switch1 is a gluing point. Therefore the
rule newClient can be applied with the given match.

3.3 Correspondence of Transition Firing and Rule Applications

An interesting aspect of the possibility to formulate marking-changing rules in PTINets is that
rules can simulate firing steps of transitions. We give a construction for transition rules that
simulate a firing step of some transition under a specific token selection and show that firing of a
transition corresponds to an application of a transition rule and vice versa.

Definition 9 (PTI Transition Rules) We define the transition rule for a transition t ∈ T of a
PTI net NI = (P,T, pre, post, I,m), enabled under a token selection S = (M,m,N,n), as the rule

ρ(t,S) = (Lt
l← Kt

r→ Rt) with

• the common fixed net structure PNt = (Pt ,{t}, pret , postt), where Pt = ENV (t), pret(t) =
pre(t) and postt(t) = post(t),

• Lt = (PNt ,M,mt : M→ Pt), with mt(x) = m(x),
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• Kt = (PNt , /0, id /0),

• Rt = (PNt ,N,nt : N→ Pt), with nt(x) = n(x),

• l,r being the obvious inclusions on the rule nets.

Example 5 (Simulation of Firing Behavior by Rule-Based Transformation) Consider again the
firing of the transition send2 in Example 2. The firing step can be simulated by application of the
transition rule ρ(send2,S) shown in Figure 5 to the PTI net (SimpleNetwork, I,m) in Figure 1
leading to the same result.

! 

! l r

Client2

send2

C2L

Switch1

i6

Client2

send2

C2K

Switch1 Client2

send2

C2R
i8

Switch1

i9

Figure 5: Transition rule ρ(send2,S)

Theorem 5 (Correspondence between Firing Steps and Direct DPO Transformations of PTI
Nets)

1. Each firing step NI 〉−t,S−→ NI′ via token selection S = (M,m,N,n) corresponds to an induced

direct transformation NI =
ρ(t,S), f
====⇒ NI′ via the transition rule ρ(t,S), where the match f : Lρ(t,S)→

NI is an inclusion.

2. Each direct transformation NI =
ρ(t,S), f
====⇒ NI1 via some transition rule ρ(t,S) with t ∈ TNI , token

selection S = (M,m,N,n), and injective match f : Lρ(t,S)→ NI, implies that the transition fT (t)

is enabled in NI under some token selection S̄ with firing step NI 〉−fT (t),S̄−−−−→NI∗ such that NI∗∼=NI1.

Proof. In the following let NI = (PN, I,m), NI′ = (PN′, I′,m′), and NIi = (PNi, Ii,mi).
Part 1. Consider the DPO diagram in Figure 6 with inclusions d and d′, i. e. PN = PN0 = PN1.

L = (PNt ,M,mt)

f
��

(PO)

K = (PNt , /0, /0)

(PO)

? _loo

��

� � r // R = (PNt ,N,nt)

f ∗

��
NI = (PN, I,m) NI0 = (PN0, I0,m0)d

oo
d′

// NI1 = (PN1, I1,m1)

Figure 6: DPO transformation diagram in PTINets for ρ(t,S) applied to NI

This diagram exists by Theorem 4 because there are no identification points ( f is injective) and
all dangling points are gluing points (lP = idPt , i. e. no places are deleted). Because pushouts
in PTINets can be constructed componentwise for the net and the token components, we have
I0 = I \M and I1 = I0] (N \ /0) as in the DPO diagram of the Sets components in Figure 7. By
assumption t is enabled under S, so we have that (I \M)∩N = /0 and therefore I1 = (I \M)∪N.

13 / 21 Volume 40 (2011)



Formalization of Petri Nets with Individual Tokens as Basis for DPO Net Transformations

For m1 as induced morphism for the pushout object I1 follows that

M

fI
��

(PO)

/0

(PO)

? _oo

��

� � // N

f ∗I
��

nt

!!
I

m
**

I0?
_

dI

oo � �

d′I
//

m0=m◦dI

!!

I1

m1   

Pt

f ∗P= fP

��
PPN id

PPN

Figure 7: DPO diagram in Sets for the token components in Figure 6

m1(x) =

{
m0(x) = m(x) for x ∈ I \M
nt(x) = n(x) for x ∈ N

hence I1 = I′,m1 = m′ according to Definition 4 and therefore NI1 = NI′. This proves the exis-

tence of the direct transformation NI =
ρ(t,S), f
====⇒ NI′.

Part 2. Given a direct transformation NI =
ρ(t,S), f
====⇒ NI1 as in the DPO diagrams in Figure 6 and

Figure 7, there is also a direct transformation NI =
ρ(t,S), f
====⇒ NI with NI = (PN,(I \ fI(M))+N)

given by the componentwise DPOs in Figure 8a by standard category theory and Figure 8b by
construction of pushout complements and pushouts in Sets (see [EEPT06]) where we choose the
injection d̄′I to be an inclusion. Then there is NI ∼= NI1 by uniqueness of pushouts and pushout
complements in PTINets.

PNt

( fP, fT )
��

PNt
idoo id //

��

PNt

( f̄P, f̄T )
��

PN

(PO)

PN
id
oo

id
// PN

(PO)

(a) DPO in PTNets

M

fI

��

/0? _oo � � //

��

N

f̄I
��

nt

$$
I

m
((

(PO)

I \ fI(M)
m̄0

  

? _
d̄Ioo � � d̄′1 // (I \ fI(M))+N

m̄1 $$

(PO)

Pt

f̄P= fP
��

PPN id
PPN

(b) DPO in Sets

Figure 8: Componentwise DPO diagrams in PTNets and Sets

Then fT (t) ∈ TNI is enabled under a token selection S̄ = (M̄, m̄, N̄, n̄) with M̄ = fI(M), m̄ = m,
N̄ = f̄I(N) and n̄ = m̄1|N̄ if

1. M̄ ⊆ I, 2. n̄ : N̄→ PPN , 3. (I \ M̄)∩ N̄ = /0, and

4. ∑
i∈M̄

m̄(i) = preNI( fT (t)) 5. ∑
i∈N̄

n̄(i) = postNI( fT (t))
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Items 1 and 2 hold by construction via image and restriction. Item 3 follows from the fact that
the coproduct (I \ M̄)+N is a disjoint union in Sets and N̄ = f̄I(N) is exactly the part of that set
which is not in I \ M̄. It remains to show items 4 and 5:

∑
i∈M̄

m̄(i) = ∑
i∈ fI(M)

m̄(i)

= ∑
i∈M

m◦ fI(i) ( fI inj., m̄ = m)

= ∑
i∈M

fP ◦mt(i) ( f PTINets-morphism)

= f⊕P ∑
i∈M

mt(i) = f⊕P ∑
i∈M

m(i) (∀i ∈M : mt(i) = m(i) by def. of ρ(t,S))

= f⊕P ◦ prePNt (t) (t enabled under S in Lρ(t,S))

=preNI ◦ fT (t) ( f PTINets-morphism)

and analogously,

∑
i∈N̄

n̄(i) = ∑
i∈ f̄I(N)

n̄(i)

=∑
i∈N

m̄1 ◦ f̄I(i) ( f̄I inj., n̄ = m̄1| f̄I(N))

=∑
i∈N

fP ◦nt(i) ( f̄ = ( f̄P, f̄T , f̄I) PTINets-morphism, f̄P = fP)

= f⊕P ∑
i∈N

nt(i) = f⊕P ∑
i∈N

n(i) (∀i ∈ N : nt(i) = n(i) by def. of ρ(t,S))

= f⊕P ◦ postPNt (t) (t enabled under S in Lρ(t,S))

=postNI ◦ fT (t) ( f PTINets-morphism)

So we have that fT (t) is enabled under S̄ and we obtain a firing step NI 〉−fT (t),S̄−−−−→ NI∗ where NI∗

has the same net part PN and the follower marking (I∗,m∗) with I∗ = (I \ M̄)∪ N̄ and

m∗(x) =

{
m̄(x) = m(x) = m̄1(x)|I\M̄ , if x ∈ I \ M̄;
n̄(x) = m̄1(x)|N̄ , if x ∈ N̄.

Now, by the fact that d̄′I is an inclusion we have

I∗ = (I \ M̄)∪ N̄ = (I \ fI(M))∪ f̄I(N) = (I \ fI(M))+N

and the marking function m∗ : I∗→ PPN maps the individuals exactly like m̄1 : (I \ fI(M))+N→
PPN . So we have NI∗ = NI and hence NI∗ ∼= NI1.

The encoding of PTI transition rules and the correspondence between the firing of PTI nets and
the application of transition rules stated in the theorem above are very close to those presented in
[Kre81]. A difference, however, of our encoding is the fact that the transition rules are encoded
directly as PTI transformation rules rather than as graph transformation rules like in [Kre81].
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This allows us to use the transition rules for analysis in PTI transformation systems as presented
in the next subsection.

A generalization of Petri nets to graph grammars is presented in [CM95] such that transitions
correspond to rules and firing steps to rule applications. This approach uses an encoding of
transitions as graph rules similar to Definition 9 and the transition productions of [Kre81] with
the difference that they contain only the individual tokens as typed graph nodes where the types
represent the places marked by the tokens. The authors of [CM95] mention a subtle mismatch
of the encoding as a conceptual problem, i. e. that the indistinguishable tokens of the multiset
marking in the actual net are more abstract than the tokens with distinguishable individuals in
the graph representation. Because of several possible matches for the individuals, there are
different transformations representing the same unique firing step of a transition and there are
many grammars representing the same net.

Although both constructions have inspired the transition rules in this paper, it is not our ambi-
tion to formalize a strict simulation relation between a PTI net’s behavior and an – in some sense
– equivalent (net) grammar. We rather use the correspondence result of Theorem 5 to relate
arbitrary net transformation steps with firing steps as we show in the next section.

3.4 Independence of Token-Firing and Rule Application

For P/T systems, [EHP+07] defines parallel and sequential independence of a transformation
step and a firing step and proves results that are similar to the Local Church-Rosser Theorem of
[EEPT06], which relates sequential and parallel independence of rule applications.

As we have shown in Theorem 5 we are able to express the firing of PTI nets by application
of transition rules. This allows us to immediately use the results for M -adhesive transformation
systems [EEPT06, EGH10] for the analysis of the independence of firing steps and rule applica-
tions. We obtain a notion of parallel independence of a rule application and a firing step for PTI
nets by relying on the definition of these properties for the corresponding transition rule.

Definition 10 (Parallel Independence of Rule Applications and Firing Steps) A transformation
step NI0

ρ1,o1
=⇒NI1 and a firing step NI0 〉−t,S−→NI0

′ (see the top of Figure 9a) are parallel independent
iff the rule applications (ρ1,o1) and (ρ(t,S),o2) are parallel independent (see Figure 9b), where
(ρ(t,S),o2) is defined according to item 1 of Theorem 5.

NI0
ρ1,o1

s{
'' t,S

''
NI1 &&

t ′,S′ &&

NI0
′

ρ1,o′1
s{

NI1
′

(a) Independence diagram for a
rule application and a firing step

NI0
ρ1,o1

s{
ρ(t,S),o2

#+
NI1

ρ(t,S),o′2
"*

NI0
′

ρ1,o′1
s{

NI1
′

(b) Corresponding local Church-
Rosser diagram

Figure 9: Independence of Rule Applications and Firing Steps
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Remark 4 (Sequential Independence of Rule Applications and Firing Steps) Analogously to the
parallel independence it is possible to define the sequential independence of rule applications and
firing steps by defining that NI0 =

ρ1
=⇒ NI1 〉−t,S−→ NI2 respectively NI0 〉−t,S−→ NI1 =

ρ1
=⇒ NI2 are sequen-

tially independent iff NI0 =
ρ1
=⇒ NI1 =

ρ(t,S)
===⇒ NI2 respectively NI0 =

ρ(t,S)
===⇒ NI1 =

ρ1
=⇒ NI2 are sequentially

independent.

Now, we can transfer the relations that the Local Church-Rosser Theorem states between par-
allel and sequentially independent rule applications to parallel and sequentially independent rule
applications and firing steps. With this result, we have a criterion to decide for rule applications
and firing steps whether they can occur independently in any order with the same result.

Theorem 6 (Local Church Rosser for Rule Applications and Firing Steps) Given a direct trans-
formation NI0

ρ1,o1
=⇒ NI1 and a firing step NI0 〉−t,S−→ NI′0 that are parallel independent (see the top

of Figure 9a), then there exists a transition t ′ ∈ T1 enabled under some token selection S′ leading

to NI1 〉−t
′,S′−−→ NI′1 and a direct transformation NI′0

ρ1,o′1=⇒ NI′1.

Proof. Parallel independence of (ρ1,o1) and (t,S) by Definition 10 means that (ρ1,o1) and
(ρ(t,S),o2) are parallel independent rule applications. This implies by Theorem 5.12 in [EEPT06]

that there are sequentially independent transformations NI0 =
ρ1,o1
==⇒NI1 =

ρ(t,S),o′2====⇒NI′1 and NI0 =
ρ(t,S),o2
====⇒

NI′0 =
ρ1,o′1==⇒ NI′1 as depicted in Figure 9b. The match o′2 is given by the composition o′2 = g1 ◦ i2

where i2 with o2 = f1 ◦ i2 is given by the parallel independence of the rules (cf. Theorem 5.12 in
[EEPT06]).

R1

n1

��

K1r1oo

��

l1 // L1

o1
��

i1
''

Lρ(t,S)

o2
}}

i2
xx

Kρ(t,S)l2oo

��

r2 // Rρ(t,S)

n2

��
NI1 C1g1oo f1 // NI0 C2f2oo g2 // NI′0

Now, injectivity of o2 implies injectivity of i2, and injectivity of r1 implies injectivity of g1
because M -morphisms are closed under pushouts. So we have that o′2 = g1 ◦ i2 is injective and
thus by item 2 of Theorem 5 we have that t ′ = o′2,T (t) is enabled under some token selection S′

with firing step NI1 〉−t
′,S′−−→ NI∗1 such that NI∗1 ∼= NI′1.

Remark 5 Due to the fact that a rule sequence NI1 =
ρ1
=⇒ NI2 =

ρ2
=⇒ NI3 is sequentially independent

iff NI1
ρ
−1
1⇐ NI2 =

ρ2
=⇒ NI3 are parallel independent, the theorem above can be easily extended to

cover also the analogous statement for sequentially independent firing and rule application. This
argumentation has similarly been used in [EHP+07].

Example 6 (Independence of Rule Application and Firing Step) Consider the PTINet Network0
in the top-left corner of Figure 10. We can add a new client Client1 by applying the rule
newClient in the top of Figure 2 with an inclusion match morphism o. Moreover, we can fire the
transition send2 under a selection S as described in Example 2. The rule application and the firing
step are parallel independent which means that the diagram can be completed with sequentially
independt dent sequences of rule application and firing steps as shown in Figure 10.
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Client1 Client2

send1 rec1 send2 rec2

Switch1

C1 C2
i1

i5 i6

i7

i2 i3

i4

Client1 Client2

send1 rec1 send2 rec2

Switch1

C1 C2
i1

i5

i9i7

i8

Client2

send2 rec2

Switch1

C2
i1

i5 i6

i7

Client2

send2 rec2

Switch1

C2
i1

i5

i9i7

i8

Network0 Network1

Network1
'Network0

'

)
newClient, 

o

)
newClient, 

o'

½

send2, S

½

send2, S'

i2 i3

i4

Figure 10: Independent application of newClient and firing of send2

4 Conclusion and Future Work

In this paper, we have presented place/transition nets with individual tokens (PTI nets) together
with a rule-based transformation by instantiation of M -adhesive transformation systems. The
individual token approach of PTI nets overcomes some technical restrictions of reconfigurable
P/T systems and provides an appropriate representation of marking-changing rules.

As a main result, we have shown that the category of PTI nets together with the class of all
injective morphisms form an M -adhesive category, where the framework of M -adhesive cate-
gories is a slight generalization of weak adhesive high-level replacement (HLR) categories. This
allows us to use the analysis results for weak adhesive HLR systems from [EEPT06] for PTI
transformation systems, and we obtain a necessary and sufficient gluing condition for the ap-
plication of PTI transformation rules. Moreover, we have shown that firing steps in PTI nets
are equivalent to applications of special transformation rules, called transition rules, simulating
a firing step by changing the marking of the places in the environment of the fired transition
accordingly. With this correspondence of firing steps and rule applications, we are able to define
the notions of parallel and sequential independence of a PTI firing step and a rule application by
using the definitions of independence for rule applications from [EEPT06]. This allows to show
a local Church-Rosser result for rule application and token firing based on the corresponding re-
sults in M -adhesive categories and is the basis for further conflict analysis based on critical pairs.

In our technical report [MGE+10], we extend our approach of Petri nets with individual tokens
to transformation systems of algebraic high-level nets with individual tokens (AHLI nets) based
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on rule-based transformations of algebraic high-level nets from [PER95]. For AHLI nets we
obtain similar results as for PTI nets. That is, (AHLINets,M ) with the class of all injective
morphisms with isomorphic data part is an M -adhesive category. Moreover, we have a sufficient
and necessary gluing condition for the applicability of AHLI rules, and it is also possible to
express the firing of AHLI nets by application of AHLI transition rules.

We employ AHLI nets in our modeling case study for Skype in [HM10] for realizing mul-
ticasting to transmit specific data between groups of Skype clients by marking-changing rules
according to [BEE+09]. In that case study, we use the algebraic data type part in order to repre-
sent the clients’ identities and the communicated data.

Due to the categorical characterization of independence in this paper in contrast to [EHP+07],
the results only rely on the correspondence as stated in Theorem 5. Therefore, the Local Church-
Rosser Theorem for AHLI rule applications and firing steps can be shown completely analo-
gously because of the correspondence between the firing of AHLI nets and the application of
AHLI transition rules [MGE+10]. Moreover, it is possible to transfer similar results for transfor-
mations like the theorems for concurrency and local confluence based on critical pairs [EEPT06]
to transformations mixed with firing steps of P/T and AHL nets with individual tokens.

In [EHL10], the results of [EEPT06] concerning parallel and concurrent rules have been lifted
to transformation systems with nested application conditions (see also [HP09]). The additional
property for M -adhesive categories that is needed for these results is a suitable E -M factor-
ization (and binary coproducts which we already have by cocompleteness). One possibility to
achieve this requirement is the restriction to finite PTI and AHLI nets, because as shown in
[BEGG10], the restriction of an M -adhesive category to all its finite objects has extremal E -M
factorizations.

Another powerful concept is the amalgamation of rules (with application conditions) over a
bundle of matches [GEH10] which can be used to realize multicasting of data tokens in high-
level nets [BEE+09]. In order to instantiate the results in that article to our Petri net categories
we need to show that they have so-called effective pushouts.

Acknowledgements: We thank the reviewers and the members of the TFS research group at
TU Berlin for their thorough reviews and highly appreciate the comments and suggestions, which
significantly contributed to improving the paper’s quality.
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