
Electronic Communications of the EASST
Volume 45 (2011)

Proceedings of the
Fourth International Workshop on Formal Methods

for Interactive Systems
(FMIS 2011)

Dependable keyed data entry for interactive systems

Harold Thimbleby & Andy Gimblett

16 pages

Guest Editors: Judy Bowen, Steve Reeves
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Dependable keyed data entry for interactive systems

Harold Thimbleby & Andy Gimblett

Future Interaction Technology Lab, Swansea University, Wales — www.fitlab.eu
h.thimbleby@swansea.ac.uk & a.m.gimblett@swansea.ac.uk

Abstract: Keyed data entry is fundamental and ubiquitous, occurring when fill-
ing data fields in web forms, entering burglar alarm pass-codes, using calculators,
entering drug delivery rates in infusion pumps, making cash withdrawals from cash
machines, setting destinations for GPS navigation, to name but a few of its applica-
tions. Unfortunately data entry is often implemented poorly.

We introduce divergence, a loss of predictability in a user interface, and show that
it is in general unavoidable in data entry, and therefore a systematic approach is
called for. This paper presents one such an approach. Many inter-related ideas “fall
into place”—e.g., autocompletion, prompting, automatic color coding—through the
approach. The approach contrasts with conventional systems that are generally in-
consistent and unhelpful to users, particularly after errors.

Keywords: keyed data entry, divergence, FSM, dependability

1 Introduction

What are appropriate formal properties for dependable user interfaces, and how can they be used
to help practice? This paper explores the area of dependable keyed data entry: an area in need
of formalisation (as we shall see) and in need of tools for correct implementations, but tools
sufficiently easy to use and sufficiently flexible for developers that the approach is adopted and
hence delivers benefits to users and their work.

The original motivation for the work reported here was the discovery that medical devices,
such as drug delivery systems, use ad hoc number entry methods, with the result that user in-
terfaces that should be dependable are unpredictable. Some infusion pumps parse numbers in
several ways depending on their mode, and thus provide an unpredictable experience for the user,
particularly in syntax error handling [15]—potentially with the result that patients are given in-
correct drug doses. There are examples where devices claiming to log “user actions” have been
used to assign blame to users, but where the devices may in fact have logged their responses to
user input, not the actual input, which had been incorrectly parsed [16] so that the logged actions
were not the actions the user requested.

As section 4 below (and [15]) show, these problems are not limited to specialist devices. The
aim of this paper is to show that dependable interactive data entry (a generalisation of number
entry) is not a trivial problem, but that a better approach is possible. The approach proposed
in this paper is to specify both valid data syntax and some semantic aspects of how data entry
should behave, and then to compile that specification into a virtual machine to interactively parse
the user’s input according to that syntax and semantics. This approach is efficient, rigorous and

1 / 16 Volume 45 (2011)

mailto:h.thimbleby@swansea.ac.uk
mailto:a.m.gimblett@swansea.ac.uk

Dependable keyed data entry

general, and allows consistent user interfaces to be generated with a variety of well-defined
properties as appropriate to the needs of the application. Static checks on the user interface and
design trade-offs can be made, including raising issues of feature interaction, and these checks
ensure a more dependable outcome appropriate to the task domain.

Dependability is the trustworthiness of a computing system that allows a user to justifiably
rely on the service it delivers [3]; this breaks down into predictability (for the user), rigor (for the
developer), and appropriate integration between the two—software engineering that results in
systems consistent with their documentation (requirements, help, training, manuals, etc). Other
criteria include maintainability, since a design will be modified (iterative design requires it).

A “dependable user interface,” then, means that developers have indeed implemented the user
interface (UI) they intended and users can interact with the UI to dependably achieve their goals.
Both developers and users make errors, and dependable systems should be fault tolerant or re-
silient in the face of these and other faults. Humans will always eventually make errors, and
dependable UIs must therefore be fault tolerant to human error.

2 A research programme on dependable user interface design

It is a widely-accepted idea to specify syntax in a well-defined language. We extend that idea to
include formalising interaction properties and features, in order to provide a flexibly-defined, de-
pendable user interface. The ideas naturally lead into providing tool support for dependable user
interfaces. However, the present paper is a work in progress. Some of the ideas and claims are
not adequately formalised and various concepts and theorems not spelt out. Clearly, for depend-
able user interfaces it is especially important to have a secure grounding in appropriate formal
methods. Our concepts of “divergence” and other ideas indicate areas that need developing, and
moreover that this is no easy task.

Here is a typical problem. When the user input field is full, what should be done, and what are
the consequences of doing so? For example if the user interface accepts input that completely
fills the display, what does the next keystroke do? The user cannot see it, yet pressing it is an
error. If the keystroke is rejected, the display does not change (it is already full) and therefore
either there is no error, or a historical mode has to be introduced. It is not obvious what to do in
general; it may be that the right answers depend on the application domain—and if so, how?

3 Previous work

Data entry validation is generally driven by the desire to provide as rich and responsive an inter-
active user experience as possible while trapping data entry errors before passing data over to an
application. PowerForms [7], devised in 2001, use regular expressions (henceforth, regex) and
a constraint language to specify forms for web applications. Fields can be marked with status
icons, typically traffic lights, much as we propose. PowerForms allows forms to be dynamic: for
example, only if the user is married is the field for entering the spouse name shown. See [18] for
a review of web data entry validation techniques.

The UK National Health Service has defined a “common user interface” (CUI) that defines
low-level features such as date entry. Such standards try to ensure a consistent UI across different

Proc. FMIS 2011 2 / 16

ECEASST

applications except the low level interaction details need to be well-defined and appropriate, and
as we will show below they fail to do so. Recent standards work [5] ignores dependability
and managing user error per se—but is adding user experience (UX) issues like pleasure and
comfort. ISO standard 14977 [11] says there is a large diversity of meta-languages for specifying
languages but that these too are often badly or incompletely designed (as epitomized by the W3C
case study in section 5.1).

It is remarkable that these problems persist. Most likely, programmers find it easier to use
general-purpose programming languages and then they naturally make ad hoc implementations—
since data entry is deceptively trivial. Instead, arguably, we need an approach where a dependable
UI is constructed automatically from a specification; this is an example of “correct by construc-
tion” (C×C) [12]. For such an approach to be widely accepted in place of ad hoc methods, it
must be generally and easily applicable; we propose that the approach described in this paper is
indeed both sufficiently general to handle most realistic keyed data entry situations, and suffi-
ciently well-defined that it could be packaged into libraries and languages for easy deployment.

4 How is keyed data entry problematic?

Many devices have a display and a keyboard, where the user can enter values into the display
that are then processed in some way. Common examples include handheld calculators, online
forms, medical devices, and cash machines. Best practice is to validate the user’s input and only
process correct values, but few UIs follow this best practice; anyway this is only part of the story.
The handheld calculator provides a few examples of the possible problems:

1 Handheld calculators rarely validate user input. If a user keys
� �

1� �� �
•� �� �

2� �� �
•� �� �

3� �, probably 1.23 is
displayed and processed. Put charitably, calculators correct the user input but do so silently—and
different calculators correct errors in different ways. Explicit correction (

� �
DEL� �) is rarely supported.

2 Most calculators display a value (e.g. 0.) before the user keys anything, causing ambiguities and
hence problems. For example, if the user keys

� �
1� �when the display shows 0. , the display could

become either 1. or 0.1 . Very few calculators display nothing when the user has keyed nothing.

3 Calculators frequently overload the display: it is used to show the result of a calculation and the
number being entered (depending on the mode). In general, the display can show any number (say
42) and the user keying a digit can either start a new number or extend the displayed number.

4 Calculators rarely detect overflow in number entry. Suppose we wish to divide 6,800,000,000 by
308,000,000 (say); most calculators handle this poorly. The Apple iPhone calculator (v 3.1.3) gives
0.45 (incorrect), having silently discarded user input because the display only shows 9 digits. Rotated
to landscape, the calculator can handle 16 digits, yielding the correct answer. Evidently the iPhone
contains code to explicitly and silently discard and ignore excess digits from the user.

5 Keys on calculators rarely “key click” so that the user can be sure whether (and how often) they have
been successfully pressed. A few calculators have key clicks, but the clicks indicate that the keys
have been pressed, not that they have had any effect (e.g., as happens when the display is full)!

These issues are very familiar and perhaps easy to dismiss as “obvious.” Yet the problems are
ubiquitous. Medical devices, such as infusion pumps that are used to deliver controlled amounts
of drugs to patients, have very similar problems. Infusion pumps are used by over-worked nurses

3 / 16 Volume 45 (2011)

Dependable keyed data entry

subject to many stresses such as interruption during their operation of a device; incorrect values
used by the infusion pump may kill patients.

Data validation is only part of the problem—for example, how should the device continue to
interact with the user after an error is detected? Data validation is often treated as a “validate the
data after the user has entered it” problem, with no connection to the user’s error recovery, data
editing, and interaction generally whatsoever.

The point is that while keyed data entry seems simple (“just key in what you want”), it conceals
many design choices and constraints, typically implemented in many places (in every sense:
geographically, software versions, libraries, application code), and beyond the full control of
most designers. Worse, design choices are frequently implicit in the source code structure and
feature interactions are unexplored and undefined (we will give examples later). Implicitness also
makes reuse harder, of course. With modern development methodologies, the design itself will
be a moving target; with a process following ISO 13407:1999 (Human-centred design processes
for interactive systems) the design is supposed to iterate and improve—and thus a consistent user
experience gets even harder to deliver.

The chance that the user experience is consistent, integrated and predictable, especially during
error management after a key-slip when consistency is crucial, is low. In addition, as we discuss
next, some problems are unavoidable in principle: which means programmers, if they do not
realise the problems are intractable, will tend to invent “quasi-solutions” that impose arbitrary
boundary conditions on users that, most likely, have not been fully analysed or tested.

4.1 Predictability & divergence

A dependable UI should be predictable. Abowd et al define predictability as the ability to “de-
termine the effect of future action based on past interaction history” [1]—we call this history-
predictable; whereas Dix requires the ability to determine the effect of future action based on
current output (i.e., visible state) [8]—which we call display-predictable; for keyed data entry
both are needed in general. There are several ways in which a user might expect a keyed data
entry UI to be predictable; for example:

• The same sequences of keystrokes always result in the same results (the user need not pay full
attention to the display). In particular if the display shows UVW , then

� �
DEL� �removes the last

character (changing it to UV) and
� �
CLEAR� �clears it to .

• If the display shows some sequence UVW , then
� �

X� �(not one of the special keys
� �
DEL� �etc) changes

the display to UVWX . We would expect display-predictability for this and the previous examples.

• If the display shows something, then
� �
OK� �submits it so the device or system acts on the displayed

value; again, we would expect display-predictability in this situation. Conversely,
� �
RESET� �resets to an

earlier accepted value (or blank if none exists); achieving display-predictability here means
displaying the earlier value elsewhere, thus history-predictability might be more reasonable.

However, even these basic expectations can easily fail, for example:

• If the display is full, say showing VW (a small display), then pressing
� �

X� �may have no effect—since
the display is full it remains showing VW ; then pressing

� �
DEL� �may remove the last character from the

display, resulting in V . Here,
� �

X� �� �
DEL� �, which might be expected to do nothing, has the effect of� �

DEL� �.
Proc. FMIS 2011 4 / 16

ECEASST

• If the value shown has a syntax error or is semantically invalid (out of range, say) future behaviour
may be undefined or unpredictable. For example, pressing

� �
OK� �when the display shows 1000 could

cause the device to act on 500 if this is the largest allowed value. A case in point [15] is where a user
keyed

� �
1� �� �

3� �� �
0� �� �
•� �� �

1� �but the device, finding the input exceeded 99, ignored the decimal point and
displayed and acted on 1301 .

• If pressing a key would cause a syntax error, the key might be ignored or have some other effect.
Thus

� �
1� �� �
•� �� �
•� �� �

3� �may appear as 1•3 , and, more interestingly,
� �

1� �� �
•� �� �

2� �� �
•� �� �

3� �may appear on
different systems (or in different modes on the same system) as 1•23 , 12•3 or as 1•3 [13, 15].

• If the display has already overflowed, deleting the last character may or may not reveal an earlier
character. Thus pressing

� �
DEL� �with the display showing UVW (supposing this to be full) could

change it to TUV or to UV , say.

• Time can be problematic, e.g. when the user is slow or walks away and is replaced by another user. If
the device times out, the display may change on its own, typically as if a user keyed

� �
CLEAR� �; time

outs can create race conditions: the user reads 1 and they wish to change it to 15 : they press
� �

5� �� �
OK� �and are surprised when 5 is displayed, not 15 . A user reading the operator’s manual while
trying to use the device may read one thing about the device and experience another behavior!

• Autocompletion is widely used to reduce user keying effort, but usually confuses the usual relation
between display and input. Thus if

� �
J� �autocompletes to JANUARY then

� �
J� �� �

DEL� �would not
(normally) change the display to JANUAR but to —what it showed before

� �
J� �was keyed.

Similarly, does keying
� �

J� �� �
K� �change the display to JK or to JANUARYK or is it an error and

leaves the display as JANUARY ?

When a UI fails to be predictable, we say its behavior diverges from the user’s reasonable
predictions. More specifically, we could formalise the laws illustrated above and formalise di-
vergence, though in different ways for different systems. Divergence is a property of the behavior
of a UI and the laws of behavior the user has been told (e.g., from documentation). Clearly for a
dependable UI, we want to reduce divergence and ensure, so far as possible, that the user is made
aware of it when it occurs. In general, UI divergence is unavoidable even by good design; it
also happens because users make slips or are unaware of the limitations of the design.

We propose that a dependable UI should:

1 Explicitly define its laws of normal behavior. For example:

• Each key pressed provides audible feedback (key click): one press, one click, and a distinctive
key click (e.g., a warning beep) if the key fails to operate as normal. (Thus the user has
confirmation that the key is pressed hard enough to operate, that it hasn’t bounced, and that it
has had, or has not had, the intended effect.)

• Pressing a normal key appends it to the display.

• Pressing
� �
DEL� �deletes the previous normal key.

• In a security application such as entering a password or PIN, pressing any keys (say,
� �

4� �� �
7� �� �

9� �� �
1� �) would display an unrelated mask such as **** so other people cannot read the

password the user is keying. In a high security application, there may not even be per-key
feedback that indicates how many keys have been pressed.

• If a key press has been processed, nothing retrospectively changes the meaning of the key
press. For example, if the display is full (say showing 1234) then pressing a further key (say� �

5� �) does not change the display (for instance, to 2345 , losing the first key press).

5 / 16 Volume 45 (2011)

Dependable keyed data entry

2 Define exceptions to its laws. For example, if the display is full, extra keys may be ignored. Perhaps
pressing

� �
DEL� �deletes the last key in the display, not necessarily the last key pressed.

3 The user need not be aware of specific exceptions to the laws. Hence, a dependable UI ensures
exceptions, including timeouts, are always very clear to the user, for example, through color changes
(for instance, by dimming invalid key presses; we know this also speeds up users [14] since it shows
users what their options are), physical/tactile key feedback, and sound. Conversely, it must provide
feedback on valid key presses (that they have been hit, that they haven’t bounced, etc).

4 In particular, indicate when
� �
OK� �would enter invalid data for the application. For example, the user

has pressed
� �
CLEAR� �� �

•� �—a digit is required before this can be submitted.

5 If a key press would cause divergence (in the current state), it does nothing other than inform the user
of divergence. In particular,

� �
OK� �can only pass well-formed data to the application.

Devices have different sorts of keyboards. On a PC or other device with a general-purpose
keyboard, very little can be done to provide key-specific feedback before a key is pressed. Keys
should beep distinctively if pressing them causes divergence, and otherwise click (to confirm
that they have been pressed, and if so, how many times). On special purpose hardware or on
semi-soft keypads (where there are physical keys adjacent to dynamic key legends), keys can
be lit if they are enabled, and dimmed and even physically locked if pressing them would cause
divergence. On soft keypads (e.g., on touch screens), diverging keys need not even be displayed.

We want a UI where a user paying sufficiently close attention to it will always be able to obtain
their intended effects. We want a UI where the sequence � �

CLEAR� �. . . any non-diverging sequence
. . . � �

OK� �enters what the user predicts without confirming with the display. Since this law of
behavior may be learnt by the user even if not explicitly stated, it is imperative that divergence
is indicated audibly and using tactile feedback through the keys themselves, in addition to any
visual indication (to which the user may not be paying attention). We thus aim for a UI that is
either predictable or beeps (where “beeps” means to make attention-getting feedback, typically
a sound) and if it beeps the user action causing the beep is otherwise completely ignored.

Divergence can be detected by the system, and a dependable system should alert the user
of a divergence to enable timely and appropriate action. Of course, in some situations, alerts
may counter-productively escalate the error rate by stressing the user, or perhaps by causing
bystanders to intervene and cause different sorts of problem.

5 A new approach to keyed data entry

We suggest the term C×CUI, a correct by construction UI, for one that is consistently designed
and implemented as an instance of a class of related interfaces sharing common properties. We
prefer this to UIMS (user interface management system), as a UIMS typically prioritises flex-
ibility and generality, whereas a C×CUI prioritises dependability and rigor: the approach is
flexible, but is not in any way arbitrarily programmable, as UIMS commonly are. Carefully con-
sidering and automatically checking the general and abstract properties of UIs leads to better UIs.
C×CUIs of a class have specific interaction properties and hence considerably reduce transfer
errors and improve user learning times between devices and systems in the class. Additionally,
C×CUIs are easier to modify while maintaining dependability and clear definition; they support
iterative design well.

Proc. FMIS 2011 6 / 16

ECEASST

Our particular approach is based on finite state machines (FSM) using regular expressions
(regex) as a notation to specify them. The use of FSMs as machines which test for membership
of particular regular languages is widespread, well understood, standard textbook material [2].
The classic setting is offline parsing, to produce an accept/reject decision. We propose that this
simple and familiar idea be extended into the online, that is to say interactive setting—and that
doing so permits a formal, rigourous and replicable approach to handling many features which
are ordinarily treated ad hoc, e.g. prompting and autocompletion.

Since keyed data entry retains a history of at least some of a user’s keystrokes (e.g. as displayed
on a calculator screen), a purely FSM-based approach to interactive data entry would need a
number of states exponential on the length of the history; hence following [17], we factor our
machine into a simple FSM-like part, and a separate memory. For our purposes of dependable
keyed data entry, it is sufficient for the memory to be the display, and moreover for this to behave
like a stack. (In the case that the display is allowed to overflow, we consider the display to be
a window onto the stack in a way that is determined by design requirements.) The underlying
FSM is then essentially a “classic” accept/reject machine, and its state is thus determined only
by the contents of the display.

Given an FSM and a stack, then, we have something very like a PDA: this combination is
the virtual machine which interprets our input; however, PDAs only examine the topmost stack
symbol, whereas our machine may examine, e.g., the length of the stack. Within such a setting
(and by labelling FSM states with extra information) we may formally define several useful
notions such as prompting and autocompletion, as described below. We note that FSMs and
PDAs are simple, well understood and easy to analyse [14]. Following Peter Ladkin, we assert
that if it is possible to use a FSM, then there are overwhelming reasons to use one. FSMs can
be compiled to simple provably-correct hardware to build UI controllers, and they can be shown
to have no run-time errors. Of course, FSMs of non-trivial systems tend to become large and for
practical use in interaction—where a user is expected to model the UI—we do not just want an
FSM, but a simple FSM, for some meaning of simple. We assert that a user will find systems
based on simpler FSMs simpler to understand, and our approach here fits that ideal.

There are many ways to represent FSMs concretely; our implementation exports the JavaScript
object notation, JSON (see www.json.org; [14]) as this is very portable, and it naturally allows
the FSM to be combined with other parameters we need that the UI VM implements.

5.1 The regex notation

Formally, we might think that the concrete syntax of a notation has little impact on dependability
arguments, and that syntactic issues are of little concern; we argue that this is not the case:
specifications must be clear if developers are to be confident in them. We now explore our
concrete choices and the rationale for them.

Programming languages usually distinguish clearly between literal values and other syntactic
categories; in string processing languages however, this distinction is often less clear. Regular ex-
pressions are a classic example: they match strings, so it is natural for the regex abc to match the
string abc; but then operators are ambiguous: does abc* mean match abc* , or ab followed
by any number of c s? Responses vary: perhaps *, as a commonly used operator, is “blessed”
but (needs escaping if is intended as a expression bracket rather than a character literal. Con-

7 / 16 Volume 45 (2011)

Dependable keyed data entry

ciseness, driving such design decisions, can conflict with redundancy, clarity and ambiguity.
Similarly, comments are frequently poorly supported in conventional regex languages—despite
how unreadable regex can be! (Perl has regex comments, but then the comment symbol # itself
has to be escaped to be used.)

Our regex notation clearly distinguishes between four sorts of symbols: variables, operators,
literals, and comments. White space (outside of literal strings) is ignored, except for separating
adjacent variable names. Thus one writes "ab" "c"* or "abc*", etc, depending on intention.

We introduce and motivate our regex notation by re-engineering the HTML 5 “microsyntax”
the World Wide Web Consortium (W3C) uses to define “floating point numbers” for user input.
The W3C should be in a leading position to use best practice, but their approach is manifestly ad
hoc and arbitrary. They repeatedly re-implement very similar parsing strategies; they interleave
syntax, semantics and error detection in obscure ways. They use words, including “fail” and
“abort,” in undefined ways, and the approach fails with input errors. It is particularly surprising
that the W3C did not take advantage of any formal notation. Regardless of these issues, the
purpose of this section is a case study to illustrate our notation. That the W3C is by no means
the only source of bad number parsing specifications is discussed at greater length elsewhere
[13, 15, 16]. Translated into our notation, the W3C specification becomes:

1: whitespace* (-: skip any whitespace
2: [minus]
3: digit+
4: [dot digit+]
5: [exponent-symbol
6: [(-: W3C number can end after exponent!
7: [plus | minus]
8: digit+
9:]

10:]
11: garbage-characters* (-: ignore anything

This is notably short and easy to read, and does not rely on ad hoc phrasings—in fact, it does
not permit any. Line numbering is provided by the online demonstrator (see section 9).

Line 1 uses whitespace, a variable defined elsewhere, to represent blank text. The name
whitespace is followed by the postfix operator *, the conventional Kleene star. The final part
of line 1 is comment, everything from (- to the end of the line—chosen as it allows emotionally-
annotated comments :-) In summary, line 1 corresponds to W3C’s English, “Skip white space.”

Line 2 uses the brackets [] to make minus optional. This brief declarative line corresponds
to W3C’s prolix and mechanistic, “If the character indicated by position is a ‘–’: advance position
to the next character. If position is past the end of input, return an error.” Line 3 shows the +
operator, similar to * but matching at least once. Line 7 shows alternation, represented by the |
operator: [plus | minus] will match nothing, match plus, or match minus.

Strings represent characters concatenated; thus the literal "abc" is the same as writing "ab"
"c", etc. The empty string is not permitted. Definitions such as exponent-symbol =
"e"|"E" can be placed anywhere. Here ”e” is a literal, of course.

Since developers want control depending on the context of use, many regex notations allow
parameterization via mnemonic letters—such as i to ignore case—often appended in the form

Proc. FMIS 2011 8 / 16

ECEASST

/pattern/modifiers; often the regex may be parameterized programmatically as well, so its prop-
erties are distributed around the program and may even be dynamic. Thus behaviour is implicit,
more likely to vary between parts of the program (and UI), and not obvious from the static code.

In our approach, semantic behavior is parameterized with features (e.g., masking for password
entry; whether there is an delete character key; etc) only introduced statically in the specification
by a list of fully explicit names and values. For example, the feature value-display-size
sets the size of the display. In our implementation, when user input exceeds the display length,
the UI goes red and the display shows (say) >>>>>> ; the UI then counts keystrokes to ensure� �
DEL� �operates consistently (n key presses followed by � �

DEL� �is always equivalent to the prefix
of n− 1 key presses). Compiling a specification produces a summary of features and feature
interaction, if any; for example combining autocompletion and masking is unusual and should
be flagged. In the case of errors (e.g., that no input is ever required from the user, perhaps because
of autocompletion), the compiler rejects the specification.

What have we achieved?

• Brevity and clarity—bringing their usual advantages.

• Making explicit some things that are only implicit in the W3C English: we have to explicitly say that
a number can be followed by anything (line 11), whereas the W3C implicitly accepts nonsense like
2.2.4. A better definition would omit line 11: when parsing a number, we should forbid anything
(other than blanks, perhaps) following it, surely.

• Lines 6–9 show that a number can end with E, as in 2.3E: the W3C does not require a number with
E to have an exponent. As it happens, it treats 2.3E as 2.3E1.

• On the other hand, as lines 7 and 8 make clear, if the E is followed by + or - it must be followed by a
digit. This is clearer in our language than in the W3C specification.

• The language compiles into a simple finite state PDA, which can run the UI specified. The W3C has
to be converted (unreliably!) by hand. Naturally, in general we can also statically check for recursion,
redefined names, unusued names, etc. in the usual manner.

Having criticised the W3C definition’s inscrutability and weak error management, we now
propose a better specification:

blank* [sign]digit+ [dot digit+] [exponent-symbol [sign]digit+] blank*

Of course we still require definitions for the lexical terms, blank, sign, etc (not shown
here), and once a number has been accepted as correctly formed, it has to be converted to the
value it represents. (The W3C convert characters to a number value as the number is parsed,
making it even more obscure.) In contrast to W3C: our treatment of signs is obviously consistent
for the mantissa and exponent; an exponent is required if the exponent symbol is present; blanks
are ignored before and after a number; and the number cannot finish with “anything” and so
cannot finish, confusingly, with more numbers—this avoids the W3C mess of permitting data
like 2.3E.4, 1EE8 and 2.3.4.

5.2 Autocompletion

Autocompletion sounds like a simple feature to reduce keystrokes. However, it introduces design
trade-offs. It is not clear whether reducing keystrokes reduces error rate, or whether the chang-

9 / 16 Volume 45 (2011)

Dependable keyed data entry

ing mode of the UI (increasing user uncertainty in how much to key) increases error rate. In
some cases, keying something that is autocompleted might lead the next keystroke to do some-
thing unexpected—thus potentially offsetting the benefit gained by keying less. Autocompletion
reduces redundancy: rather than having to get, say, ten keystrokes correct, maybe only two are re-
quired; one might then enter the wrong data accidentally more easily, and ironically the “wrong”
data would now be well-formed and harder to detect by the application.

Formally, the basic implementation technique is to compute, for each FSM state, the number
of outward transitions; if there is only one, follow it immediately upon entering the state, pushing
its label onto the stack, recursively until terminating on a state where this is no longer possible.
Several variants are possible, however.

Suppose the regex is "MONDAY" | ... then the user has to type exactly � �
M� �� �

O� �� �
N� �� �

D� �� �
A� �� �

Y� �, . . . to enter data. If strict autocompletion is on, then whenever the only option is
determined, the user need not do it. Thus, the user need only key � �

M� �, � �
T� �� �

U� �, etc; effectively the
language has been changed to "M" | "TU" | "W" |... With relaxed autocompletion,
the system also allows the user to key in the full data. Thus � �

M� �is sufficient, but � �
M� �� �

O� �, � �
M� �� �

O� �� �
N� �and so on are also allowed; the language has been changed to "M" ["O" ["N" ["D"

["A" ["Y"]]]]] |...
Both forms of autocompletion may create an inconsistency depending on the language: here,

a unique abbreviation for Monday or Friday has become a single key, but a unique abbreviation
for Tuesday or Saturday requires two keys. Hence minimal autocompletion sets a lower bound
on the abbreviation length. With a value of 3, the user must key 3 keys: � �

M� �� �
O� �� �

N� �, � �
T� �� �

U� �� �
E� �,

etc. If relaxed autocompletion is also permitted, then the user can key � �
M� �� �

O� �� �
N� �, � �

M� �� �
O� �� �

N� �� �
D� �,� �

M� �� �
O� �� �

N� �� �
D� �� �

A� �or � �
M� �� �

O� �� �
N� �� �

D� �� �
A� �� �

Y� �too, but the sequences � �
M� �and � �

M� �� �
O� �are too short.

Minimal autocompletion is be set by value-minautocomplete=n, and its implementation
is a guard on the stack length (plus the obvious static checks, e.g., that nothing is excluded by
too large a minimum).

With end autocompletion, the UI only autocompletes when it can complete to the very end of
the input; this gives the property that if autocompletion occurs, the user can always successfully
press � �

OK� �.
Autocompletion raises the possibility of a variety of errors that can be detected statically at

compile time. For example:

• If set, value-minautocomplete must be in range (if set too small, some autocompletions may
not be unique; if too long, it may be longer than some complete input strings). Thus, for English
month names, the minimum valid value-minautocomplete is 3, because of June and July—if
it is set to less, it cannot autocomplete for these cases; and the maximum is 9, because of
September—if it is set to be larger, it will never do anything.

• Sometimes autocompletion makes no sense at all; section 7 presents an example—for entering an
arbitrary number, the system cannot know what number is intended and so cannot autocomplete it.

• Sometimes there are cases of “autocompletion” that break other UI rules. For example in a number,
the rule that a gap separates groups of three digits is sufficient to retrospectively autocomplete the
insertion of gaps once four digits are keyed in, but the gaps move as further digits are keyed. Of
course, cleanly separating input from display is the proper solution in this situation.

Proc. FMIS 2011 10 / 16

ECEASST

5.3 Prompting—generalizing relaxed autocompletion

Many interactive systems provide the user with prompting about what they should key. This
is closely related to autocompletion: if an autocompletion would be - , then this could be dis-
played as a prompt and the user has to key it to proceed (assuming autocompletion is not actually
enabled); where there’s more than one possibility a generic continuation, such as is used.

Thus we can automatically generate prompts. Given the regex digit digit "/" digit
digit "/20" digit digit, the initial prompt would be / /20 , and as the user
keys digits, the display would change to 1 / /20 , 12/ /20 , and so on.

In general we want more display flexibility, particularly to permit prompts that are explanatory
rather than literal presentations of what the user has to enter anyway. Also, there is no reason
to display prompts just inline within the display the user is keying into: other positions, such as
above the display or as a tooltip are also possible.

In our language, a regex prefixed by p >> is prompted by p (a string or a variable). Thus
"d" >> ("0"|..."9") prompts any digit by d . Thus if we wanted a DD/MM/20YY
style prompt, this could be achieved by ("D" >> digit digit) "/" ("M" >> digit
digit) "/20" ("Y" >> digit digit). Autocompletion switched on would ensure
that the slashes and 20 are provided automatically.

Prompts can be applied to regex in various ways and prompts can override each other to create
powerful combinations. Thus "Date?" first >> none >> date defines a prompt that
is Date? if the user has keyed nothing, and then changes to nothing (no prompt at all) when
the user keys anything. A more complex example is:

"Date?" first >> day "/" month "/" year
day = "Day" only >> digit [digit]
month = "Month" only >> digit [digit]
year = "Year" only >> digit digit digit digit

Here, the initial display will be Date? , but as soon as the user keys a digit, � �
1� �, say, the

display will change to the more specific 1/Month/Year , and so on.
Prompting raises interesting issues. First, errors are possible, and they are detected by the

C×CUI. For example, ("a" >> "x") | ("b" >> "y") has inconsistent prompts—the
prompt cannot be both a and b . If prompting is combined with autocompletion, this may be
confusing, and the C×CUI warns of the potential feature interaction.

5.4 Time-outs and interruptions

Users may be interrupted when entering data. The most common approach to handling interrup-
tions is to time-out the UI in some way, but perhaps subtly in a way that a user may not notice,
as done in the Graseby syringe pump that silently times-out without any warning [13].

In our approach, a flashing time-out icon is shown, and its rate of flashing increases (perhaps
along with ticking sounds) as the time-out approaches. Thus the user is warned and given a
period (perhaps 10 seconds) within which they can respond and reset the time-out. If the time-
out happens, the display is reset, so that a new user does not continue by accidentally modifying
the current data.

11 / 16 Volume 45 (2011)

Dependable keyed data entry

5.5 Error correction

The number regex of section 7, below, does not permit a number to start with a decimal point. If
the user keys � �

CLEAR� �� �
•� �� �

1� �� �
2� �then the C×CUI treats this as an error. Instead, the C×CUI could

error correct the user’s input to 0•12 by inserting the missing zero.
In our view, in a dependable UI, if the user makes a slip, it is better to tell the user that a slip has

been made and allow the user to reflect and correct the error, rather than to make a correction that
is potentially the wrong one. For example, if the user keys � �

CLEAR� �� �
•� �� �

1� �� �
2� �a priori we do not

know whether a zero was omitted or that the decimal point is an error, possibly a transposition
with a later key—the user might have intended to key � �

CLEAR� �� �
1� �� �
•� �� �

2� �, or any number of other
things. A dependable UI should not attempt to mindread especially after a recognized error,
which is a symptom of the user not doing what they intended.

5.6 Other features

Evaluating a UI requires users to operate a system, and observation of their error rates, speeds,
and opinions. Unfortunately keying errors are infrequent, so features are provided by the C×CUI
to inject errors. Thus value-inject-error = n (n 6= 0) randomly remaps keystrokes with
probability 1/n, simulating a “wrong key” slip; similarly, value-bounce-error injects a
key bounce slip. The approach automates the experimental methods of [10], and shows that the
approach can help not just specify C×CUIs but also help evaluate them.

Many other features could be supported, for instance to help perform A/B usability tests. A
simple question: are displays better left- or right-aligned? The current approach allows a devel-
oper to specify either choice, and makes controlled experiments much easier, since it guarantees
that it can generate exactly equivalent user interfaces differing only in the controlled properties.

Display right-alignment is the default, and display-left-align may be set to require
left alignment. With left alignment, the change to the display when a user presses a key is always
the key that the user pressed. With right alignment, every key press causes the entire display to
change, in fact, to shift left. In the case of displaying 111 if the user next keys � �

1� �,
the display appears to put a 1 on the left of the 111 as only that part of the display changes, but
in fact it was appended on the right. Thus if the user keys � �

1� �� �
1� �� �

1� �� �
1� �� �

2� �while looking at
the display, they may expect it to show 21111 since it appears to be building up from the left
as they key! In contrast, left alignment supports the principle of display inertia [9] and appears
to raise no predictability problems—it always appears to build from the right, as in fact it does.
Nevertheless, we do not know which is better or under what circumstances, even for entering
conventional left-to-right Arabic numerals.

6 Formal summary

Let L be the language specified by the regex; for example if the regex is "a"["b"]"c" then
L = {abc,ac}. Even though Kleene star may be used, all strings in the language are no longer
than a defined constant, max. Define ℘L to be the set of all prefixes of L ; in particular L ⊆
℘L . Hence for L = {abc,ac}, ℘L = {ε,a,ac,ab,abc}. The empty string, ε , is a prefix of
any string. Empty L is a compile-time error since the user can do nothing.

Proc. FMIS 2011 12 / 16

ECEASST

The display shows what the user has keyed, which we can represent as σ . Divergence occurs
if |σ | > max. Pressing a key

� �
k� �(not � �

DEL� �, � �
CLEAR� �, � �

OK� �), if the key is highlighted, changes the
display to σK . Pressing � �

DEL� �, if � �
DEL� �is highlighted, changes the display σK to σ . Pressing� �

CLEAR� �, if � �
CLEAR� �is highlighted, changes the display to , i.e., σ = ε , nothing.

The following keys are highlighted (enabled): {c|σc ∈℘L }; equivalently, these keys are in
the first set of the language. The � �

DEL� �and � �
CLEAR� �keys are highlighted iff σ 6= ε . The � �

OK� �key is
highlighted if σ ∈L ; i.e., the display is blue or green—see below. Pressing � �

OK� �never changes
the display (unless it changes from blue to green).

The display is colored as follows:
Amber if σ ∈℘L ∧σ 6∈L (more input is required)

Blue if σ ∈L (input is syntactically well-formed but may or may not
be accepted by the application)

Green if σ ∈L and the input has been accepted by the application
Red if σ 6∈℘L (input is not a prefix of any possible string), or if the

input string length exceeds the display size
Our coloring derives from [15], independently proposed in 2001 [7]; by being more aware

of keying errors users should be able to enter data more reliably. Thus if the user’s input is
syntactically incorrect, the color is red; if it is correct, it is blue; if it is a prefix of a correct form,
it is amber. Finally, if the user’s input has been accepted by the application, the color is green.
Colors are also augmented with sound and icons. A slightly simpler approach is to combine
the green and blue colors, but it is usually useful to distinguish between syntactically correct
input (blue) with actually accepted input (green), and using green alone would potentially give
the user the incorrect impression that syntactically correct input was semantically correct—when
the display goes green, the user might be tempted to press � �

OK� �. In the chosen design, blue does
not tempt the user, and the display goes green after the user has pressed � �

OK� �with syntactically
correct data. As usual, colors are not pure, to accommodate for common color blindness issues.

Optionally, the UI could be re-colored by the application on each keystroke—for example,
the regex specifies well-formed numbers, but the application additionally requires the numbers
to lie within a certain range. (Such a restriction can be specified in a regex but it is tedious,
and does not allow the dynamic behavior of responding to the application’s context.) However,
the application should be only allowed to make the color “redder” as it is not allowed to correct
errors the user has made. In the present paper, we only consider “incorrect” to mean syntactically
incorrect, but the application can be passed blue data every time it changes and possibly colors
the UI red if the data is out of range or invalid for any other reason.

The UI beeps when the display changes to red or when a non-highlighted key is pressed.

7 Example: Dependable keyed number entry

The Institute of Safe Medication Practices informally defines safer ways of writing numbers [15]
to avoid potential confusions such as 5 and .5 , etc, leading to patients getting drug doses that
are misread—in this case, by a factor of ten. The ISMP defines its rules in English (which, unlike
the W3C, is appropriate for their readers, who will include non-technical clinicians writing drug
doses by hand); see [15] for more details. The specification for the ISMP rules is as follows:

13 / 16 Volume 45 (2011)

Dependable keyed data entry

0

1-9

0-9

•

0-9

1-9

Figure 1: A “railroad” syntax diagram automatically generated from and visualizing ISMP num-
bers. For many tasks, railroad diagrams may be more readable and more suitable for users than
transition diagrams (which for readers of this paper are presumably quite familiar).

1 2 0. 0 9.8
1.3 1..2 1 1..2
5.5 1. ..2 5 4.5

7.8 3.0 6

Figure 2: How traffic lights and cell coloring (possibly not very clear in monochrome reproduc-
tion in this paper!) might be used in a spreadsheet, here for totalling columns of three numbers.
In case of color blindness, the green light is shown distinctively, and, in fact, the “green” is a teal
(green-blue) to help common green-confusing color deficits. Coloring and traffic light choice
here is as defined by ISMP rules.

name: "ISMP numbers"
features: no-display-prompt display-left-align

value-buffer-length = 6 (-! 6 for demo
input: (zero-digit | nonzero-digit any-digit*) [dot fraction-part]

any-digit = zero-digit | nonzero-digit
fraction-part = any-digit* nonzero-digit
zero-digit = "0" dot = "."
nonzero-digit = "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

The name string is required to allow the C×CUI compiler to generate several UIs. The regex
compiles into a FSM. It is helpful to generate clearer visualizations than FSMs (see, e.g., figure
1); such visualization helps developers see their specifications more clearly, and hence helps
detect typos or other mistakes or misunderstandings in them [6].

The ISMP rules could be used in spreadsheets, and this illustrates the extra information traf-
fic lights provide when there are many data entry fields and underlying application modes. A
spreadsheet is the most familiar example of multiple data entry fields, some of which display
data entered by the user and some show computed results. Figure 2 shows how spreadsheets
could use traffic lights to show the validity of both user input and calculated output (here, the
totals of columns of numbers). A column total is green if all its parts are green, red if any of
its parts are red, and amber otherwise. In general, of course, a spreadsheet could perform any
calculation: a formula’s cell is formatted red if any cell it refers to is red, etc.

Proc. FMIS 2011 14 / 16

ECEASST

8 Future work

We are currently working on packaging these ideas into programming language libraries, in order
to explore them in detail and support their wider dissemination.

A regex specifies what is accepted, so it cannot distinguish between different sorts of error,
since errors are not explicitly specified. If we labeled regex with (say) error we could use
prompts to discriminate between different sorts of error. For example: error: "Can’t
have more than one decimal point" >> dot [!dot] dot.

Reading keyed data is generally only one part of a UI; buffer automata [17] are a generalised
form of state machine where states can be buffers, such as those as specified in this paper, and
they thus provide a more general approach to implementing dependable UIs while retaining the
benefits discussed in this paper.

Despite evaluation being routine and proper in UI design, reporting and fixing bugs in safety-
critical or potentially safety-critical domains, as here, does not need evaluation! However the
proposal to use traffic lights and time-outs, while apparently sensible, does need empirical eval-
uation before deployment in safety critical environments. What can be evaluated is the use of
the traffic light indicators to raise perceptual awareness, to see whether it reduces undetected er-
rors. Since features are variables, they may be used for experimental controls (e.g., [4] explores
lock out), not just for evaluation; also, it is trivial to generate sets of UIs differing in details for
comparative evaluation of features. Parameters are also provided for injecting errors, which can
simulate key bounce, transpositions and so forth.

9 Conclusions

UI design involves trade-offs, but this paper has shown that even a simple domain has irrecon-
cilable trade-offs. There are no easy solutions to dependable keyed input, and designs have to
consider user error balanced against the goals and invariants of the tasks the design is intended
to be relied on to support. The corollary is that when explicit formal trade-offs are not made—
sadly, almost all the time—UIs will (eventually) induce adverse incidents as a result of heedless
mismanagement of error.

The approach presented in this paper generates an unusually convenient and consistent UI for
dependable keyed data entry. The traffic light scheme is optional, but provides a consistent way
of helping users notice and manage errors. The C×CUIs presented in this paper together provide
an unusually convenient and consistent UI for dependable keyed data entry.

A prototype implementation is at harold.thimbleby.net/regex. The examples in this paper work
on HTML5 compliant browsers, including the iPad, where it looks and feels like a device.

Acknowledgements

Ann Blandford, George Buchanan, Paul Cairns, Abigail Cauchi, Robin Green, Michael Harrison,
Patrick Olademiji, Brian Randell. Funded by EPSRC Grants EP/F020031/1 and EP/G059063/1.

15 / 16 Volume 45 (2011)

Dependable keyed data entry

Bibliography

[1] G. D. Abowd, J. Coutaz, L. Nigay. “Structuring the space of interactive system properties,” IFIP
TC2/WG2.7 Working Conference on Engineering for Human-Computer Interaction, 113–129, 1992.

[2] A. V. Aho, R. Sethi & J. D. Ullman, Compilers: Principles, Techniques and Tools, Addison-Wesley,
1986.

[3] A. Avižienis, J-C. Laprie, B. Randell, C. Landwehr, “Basic concepts and taxonomy of dependable
and secure computing,” IEEE Trans. Dependable and Secure Computing, 1(1):11–33, 2004.

[4] J. Back, D. P. Brumby, A. L. Cox, “Locked-out: Investigating the effectiveness of system lockouts
to reduce errors in routine tasks,” ACM CHI, 3775–3780, 2010.

[5] N. Bevan, “Extending quality in use to provide a framework for usability measurement,” Lecture
Notes in Computer Science, 5619:13–22, 2009.

[6] A. F. Blackwell, “SWYN: A visual representation for regular expressions,” in H. Lieberman, ed.,
Your wish is my command: Giving users the power to instruct their software, pp245–270, Morgan
Kauffman, 2001.

[7] C. Brabrand, A. Møller, M. Ricky, M. I. Schwartzbach, “PowerForms: Declarative client-side form
field validation,” World Wide Web Journal, 3(4):205–214, 2001.

[8] A. J. Dix, Formal Methods for Interactive Systems, Academic Press, 1991.

[9] W. J. Hansen, “User engineering principles for interactive systems,” AFIPS Fall Joint Computer
Conference, 39:523–532, 1971.

[10] A. Johnson, A. R. Pritchett, “Experimental Study Of Vertical Flight Path Mode Awareness,” Pro-
ceedings 6th IFAC/IFIP/IFORS/IEA Symposium On Analysis, Design And Evaluation Of Man-
Machine Systems, 1995. MIT Aeronautical Systems Laboratory Report ASL-95-3.

[11] ISO/IEC Standard 14977, Information technology—Syntactic metalanguage—Extended BNF, 1996.

[12] C. Jones, P. O’Hearn, J. Woodcock, “Verified software: A grand challenge,” IEEE Computer,
39(4):93–95, 2006.

[13] H. Thimbleby, “Interaction Walkthrough: Evaluation of safety critical interactive systems,” Lecture
Notes in Computer Science, 4323:52–66, 2007.

[14] H. Thimbleby, Press On, MIT Press, 2007.

[15] H. Thimbleby, P. Cairns, “Reducing number entry errors: Solving a widespread, serious problem,”
Journal Royal Society Interface, 7(51):1429–1439, 2010.

[16] H. Thimbleby, “Interactive systems need safety locks,” IEEE ITI International Conference on Infor-
mation Technology Interfaces, pp29–36, 2010.

[17] H. Thimbleby, A. Gimblett, A. Cauchi, “Buffer Automata: A UI architecture prioritising HCI con-
cerns for interactive devices,” ACM Engineering Interactive Computer Systems, 2011, in press.

[18] Tripwire Team, Truly useful form validation scripts for front end development,
www.tripwiremagazine.com/2009/11/truly-useful-form-validation-scripts-for-front-end-
development.html, 2009.

Proc. FMIS 2011 16 / 16

	Introduction
	A research programme on dependable user interface design
	Previous work
	How is keyed data entry problematic?
	Predictability & divergence

	A new approach to keyed data entry
	The regex notation
	Autocompletion
	Prompting—generalizing relaxed autocompletion
	Time-outs and interruptions
	Error correction
	Other features

	Formal summary
	Example: Dependable keyed number entry
	Future work
	Conclusions

