
Electronic Communications of the EASST
Volume 39 (2011)

Graph Computation Models
Selected Revised Papers from the
Third International Workshop on

Graph Computation Models (GCM 2010)

Coinductive Graph Representation: the Problem of Embedded Lists

Celia Picard and Ralph Matthes

24 pages

Guest Editors: Rachid Echahed, Annegret Habel, Mohamed Mosbah
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Coinductive Graph Representation: the Problem of Embedded Lists

Celia Picard and Ralph Matthes

Institut de Recherche en Informatique de Toulouse (IRIT),
Université de Toulouse and C.N.R.S., France

Abstract: When trying to obtain formally certified model transformations, one may
want to represent models as graphs and graphs as greatest fixed points. To do so, one
is rather naturally led to define co-inductive types that use lists (to represent a finite
but unbounded number of children of internal nodes). These concepts are rather well
supported in the proof assistant Coq. However, their use in our intended applications
may cause problems since the co-recursive call in the type definition occurs in the list
parameter. When defining co-recursive functions on such structures, one will face
guardedness issues, and in fact, the syntactic criterion applied by the Coq system is
too rigid here.

We offer a solution using dependent types to overcome the guardedness issues that
arise in our graph transformations. We also give examples of further properties and
results, among which finiteness of represented graphs. All of this has been fully
formalized in Coq.

Keywords: coinduction/corecursion, guardedness, theorem proving, dependent types,
metamodels

1 The Problem: Explanation on an Example

It is recognized that the on-going engineering effort for modeling and meta-modeling has to
be backed by rigorous formal methods. In this context, we aim at performing certified model
transformations. In a first time, certification should be done by interactive theorem proving.
This presupposes the representation of models and metamodels in the language of the theorem
prover. We chose to represent models and metamodels as graphs and to use the Coq system 1

as a specification and verification tool. The Coq system offers a language with a rich notion
of inductive and co-inductive types, i. e., data types that arise as least and greatest solutions of
fixed-point equations, respectively.
This led us to represent node-labeled graphs with co-inductive types (in order to represent the
infinite navigability in loops). The idea we had was that each node would have a label (of a type
T) and a finite list of sons (graphs themselves). This type can be created through the following
constructor:

Definition 1 (Graph, Viewed Coinductively)

mk_Graph : T → list (Graph T)→ Graph T

1 See http://coq.inria.fr/

1 / 24 Volume 39 (2011)

http://coq.inria.fr/

Coinductive Graph Representation

mk_Graph t l constructs a graph from the label t of type T and the list of graphs l. Since this is
the greatest fixed point, no assumption about finite generation through mk_Graph is made. The
empty list hides the base case.

Remark 1 (Lists) For lists we use the Caml notation: [] for the empty list, [a1;a2; . . .] for an
explicit enumeration and a :: l for the cons operation.

Remark 2 (Rose trees) What we represent here are actually potentially infinite “rose trees” that
may have cycles. They can be considered as a dual version of rose trees although the lists are not
dualised. Finite rose trees form a well-known example for datatypes in the community around
the Haskell programming language (see [Bir01] for example).

Remark 3 Here we deal (at first sight at least) with single-rooted connected graphs because they
correspond best to co-inductive types. A more general solution is presented in Subsection 4.1,
still within the expressive power of Coq.

Remark 4 (Notations) In the rest of the paper we will use the following notation:

• T,U for types and t for elements of type T ,

• n, m and k for natural numbers (informally, but also for elements of type nat),

• l and q for lists and elements of ilist, defined in Section 2

• f for functions,

• g for elements of Graph,

• R for equivalence relations (if R is a relation on type T it has type T → T → Prop),

• P for predicates (if P is over type T it has type T → Prop)

• i for elements of Fin n, defined in Section 2

Remark 5 (Examples) In all the examples that will be given in this paper, we will use natural
numbers as labels of nodes, i. e., T = nat.

Example 1 (A simple example that does not use co-recursion: just a leaf)

Leaf n := mk_Graph n []

Example 2 (Example of a finite graph) The graph of Figure 1 can be represented as a term of
type Graph with the following co-recursive definition:

Finite_Graph := mk_Graph 0 [mk_Graph 1 [Finite_Graph]]

Remark 6 This graph is finite but unfolds into an infinite (regular) tree, and thus allows infinite
navigation.

GCM 2010 2 / 24

ECEASST

0

1

Figure 1: Example of a finite graph

Example 3 (Example of an infinite graph) To represent the graph of Figure 2 as a term of type
Graph, we first define a family of infinite graphs, parameterized by the label of the first node:

Infinite_Graphn := mk_Graph n [Infinite_Graphn+1]

The graph of Figure 2 corresponds to Infinite_Graph0.

0 1 2 . . .

Figure 2: Example of an infinite graph

Remark 7 This graph is infinite and unfolds into an infinite irregular tree.

The previous definitions and examples are well-defined in Coq. However, problems arise when
trying to apply a transformation on a graph. For example, it is forbidden to define the following
co-recursive function applyF2G : ∀ T U, (T→U)→Graph T→Graph U that applies a function
f to each label of a graph:

Definition 2 applyF2G f (mk_Graph t l) := mk_Graph (f t)
(
map (applyF2G f) l

)
Remark 8 Here, map is the usual mapping function that maps a function over all the elements
of a list, i. e., map f [a1;a2; . . .] = [f a1; f a2; . . .].

The reason why applyF2G is not accepted by Coq is that the guardedness condition on co-
inductive types is rather restrictive in Coq, and in this case, too restrictive. Indeed, in Coq the
guardedness condition is based on productivity [Coq93]. Technically speaking, it says that a
co-recursive call must always be the argument of some constructor of inductive or co-inductive
type. Here, the co-recursive call is an argument of the map function, which is itself under the
constructor. This is too indirect to satisfy the guardedness condition. For more details about the
guardedness conditions in Coq see [BK08] and [GC07].

3 / 24 Volume 39 (2011)

Coinductive Graph Representation

Basically, the idea of the guardedness condition is to ensure that potentially infinite objects are
computable. This means that we can always obtain more information on the structure of the
object in a finite amount of time. Consider the example of streams that are always infinite. The
application of a filter on streams is actually a problem since we cannot ensure that the next
“good” element will be found in a finite amount of time. But here the problem is quite different
in nature: it is not about finding the next constructor but about the indirection of the co-recursive
call through map. However, in the case of map, this indirection is harmless (we would only have
to inspect in parallel the elements of that list).
So, Coq’s guardedness condition forbids us to write semantically well-formed definitions: guard-
edness restrictions go beyond syntactic well-formedness and normal typing constraints but are
still of a syntactic nature and thus only approximate the semantic notion of productivity that
guarantees well-definedness.

In this article, we offer and study a solution to overcome the problem with the guardedness
condition for definitions involving graphs. In Section 2 we explain the solution, and we will see
how it solves our problem in Section 3. Finally, in Section 4 we present two extensions that bring
us closer to a real metamodel representation.
Even though this article is not written in the formal language of the Coq system, all the work pre-
sented here has been formally proved in Coq (version 8.3). The whole development is available
in [PM11].

2 The Solution: ilist

We develop here a solution that allows us to bypass the guardedness condition.

2.1 The Idea

The idea to solve the problem is to use a function that mimics the behaviour of lists (this idea has
also been mentioned by Chlipala in [Chl10]). Lists can easily be seen as functions. If T is the
type parameter, then a list can be considered as a function that associates to each element of a set
of n elements (n being the length of the list) an element of type T. An element of the definition
domain represents the position of the associated element in the list.

Example 4 The list [10 ; 2 ; 5] can be transformed into the function of Figure 3.

p1

p2
p3

10

2

5

nat

Figure 3: Representation of the function corresponding to the list [10 ; 2 ; 5]

GCM 2010 4 / 24

ECEASST

But to be able to represent such a function, we need to have a set of n elements.

2.2 Fin – a Family of Types for Finite Index Sets

It is trivial to get an inductive type with n elements, for n = 0,1,2, . . . but it is not for an inde-
terminate n. Here we need n to be a parameter of the type. To represent a set of n elements, we
have chosen to use the representation that has also been used by Altenkirch in [Alt93] and by
McBride and McKinna in [MM04]. We actually represent a family of sets parameterized by the
number of elements they contain (in our case, the length of the list). This family is called Fin.
Fin has type nat→ Set. It is defined through the two following constructors:

Definition 3 (Fin, Viewed Inductively)

first n : Fin (n+1)
succ n : Fin n→ Fin (n+1)

Remark 9 Fin is a Generalized Algebraic Data Type (GADT). Those data types are also avail-
able in current implementations of the Haskell programming language.

Remark 10 The first argument n to succ is determined by the type of the second argument.
Therefore, we tend to omit this first argument.

First of all, we want to prove that Fin n indeed is a set of n elements.

Remark 11 We use card to represent the cardinality of the set in an informal way.

Lemma 1 ∀n, card {i | i : Fin n}= n.

Proof (by induction).

[Case 0] No constructor allows to create an element of type Fin 0.
Therefore card { i | i : Fin 0 } = 0

[Case n+1] With the constructor succ, we can construct as many elements of Fin (n+1) as there
are in Fin n. The constructor first allows us to construct one more element of Fin (n+1).
Therefore, card {i | i : Fin (n+1)}= card {i | i : Fin n}+1 = n+1, using the induction
hypothesis.

Remark 12 This informal proof cannot be formalized in Coq because there is no such card
operation. With the card operation the following result would have been a triviality.

Lemma 2 ∀n m, n = m⇔ Fin n = Fin m.

Proof.

[Direction⇒] The proof here is straightforward, it is only a matter of rewriting and we directly
have the property. In informal mathematics this would not even be stated.

5 / 24 Volume 39 (2011)

Coinductive Graph Representation

[Direction⇐] This direction is much trickier than the first one. Indeed, the first idea we had
was to show that all the elements of Fin n are in Fin m too, doing a type rewrite on the type
of the elements. However, that does not seem to work in Coq (at least, we did not find a
way to do it).
In order to prove this property, we defined the type of segments of natural numbers (let’s
call it NatSeg): NatSeg n := { m | m < n }. We proved that if there is a bijection between
NatSeg n and NatSeg n′ then n = n′. The proof is not straightforward, but at least we could
do it 2. Then we could prove that there is a bijection between Fin n and NatSeg n and that
therefore, ∀n m, Fin n = Fin m⇒ n = m.

Remark 13 One may wonder why we did not use directly NatSeg instead of Fin to represent a
set of n elements. The reason is that it is much more comfortable to have an inductive type (with
concrete finite elements). The elements of NatSeg n contain a proof of m < n, and we consider
Fin more elementary.

2.3 ilist Implementation

Using the preceding definition of the domain of the functions to be used, we can define the type
of functions itself (let’s call it ilistn).

2.3.1 The Type of Functions ilistn

It has two parameters: the type of the elements of the list and its length. It is defined as follows:

Definition 4 ilistn T n := Fin n→ T

Elements of ilistn “mimic” lists. To each element of a set of n elements, it associates an element
of type T. However, one problem remains. Indeed, as we said, ilistn needs two parameters. But
for a list, the length is not one of its parameters, it is inherent to it.

2.3.2 The List Counterpart, ilist

To solve this problem, we create a new type that combines the length of the list and the corre-
sponding ilistn. We call it ilist :

Definition 5 ilist T := Σn : nat. ilistn T n

Here, we use the dependent pair that is generically denoted as Σx : A.B(x). Elements of this type
consist of an element a of type A and an element b of type B(a).

The two projection functions on ilist are called lgti (which stands for the length of an element
of ilist) and fcti (which stands for the function in an element of ilist). If we note 〈. . . , . . .〉 the con-
structor for elements of type Σx : A.B(x), then an element l of type ilist T can be “reconstructed”
as 〈lgti l, fcti l〉.

2 We had the confirmation by other members of the Coq user community that no simple proof was known yet.

GCM 2010 6 / 24

ECEASST

2.3.3 An Equivalence on ilist

It is very useful to be able to compare two elements of the same type. Here, of course, we would
like to be able to compare two elements of ilist. For Fin there was no problem, it is inductive and
does not have any type parameter, so Leibniz equality is fine. To recall, Leibniz equality is the
propositional equality that allows the replacement of Leibniz-equal elements in any context. In
this paper (as in Coq), it is denoted by the infix “=” symbol or the prefix eq relation symbol.
Here, the problem is different. We intuitively see that in order to compare elements of ilist, we
will have to compare two different things: the two parts of its definition. The first one, its length,
is the easy one: it is a natural number, no problem here. But the second one is trickier. Indeed,
we have to make sure that the two elements of ilist we are comparing are equivalent element-
wise. And we have no insurance that they are comparable w. r. t. Leibniz equality (actually, in
our graph representation, they are not, they are only comparable through bisimulation). We thus
define an inductive proposition (let’s call it ilist_rel because it is the lifting of ilist to relations)
that relates two elements of ilist. Apart from the elements of ilist we are comparing and the
type parameter (let’s call it T), the proposition needs a given base relation R on type T . Then,
ilist_rel R has type ilist T → ilist T → Prop.
Intuitively, we would like to define ilist_rel such that:

∀l1 l2 : ilist T, ilist_rel R l1 l2⇔ lgti l1 = lgti l2∧∀i : Fin (lgti l1),R (fcti l1 i) (fcti l2 i)

However, this expression is not well-typed. Indeed, fcti l2 has type Fin (lgti l2)→ T and i has
type Fin (lgti l1). We know that lgti l1 = lgti l2 but the types Fin (lgti l1) and Fin (lgti l2)
are still syntactically different. Therefore, we must convert i to type Fin (lgti l2) (the hypothesis
lgti l1 = lgti l2 and Lemma 2 “⇒” ensure that we have the right to do it). In Coq, there is a
special pattern matching feature that allows us to make this type rewrite. We do not detail it here,
for more information see [TCDT, Chapter 1.2.13 and 4.5.4].
In a context where h : lgti l1 = lgti l2 and i : Fin (lgti l1), we call i′h the result of converting i to
type Fin (lgti l2).
With this we can properly write our definition for ilist_rel:

Definition 6 (ilist_rel)

∀l1 l2 : ilist T, ilist_rel R l1 l2⇔∃h : lgti l1 = lgti l2, ∀i : Fin (lgti l1),R (fcti l1 i) (fcti l2 i′h)

Using advanced dependently typed pattern matching techniques, one can show that ilist_rel R is
an equivalence relation if R is one which we assume throughout.

Remark 14 In the sequel, we will put argument R as an index to ilist_rel, i. e., we will write
ilist_relR for ilist_rel R, and we will do so in all similar cases.

Remark 15 (list_rel) Had we worked with lists, we would have needed to be able to compare
two lists. However, the commonly used relation on lists is Leibniz equality, but this relation
supposes that the elements of the lists are comparable through Leibniz equality, too. As we will
explain in Section 3, in our case (graph representation through Graph) they are only comparable

7 / 24 Volume 39 (2011)

Coinductive Graph Representation

through bisimulation. Therefore, we would have needed to define a relation on lists parameter-
ized by a relation on the type of its elements and prove that it is an equivalence relation (which
is rather easy to do).

Definition 7 (list_rel)

∀(l1 l2 : list T), list_relR l1 l2⇔{
or

l1 = []∧ l2 = []
∃ t1 t2 q1 q2, l1 = t1 :: q1∧ l2 = t2 :: q2∧R t1 t2∧ list_relR q1 q2

It is easy to prove that list_releq l1 l2⇔ l1 = l2, but it is not provable for ilist_rel since our type
theory is not extensional.

2.3.4 Bijection Between ilist and Lists

In order to show that there is a bijection between ilist and lists, we define the two following
functions that respectively transform an element of ilist into a list (ilist2list) and a list into an
element of ilist (list2ilist).
To define ilist2list, we proceed in two steps. First we create a list containing all the “indices” of
the ilist (i. e., containing all the elements of Fin (lgti l). For example, for lgti l = 2 this list will
be [first 1 ; succ (first 0)]). To do so, we write the function makeListFin, that takes as argument
a natural number n and that returns the list of all the elements of Fin n. Then, we apply the
function part of the ilist to all the elements of this list.

Definition 8 (makeListFin)

makeListFin 0 : list (Fin 0) := []
makeListFin (n+1) : list (Fin (n+1)) := (first n) :: (map succ (makeListFin n))

It is easy to prove the following lemma on makeListFin:

Lemma 3 ∀ n, length (makeListFin n) = n.

Definition 9 (ilist2list)

ilist2list T l : list T := map (fcti l) (makeListFin (lgti l))

To define list2ilist, we also proceed in two steps. First we must define a method that gives us
the “ith” element of the list. We do not detail it here because the problems that arise are more
Coq-related (technical) than theoretical. We call this function list2FinT . It takes a list l and an
element i of Fin (length l) as parameters and returns the ith element of l. It is characterized by
the following assertions:

∀ t q, list2FinT (t :: q) (first (length q)) = t
∀ t q i, list2FinT (t :: q) (succ i) = list2FinT q i

and it is such that the following lemmas are true:

GCM 2010 8 / 24

ECEASST

Lemma 4
∀ (l : list T) (f : T →U) (i : Fin (length (map f l))),
list2FinT (map f l) i = f (list2FinT l i′h)

where h is a proof that length (map f l) = length l, which is trivial.

Lemma 5

∀(l : ilist T) (i : Fin (length (makeListFin (lgti l)))), list2FinT (makeListFin (lgti l)) i = i′h

where h is a proof that length (makeListFin (lgti l)) = lgti l, which is an instance of Lemma 3.

Actually, list2FinT is the function part of the ilist we want to create in list2ilist. list2ilist is
defined as follows:

Definition 10 (list2ilist)

list2ilist T l : ilist T := 〈length l, list2FinT l〉

To show that there is a bijection between ilist and lists, we need to prove that the compositions
ilist2list ◦ list2ilist and list2ilist ◦ ilist2list are both extensionally equal to the identity, i. e., only
pointwise and only with respect to ilist_rel when comparing elements of ilist.
We first define the following two lemmas to help us with the proofs mentioned above. The proofs
of those lemmas are straightforward and not detailed here.

Lemma 6 ∀ T l, lgti (list2ilist (ilist2list l)) = lgti l.

Lemma 7 ∀ T l, length (ilist2list (list2ilist l)) = length l.

And now we can prove the bijection between ilist and lists.

Theorem 1 (list2ilist ◦ ilist2list = id) ∀ T l, ilist_releq l (list2ilist (ilist2list l)).

Proof. Using Definition 6 we have that

ilist_releq l (list2ilist (ilist2list l)) ⇔ ∃h : lgti l = lgti (list2ilist (ilist2list l)),
∀i : Fin (lgti l), fcti l i = fcti (list2ilist (ilist2list l)) i′h

We obtain h thanks to Lemma 6. Therefore, we now only have to prove that:

∀i : Fin (lgti l), fcti l i = fcti (list2ilist (ilist2list l)︸ ︷︷ ︸
〈length (ilist2list l), list2FinT (ilist2list l︸ ︷︷ ︸

map (fcti l) (makeListFin (lgti l))

)〉

) i′h

︸ ︷︷ ︸
list2FinT (map (fcti l) (makeListFin (lgti l))) i′h︸ ︷︷ ︸

fcti l (list2FinT (makeListFin (lgti l)) (i′h)
′
h′︸ ︷︷ ︸

i

)

where h′ comes from the application of Lemma 4, and the last step involves Lemma 5.

9 / 24 Volume 39 (2011)

Coinductive Graph Representation

Remark 16 Obviously, the statement of Theorem 1 is then also valid for any other reflexive
relation R than eq since ilist_rel is monotone in its relation argument.

Theorem 2 (ilist2list ◦ list2ilist = id) ∀ T l, l = ilist2list (list2ilist l).

Proof (by induction on l).

[Case []] Applying the definitions of ilist2list and list2ilist, we get as goal [] = [], which is true.

[Case t :: q] The induction hypothesis IH is q = ilist2list (list2ilist q).
ilist2list (list2ilist (t :: q)) reduces in the following way:

(ilist2list (list2ilist (t :: q)︸ ︷︷ ︸
〈length q+1, list2FinT (t :: q)〉

))

︸ ︷︷ ︸
map (list2FinT (t :: q)) (makeListFin (length q+1)︸ ︷︷ ︸

first (length q) :: map succ (makeListFin (length q))

)

︸ ︷︷ ︸
list2FinT(t :: q) (first (length q)) :: map ((list2FinT (t :: q))◦ succ) (makeListFin (length q))

For this last simplification, we have used the following property of map:

∀ l f g, map f (map g l) = map (f ◦g) l

According to the characterization of list2FinT , the first expression before :: reduces to t,
and the last expression after :: finally reduces to map (list2FinT q) (makeListFin (length q))
because the result of applying map f only depends on the extension of f (the pointwise
behaviour).

We actually only need to prove that:

t :: q = t :: map (list2FinT q) (makeListFin (length q))︸ ︷︷ ︸
ilist2list 〈length q, list2FinT q〉︸ ︷︷ ︸

list2ilist q︸ ︷︷ ︸
q (according to IH)

This proves that there is a bijection between lists and ilist, and it validates our definition of ilist.

2.3.5 Functions on ilist

As we have a bijection between lists and ilist, we can redefine any function f that has lists as
parameters and/or lists as result type. In particular that means that all the usual functions (and
higher order functions) on lists have their counterpart on ilist. For example, the well-known
filter function on lists has an analogue on ilist (for P a predicate on the type of elements):

Definition 11 ifilter P l := list2ilist (filter P (ilist2list l))

GCM 2010 10 / 24

ECEASST

And in general, any function f : list T → list T can be translated to ilist as a function f ′ of type
ilist T → ilist T . The function f ′ is defined as follows :

f ′ := list2ilist ◦ f ◦ ilist2list

However, this is only anecdotal as we embed f into another function and therefore we do not
solve the guardedness issue. For example, if we defined an analogue of the map function (let’s
call it imap) with this method, we would have:

Definition 12 (imap, First Try)

imap : (T →U)→ ilist T → ilist U
imap f l := list2ilist (map f (ilist2list l))

But this does not solve our problem since the function f (which in our example is the co-recursive
call) would still be embedded into the map function, which as we saw does not work.

2.3.6 imap

We have to redefine the map function directly. This is actually quite easy since the part of the
ilist that is affected by the map is the function part (ilistn). So in fact, the imap function is little
more than a composition of functions. What we have to do is to compose the function part of
the ilist with the function we have to apply and then recreate the ilist. The result has the same
natural numbers part (lgti l) and a new function part f ◦ (fcti l):

Definition 13 (imap, Suitable for Guarded Definitions) imap f l := 〈lgti l, f ◦ (fcti l)〉

Here, the function f (and therefore in our example the co-recursive call) is directly under the
constructor 〈. . . , . . .〉. This satisfies the guardedness restriction and solves our problem. So we
see that the use of function spaces is considered less critical than the use of inductive types
because they are more primitive. They are even part of the logical framework. This could not
have been done on lists since they are defined inductively and so should be the functions that
manipulate them. There is no other way than recursion to define map on lists. All such higher-
order functions add a layer between the constructor and the function given as a parameter. In the
case this function is a co-recursive call, it can create, as we saw, a conflict with the guardedness
conditions. As the imap function is not defined recursively, there is no layer added and as we
said, in case of a co-recursive call the guardedness condition is satisfied.

2.3.7 Universal Quantification

For further definitions (see Section 3) we need to define a property on ilist that expresses that all
the elements of an ilist satisfy a predicate P. We call it iall (it is the counterpart to the for_all
function in Caml). It is defined as follows:

Definition 14 (iall) iall T P l : Prop := ∀i,P (fcti l i)

11 / 24 Volume 39 (2011)

Coinductive Graph Representation

2.3.8 Manipulation of ilist in List Fashion

What we wanted to do when we created ilist was to have functions that would mimic list be-
haviour. Thus, we want to be able to manipulate ilist in a similar way as we manipulate lists.
There are two constructors of list: nil ([]) that allows to create an empty list, and cons (infix ::)
that allows to insert an element at the head of a list. Thus, we have written the two following
functions that allow, respectively, to create an empty ilist and to append an element at the head
of an ilist.
To define inil, we need an element of ilistn T 0, i. e., a function of type Fin 0→ T . As Fin 0 is
empty, all the ilistn T 0 are equivalent (and are inhabited for all T). Let’s call iniln one of those.
We define inil the following way:

Definition 15 (inil) inil T := 〈0, iniln T 〉

For the sake of clarity, we will also define the function part of icons separately.

Definition 16 (iconsn)

iconsn : ∀ T n,T → ilistn T n→ ilistn T (n+1)
iconsn T n t ln (first n) := t
iconsn T n t ln (succ n i′) := ln i′

Definition 17 (icons) icons T t l := 〈lgti l +1, iconsn t (fcti l))〉

The basic notions on lists are the head and the tail. Therefore, to be able to manipulate elements
of ilist as lists we need functions that allow us to get the head and the tail of an element of ilist.
These functions are defined as follows:

Definition 18 (ihead) In this definition, the parameter t of type T represents the default element
returned by ihead in case the ilist parameter is empty.

ihead : ∀T, ilist T → T → T
ihead T 〈0, ln〉 t := t
ihead T 〈n+1, ln〉 t := ln (first n)

Definition 19 (itail) In case the ilist parameter is empty, itail returns an empty ilist (inil).

itail : ∀T, ilist T → ilist T
itail T 〈0, ln〉 := inil T
itail T 〈n+1, ln〉 := 〈n, ln◦ succ〉

It is easy to show, in order to validate our definitions, that:

∀ T l t, lgti l > 0→ ilist_releq l (icons (ihead l t) (itail l))

Remark 17 (Manipulation of lists vs. manipulation of ilist) The functions defined previously
allow to manipulate elements of ilist in a list way. However, this manipulation is not really well

GCM 2010 12 / 24

ECEASST

suited for ilist, although one is usually more used to it. Indeed, the notions of head and tail,
basic for list, are not well adapted for ilist. Elements of ilist are basically functions and it is not
easier to get the first element than any other. Actually, the basic notion on ilist is the notion of ith

element while it is not a basic notion on lists. In the same fashion, adding an element to an ilist
(icons) is a quite complex operation, while on lists it is done by a constructor.
The conclusion of this is that even though lists and ilist are equivalent, the respective natural
ways to manipulate them are quite different.

Remark 18 (Notation) In the rest of this paper, we will use list-like notations for elements of
ilist . In particular, we will write JK for inil and Jx;y;z; ...K for successive applications of icons to
inil.

3 The Refined Definition of Graph Representation

Now, we can redefine the type Graph using ilist and define various functions and properties on
it.

3.1 Definitions of Graph and applyF2G

The definition of Graph is identical to the previous one, except that lists are replaced by ilist. We
define it through the following constructor:

Definition 20 (Graph, Viewed Coinductively) mk_Graph : T → ilist (Graph T)→ Graph T

Now we can define the function applyF2G so that it respects the guardedness condition:

Definition 21 applyF2G f (mk_Graph t l) := mk_Graph (f t)
(
imap (applyF2G f) l

)
We call label and sons the two functions on Graph that return respectively the element of T and
the ilist part of a Graph. They are such that the following lemma is correct:

Lemma 8 ∀g, g = mk_Graph (label g) (sons g).

Remark 19 Here we have the right to use Leibniz equality to compare two elements of Graph
as they are definitionally equal for any g of the form mk_Graph t l (and not only bisimulated).

We can redefine Example 2 and Example 3 with our new definition of Graph using the notations
introduced in Remark 18.

Example 5 (Redefinition of Finite_Graph)

Finite_Graph := mk_Graph 0 Jmk_Graph 1 JFinite_GraphKK

Example 6 (Redefinition of Infinite_Graphn)

Infinite_Graphn := mk_Graph n JInfinite_Graphn+1K

13 / 24 Volume 39 (2011)

Coinductive Graph Representation

3.2 An Equivalence on Graph

We can also define all the other tools we need. In particular, we can define an equivalence relation
on Graph. Indeed, as elements of Graph are coinductive, Leibniz equality cannot be used here
(it is just too fine-grained and cannot be established by coinduction), we need bisimulation. To
illustrate this, Figure 4 shows a situation where two graphs are not Leibniz equal while we want
them to be equivalent. Indeed, those two graphs are different (graphically this is evident) but they
unfold into the same infinite tree. So they actually represent the same element but have different
(syntactic) representations. If one wanted to differentiate the 0 (resp. 1) nodes, one would have
to use a richer type than only natural numbers.

0

1

(a) Example of Figure 1

0

1

0

1

(b) Example of Figure 1
unfolded once

Figure 4: Example graphs that are equivalent but not equal

To relate two elements of Graph, we need (as we did for ilist) to relate their two parts. The
label part is compared through an equivalence relation R on type T . For the sons part, that
is represented by an ilist, we will use the equivalence relation defined on ilist: ilist_rel (see
Subsubsection 2.3.3). As the type parameter for the ilist is itself Graph, ilist_rel needs the
equivalence relation on Graph as argument. So this relation must be defined coinductively.
Finally, we can define the equivalence relation on Graph (let’s call it Geq) as follows (defined
co-inductively):

Definition 22 (Geq)

∀ T R g1 g2, GeqR g1 g2⇔ R (label g1) (label g2) ∧ ilist_relGeqR
(sons g1) (sons g2)

It is possible to show that Geq is an equivalence relation using the same style of reasoning as for
ilist_rel.

Example 7 (Equivalence of the graphs of Figure 4) The graph of Figure 4(b) can be defined in
our definition of Graph as follows:

Finite_Graph_Unfolded :=
mk_Graph 0 Jmk_Graph 1 Jmk_Graph 0 Jmk_Graph 1 JFinite_Graph_UnfoldedKKKK

It is easy to show Geqeq Finite_Graph Finite_Graph_Unfolded. The proof is a simple coinduc-
tion. The definition of Finite_Graph only has to be unfolded once.

GCM 2010 14 / 24

ECEASST

Remark 20 To be equivalent, two elements of Graph have to be constructed in the same way.
Therefore, the two graphs of Figure 1 and Figure 5 are not equivalent even though we might
wish them to be, if we disregard roots. We are working on the design of a coarser relation for
this purpose.

1

0

This graph is represented by the following expression using Definition 20:
Finite_Graph′ := mk_Graph 1 Jmk_Graph 0 JFinite_Graph′KK

Figure 5: Other representation of the graph of Figure 1, disregarding roots

3.3 Universal Quantification on Graph

As we did with ilist (see Subsubsection 2.3.7), we define a property of universal quantification on
Graph. It will be useful, in particular in Subsection 3.4. This property expresses that a predicate
P : Graph T → Prop on Graph is satisfied by an element g of Graph and all its descendants
(sons, sons of its sons, and so on). As Graph is co-inductive, this property must be defined
co-inductively too. We call it G_all and it is defined as follows:

Definition 23 (G_all) ∀ P g, G_all P g⇔ P g ∧ iall (G_all P) (sons g)

3.4 Finiteness of Graph

Another interesting property on Graph is finiteness. It would be interesting for example to prove
that Example 2 and Example 3 indeed are respectively finite and infinite. Saying that an element
g of Graph is finite means that it contains a finite number of elements of Graph, up to bisimilarity.
This can be expressed by the fact that all the elements of Graph contained in g can fit into a finite
list. This is the way we choose to define the finiteness of a Graph. We call the finiteness property
G_ finite. To define it, we need a predicate (let’s call it element_of) to check whether an element
g of Graph is included in a list of graphs. By included we mean that there is an element of the
list that is related through bisimulation (GeqR for the chosen R) with g. We use ∈ to say that an
element is in a list.

Definition 24 element_of R l g := ∃y, y ∈ l ∧ GeqR g y

Thanks to it we can define G_ finite.

Definition 25 (G_ finite) ∀g, G_ finiteR g :⇔∃l, G_all (element_of R l) g

15 / 24 Volume 39 (2011)

Coinductive Graph Representation

3.5 Proofs of Finiteness and Infiniteness

We want here to prove that Example 2 and Example 3 are respectively finite and infinite. The
equivalence relation on labels used here is Leibniz equality as the labels are natural numbers.
First we prove that Example 2 is finite.

Lemma 9 (Finite_Graph Is Finite) G_ finiteeq Finite_Graph.

Proof (by co-induction). The proof here is quite easy. We must give a list l with all the ele-
ments of Graph contained in Finite_Graph and show that they are actually all included in l.
There are only two elements of Graph contained in Finite_Graph: Finite_Graph itself and
mk_Graph 1 JFinite_GraphK. The provided list is: [Finite_Graph ; mk_Graph 1 JFinite_GraphK].
Now, we only have to prove that Finite_Graph is contained in the list (but it was designed for
it!); that its sons are (it only has one son: mk_Graph 1 JFinite_GraphK, so it is in the list) and
that the sons of its son are in the list too (this is Finite_Graph itself, so we use the co-inductive
hypothesis).

Similarly, we want to prove that Infinite_Graphn is not finite.

Lemma 10 (Infinite_Graphn Is Infinite) ∀n, ¬ G_ finiteeq Infinite_Graphn.

To prove this we prove a general lemma that we will then instantiate to say that if the Graph
is finite then its labels are bounded (Lemma 12). The general lemma says that for any function
f of type Graph T → nat and for any element g of Graph, if g is finite then the image of the
set of nodes of g by f is bounded. Actually, to prove this lemma we need a property that says,
basically, that f is a morphism, i. e., that ∀ g1 g2, GeqR g1 g2⇒ f g1 = f g2. We abbreviate this
property MorphR(f).

Lemma 11 ∀ f g, MorphR(f)∧G_ finiteR g⇒∃m, G_all (λg′. f g′ ≤ m) g.

Proof. The proof here is based on a simple idea: as g is finite, there exists a list l containing all
the nodes of g (see Definition 25). Therefore, the image of the set of nodes of g by f can actually
be represented by map f l (possibly containing duplicates). As l is finite, map f l also is. What
is more, map f l has type list nat, therefore, the values contained in it are bounded. We call max
the maximum. As all the nodes contained in g are also in l, we can show (by co-induction on g)
that G_all (λg′. f g′ ≤ max) g.

Now, we can prove the following lemma (for T = nat):

Lemma 12 ∀g,G_ finiteeq g⇒∃m, G_all (λx. label x≤ m) g.

Proof. This lemma is actually just an instantiation of Lemma 11 with f = label. We directly
have the property that ∀ g1 g2, Geqeq g1 g2⇒ f g1 = f g2 thanks to the definition of Geq.

Now, to prove Lemma 10, we only have to prove that the labels of Infinite_Graphn are unbounded
and we will have the result simply using Lemma 12. To prove that the labels of Infinite_Graphn

GCM 2010 16 / 24

ECEASST

are unbounded, we show that ∀m,m≥ n⇒ Infinite_Graphm ⊆ Infinite_Graphn.

Remark 21 We informally use the notation ⊆ to say that a Graph is included in another.

With this, it is easy to show that the labels are unbounded (since the first label of Infinite_Graphn
is n).

Remark 22 In a similar way, we have that if the number of sons in a Graph is unbounded, then
the Graph is infinite. However, it is also possible to construct elements of Graph in which the
out-degree of a node is bounded and so are the labels and that are still infinite, see Figure 6 for
an example. Here, the proof of infiniteness is much more difficult (it is part of [PM11]).

0 1 0 0 1 0 0 0 1 . . .

Figure 6: Example of an infinite graph with bounded number of sons and bounded labels

3.6 Graph in Graph

We will need to represent the property asserting that an element gin of Graph is (strictly) included
in another element gout of Graph (see Subsection 3.7). We split the situation into two different
cases: gin is part of sons gout or gin is included in one of gout’s sons. In Coq, the following
definition is represented as an inductive property with two constructors.

Definition 26 (GinG)

∀ T R gin gout , GinGR gin gout ⇔
{
∃i, GeqR gin (fcti (sons gout) i) or
∃i, GinGR gin (fcti (sons gout) i)

We can prove that GinGR is transitive if R is transitive.

3.7 Cycles in Graph

It may also be useful to define a property about the existence of a cycle in an element of Graph.
To do so, we use the property GinG defined above.
First of all, we define a property saying that an element g of Graph is itself a cycle (i. e., there is
a non-empty path from the root to the root). This means that g is itself included in g. Therefore
the definition of isCycle is straightforward.

Definition 27 (isCycle) ∀ T R g, isCycleR g⇔ GinGR g g

Using this definition, it is easy to define the property of existence of a cycle in an element g of
Graph. Just as we did for GinG, we divide the property into two cases. Either g is a cycle or one

17 / 24 Volume 39 (2011)

Coinductive Graph Representation

element of sons g has a cycle. As before, in Coq this is defined through two constructors of an
inductive definition.

Definition 28 (hasCycle) ∀ T R g, hasCycleR g⇔
{

isCycleR g or
∃i, hasCycleR (fcti (sons g) i)

For a finite element of Graph, it is quite easy to prove the existence or non-existence of a cycle
(for example, it is straightforward to prove that Example 5 has a cycle). However, if there are
many nodes, the proof might be long. Indeed, the proofs are constructive, that is, one will have
to exhibit the cycle to prove that it exists or to look into each different path to show that there is
none. This last operation may be tedious.

4 Towards Metamodel Representation

As we have explained in Section 1, our final goal is to represent metamodels and then perform
transformations on these models. Until now, we only have shown graph representation. It is a
first step towards metamodel representation, but metamodels have other properties that we can
not represent with Graph as it is. We present here two extensions of our development that bring
us closer to metamodel representation. The first one is a representation of non-connected graphs
and the second one a representation of multiplicities. Another problem that arises and that is not
treated here is the representation of inheritance.

4.1 A Representation of a Wider Class of Graphs

As we have said in Remark 3, the type Graph only represents single-rooted connected graphs.
However, there might be some cases where a more general graph representation could be neces-
sary. For instance, a metamodel may not be connected or not single rooted. We present here a
graph representation that allows to represent non-connected and non-single-rooted graphs.

The idea is to add fictitious nodes to our previous definition of Graph in order to be able to
represent in only one structure non-connected graphs.

Example 8 To illustrate this, and before giving the formal definition, here is an example of
what we might want to represent (Figure 7(a)) and an example of its representation with fictitious
nodes (Figure 7(b)).

We are going to represent those fictitious nodes with the usual option type of functional lan-
guages. When the label associated to a node is of the form Some t, the node is a “real” node (and
its label is t) and when it is of the form None, it is a fictitious node. Therefore, we see that we
can actually represent this extension of Graph as an instance of Graph.

Definition 29 (AllGraph) AllGraph T := Graph (option T)

Example 9 (Representation of Example 8) The graph of Figure 7(b) is represented as follows

GCM 2010 18 / 24

ECEASST

0 1

2

3

(a) Graph to represent

0 1

2

3

(b) Symbolic representation

Figure 7: Representation of a non-connected graph

with Definition 29:

let g2 : AllGraph nat := mk_Graph (Some 2) JK in
mk_Graph None Jmk_Graph (Some 0) Jg2K ; mk_Graph (Some 1) Jg2K ;

mk_Graph (Some 3) JKK

As we use the previous definition of Graph to define AllGraph, all the definitions and lemmas
on Graph are still valid on AllGraph. For instance, we can use Geq to compare two elements of
AllGraph, for which we typically lift the relation R on T canonically to a relation on option T .

4.2 Multiplicity

In this section, we present an extension of ilist to represent multiplicities in metamodels repre-
sentation. For this, we have extended the concept of ilist to take into account multiplicity, i. e.,
an interval constraint on the out-degree.

Remark 23 Here we deviate a little from the graph representation of this article. Indeed, in
graphs (at least as we have represented them here), the labels of all the nodes have the same type.
But in metamodel representation, this is not true. That is why we cannot use Graph in the rest
of this section.

4.2.1 Presentation of the Problem on an Example

To illustrate the usefulness of multiplicities, consider the following example of Figure 8.
To represent this using the tools we currently have at our disposal, we would define A, B and C
(simultaneously) as follows (these definitions are to be interpreted co-inductively):

mk_A : ilist B→ ilist C→ A
mk_B : C→ B
mk_C : B→ B→C

Here, various problems arise:

19 / 24 Volume 39 (2011)

Coinductive Graph Representation

A

B C

∗ 1..10

1
2

Figure 8: Example of a metamodel with multiplicities

• to represent the 1..10 multiplicity of the edge A to C, we might explicitly enumerate all
possibilities with increasing numbers of arguments but this is heavy for large numbers and
even impossible for indeterminate bounds. Since list is not an option, we see no other
good choice than using ilist. However, we lose the bounds (taking ilist C is equivalent to a
multiplicity ∗) and therefore, information,

• the representation is not homogeneous. Here, there are two different ways to represent an
edge with multiplicity:

– an ilist for a variable multiplicity (e. g., ∗ or 1..10)

– a sequence of T → T → . . .→ T for a fixed multiplicity (e. g., 2)

Hence, an extension of ilist that allows to take into account multiplicities would solve these two
issues. This is what we present now.

4.2.2 Implementation of Multiplicities

First we need a property (let’s call it PropMult) to say whether a number is between the two
specified bounds of the multiplicity condition. The inferior bound (let’s call it inf) always exists
(it can be 0 but always has a value). Therefore it has type nat. On the opposite, the superior bound
(let’s call it sup) may not exist (multiplicity “∗”). Therefore it has type option nat (constructor
Some if it exists, constructor None if not). The property is expressed as follows:

Definition 30 (PropMult) ∀ inf sup k,

[Case sup = Some s] k ≥ inf ∧ k ≤ s [Case sup = None] k ≥ inf

Thanks to this property we can refine our ilistn (that was the set of functions of type Fin n→ T)
to keep only the ones whose n satisfies PropMult.

Definition 31 ilistnMult T inf sup n := {ln : ilistn T n | PropMult inf sup n}

Remark 24 Elements of ilistnMult are pairs formed by an element of ilistn and a proof of
PropMult inf sup n, hence the type is empty if PropMult inf sup n does not hold.

Using ilistnMult, the definition of ilistMult (the counterpart of ilist with multiplicity) is straight-
forward. It is the same as the definition of ilist (see Subsubsection 2.3.2) but using ilistnMult.

GCM 2010 20 / 24

ECEASST

Definition 32 ilistMult T inf sup := Σn : nat. ilistnMult T inf sup n

We can define a relation and functions on ilistMult very much the same way as we did on ilist.
Therefore we do not present them here again.
We can also show that there is a bijection between ilistMult T 0 None and list (we do it the
same manner we did for ilist, defining ilistMult2list and list2ilistMult and showing that their
compositions are extensionally equal to the identity).

Remark 25 The multiplicities 0 and None are explained by the fact that a list may have no
element (empty list, so inf = 0) or a finite but unbounded number of elements (i. e., multiplicity
“∗”, so sup = None).

Combining the lemmas about bijection between lists, ilist and ilistMult, we obtain that there is a
bijection between ilist T and ilistMult T 0 None.

The important result is that all definitions written with ilist T can be written equivalently with
ilistMult T 0 None. In particular, the following definition of GraphMult is equivalent to Graph:

Definition 33 (GraphMult) mk_GraphMult : T → ilistMult Graph 0 None→ Graph

With this definition of ilistMult, the example of Figure 8 would be represented as follows (A, B
and C are still defined simultaneously and co-inductively):

mk_A : ilistMult B 0 None→ ilistMult C 1 (Some 10)→ A
mk_B : ilistMult C 1 (Some 1)→ B
mk_C : ilistMult B 2 (Some 2)→C

These definitions are homogenous and complete (no information is lost).

5 Related Work and Conclusion

The work presented here shares concerns with other work. Among them, we can cite the work
by Bertot and Komendantskaya in [BK08]. In their paper they treat the problem of representing
streams as functions, to overcome guardedness issues in Coq. The main difference is that we
need a finite definition set (Fin n) whereas they can just use nat. Recall that our problem was
with the embedded inductive type of lists and not the co-inductive streams. In [Dam10], Dams
proposes an alternative solution to our problem in Coq. He defines everything co-inductively (so
instead of lists, he has streams of sons) and then restricts what needs to be finite by a property
of finiteness. In that approach, programming is done with a bigger datatype and the proofs have
to be carried out for the “good” elements. In [Niq08], Niqui describes a general solution for the
representation of bisimulation in Coq using category theory. However, as we tried to apply his
theory, it seemed that only co-inductive embedded types could be treated (streams but not lists)
with the given solution. Moreover, it did not seem possible to parameterize the bisimulation by
an equivalence relation over the types of the elements.
Coq is not the only proof assistant to have guardedness issues. For example, they are present

21 / 24 Volume 39 (2011)

Coinductive Graph Representation

in Agda3, another proof assistant based on predicative type theory. We studied the way guard-
edness issues are addressed in Agda. Danielsson describes it in [Dan10] (see also the extended
case study with Altenkirch in [DA10]). The solution used is to redefine the types (for example
the types of lists) adding a constructor for each problematic function (for example, map). How-
ever, this is based on a mixture of inductive and co-inductive constructors for a single datatype
definition, which is not admissible in Coq and of experimental status even in Agda.
About graph representation in functional languages, we can mention the work by Erwig. [Erw01]
proposes a way to represent directed graphs using inductive types, where, in the inductive step,
a new node is added, together with all its edges to and from previously introduced nodes. Being
"new" or "previously introduced" is not part of the inductive specification but only of a more re-
fined implementation. Moreover, there is no certification of these invariants for graph algorithms,
although this might be interesting future work in expressive systems such as Coq. However, the
main conceptual difference to our work is that in his representation, all nodes are represented at
the same level (they are more or less elements of a list) while we actually wanted, for our own
needs, to build into the construction navigability through the graph, including its loops.

To conclude, in this paper, we have developed a complete solution to overcome Coq’s guarded-
ness condition when mixing the inductive type of lists with co-inductive types. The Coq devel-
opment corresponding to this work is available in [PM11]. This framework can be extended with
new features as needed. For the results we wanted to obtain, it worked well. Clearly, it would
have been easier if a more refined guardedness criterion had been available in Coq but the last ten
years have shown that getting the criterion right is a quite subtle issue. Another solution would
have been to use another proof assistant instead of Coq. Nevertheless, for further developments,
we needed a system based on type theory. Furthermore, despite the guardedness restrictions,
coinductive types in Coq are quite practical to use. They are an addition to the original CIC,
hence a part of the kernel. As such, they are subject to discussion about justification and opti-
mization, and there is quite some on-going scientific work around them in the Coq community.
However, we would now be interested in a more general solution to overcome the guardedness
condition with any embedded inductive type (not only lists). But we realized that to do so, we
needed to be more abstract. In particular, we think that we could draw inspiration from category
theory. The work by Niqui in [Niq08] might be a good start.
Moreover, the work we present has to be seen as part of a larger project where we are interested in
a co-inductive representation of metamodels (see Subsection 4.2). We have solved the problem of
multiplicity and non-connected graphs but the problem of inheritance/subtyping remains. This
is difficult since we look for an extensible way to represent metamodels (they may vary over
time). Poernomo’s work on type theory for metamodels in [Poe08] is relevant here. The work
by Boulmé on FOCAL [Bou00] that has been realized with Coq, will probably help in treating
the inheritance problem. Finally, and still within the aim of representing metamodels, we are
working on the design of a more liberal equivalence relation on Graph.

Acknowledgements: This development was initiated by the original idea of Jean-Paul Bode-
veix to use ilist to overcome the guardedness condition. We are grateful for several interesting
suggestions by Silvano Dal Zilio and for the careful reading of a preliminary version by Martin
3 http://wiki.portal.chalmers.se/agda/pmwiki.php

GCM 2010 22 / 24

ECEASST

Strecker. We are grateful for the feedback we got for the preliminary version presented at the
workshop GCM’10 [PM10].

Bibliography

[Alt93] T. Altenkirch. A Formalization of the Strong Normalization Proof for System F in
LEGO. In Bezem and Groote (eds.), Typed Lambda Calculi and Applications, Inter-
national Conference, TLCA 1993. Lecture Notes in Computer Science 664, pp. 13–28.
Springer, 1993.

[BDd09] S. Berardi, F. Damiani, U. de’Liguoro (eds.). Types for Proofs and Programs, Interna-
tional Conference, TYPES 2008, Torino, Italy, March 26-29, 2008, Revised Selected
Papers. Lecture Notes in Computer Science 5497. Springer, 2009.

[Bir01] R. S. Bird. Maximum marking problems. J. Funct. Program. 11(4):411–424, 2001.

[BK08] Y. Bertot, E. Komendantskaya. Using Structural Recursion for Corecursion. Pp. 220–
236 in [BDd09].

[Bou00] S. Boulmé. Specifying in Coq inheritance used in Computer Algebra. Research report,
LIP6, 2000. Available on www.lip6.fr/reports/lip6.2000.013.html.

[Chl10] A. Chlipala. Posting to Coq club in the thread “Is Coq being too conservative?”.
January 2010.
http://logical.saclay.inria.fr/coq-puma/messages/d71fd3954d860d42#
msg-285229ea3f28adef

[Coq93] T. Coquand. Infinite Objects in Type Theory. In Barendregt and Nipkow (eds.), Types
for Proofs and Programs, International Conference, TYPES 1993. Lecture Notes in
Computer Science 806, pp. 62–78. Springer, 1993.

[DA10] N. A. Danielsson, T. Altenkirch. Subtyping, Declaratively. In Bolduc et al. (eds.),
Mathematics of Program Construction (MPC’10). Lecture Notes in Computer Sci-
ence 6120, pp. 100–118. Springer, 2010.

[Dam10] C. Dams. Posting to Coq club in the thread “Is Coq being too conservative?”. January
2010.
http://logical.saclay.inria.fr/coq-puma/messages/d71fd3954d860d42#
msg-7946fd74eb4de604

[Dan10] N. A. Danielsson. Beating the Productivity Checker Using Embedded Languages. In
Bove et al. (eds.), Proceedings Workshop on Partiality and Recursion in Interactive
Theorem Provers. EPTCS 43, pp. 29–48. 2010.

[Erw01] M. Erwig. Inductive graphs and functional graph algorithms. J. Funct. Program.
11(5):467–492, 2001.

23 / 24 Volume 39 (2011)

www.lip6.fr/reports/lip6.2000.013.html
http://logical.saclay.inria.fr/coq-puma/messages/d71fd3954d860d42#msg-285229ea3f28adef
http://logical.saclay.inria.fr/coq-puma/messages/d71fd3954d860d42#msg-285229ea3f28adef
http://logical.saclay.inria.fr/coq-puma/messages/d71fd3954d860d42#msg-7946fd74eb4de604
http://logical.saclay.inria.fr/coq-puma/messages/d71fd3954d860d42#msg-7946fd74eb4de604

Coinductive Graph Representation

[GC07] E. Giménez, P. Castéran. A Tutorial on [Co-]Inductive Types in Coq. 2007.
www.labri.fr/perso/casteran/RecTutorial.pdf

[MM04] C. McBride, J. McKinna. The view from the left. J. Funct. Program. 14(1):69–111,
2004.

[Niq08] M. Niqui. Coalgebraic Reasoning in Coq: Bisimulation and the lambda-Coiteration
Scheme. Pp. 272–288 in [BDd09].

[PM10] C. Picard, R. Matthes. Coinductive graph representation: the problem of embedded
lists. In Echahed et al. (eds.), GCM 2010, The Third International Workshop on Graph
Computation Models. Pp. 133–147. 2010. Online available at the workshop’s website
http://gcm2010.imag.fr/.

[PM11] C. Picard, R. Matthes. Formalization in Coq for this article. 2011. www.irit.fr/~Celia.
Picard/Coq/Coind_Graph/.

[Poe08] I. Poernomo. Proofs-as-Model-Transformations. In Vallecillo et al. (eds.), Interna-
tional Conference on Model Transformation, ICMT 2008. Lecture Notes in Computer
Science 5063, pp. 214–228. Springer, 2008.

[TCDT] The Coq Development Team. The Coq Proof Assistant Reference Manual.
http://coq.inria.fr

GCM 2010 24 / 24

www.labri.fr/perso/casteran/RecTutorial.pdf
http://gcm2010.imag.fr/
www.irit.fr/~Celia.Picard/Coq/Coind_Graph/
www.irit.fr/~Celia.Picard/Coq/Coind_Graph/
http://coq.inria.fr

	The Problem: Explanation on an Example
	The Solution: ilist
	The Idea
	Fin – a Family of Types for Finite Index Sets
	ilist Implementation
	The Type of Functions ilistn
	The List Counterpart, ilist
	An Equivalence on ilist
	Bijection Between ilist and Lists
	Functions on ilist
	imap
	Universal Quantification
	Manipulation of ilist in List Fashion

	The Refined Definition of Graph Representation
	Definitions of Graph and applyF2G
	An Equivalence on Graph
	Universal Quantification on Graph
	Finiteness of Graph
	Proofs of Finiteness and Infiniteness
	Graph in Graph
	Cycles in Graph

	Towards Metamodel Representation
	A Representation of a Wider Class of Graphs
	Multiplicity
	Presentation of the Problem on an Example
	Implementation of Multiplicities

	Related Work and Conclusion

