
Electronic Communications of the EASST
Volume 6 (2007)

Proceedings of the
Sixth International Workshop on

Graph Transformation and Visual Modeling Techniques
(GT-VMT 2007)

The Jury is still out:
A Comparison of AGG, Fujaba, and PROGRES

Christian Fuss, Christof Mosler, Ulrike Ranger, and Erhard Schultchen

14 pages

Guest Editors: Karsten Ehrig, Holger Giese
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

The Jury is still out:
A Comparison of AGG, Fujaba, and PROGRES

Christian Fuss, Christof Mosler, Ulrike Ranger, and Erhard Schultchen

[fuss|mosler|ranger|schultchen]@i3.informatik.rwth-aachen.de
http://www-i3.informatik.rwth-aachen.de

Department of Computer Science 3 (Software Engineering)
RWTH Aachen University, Germany

Abstract: Graph transformation languages offer a declarative and visual program-
ming method for software systems with complex data structures. Some of these
languages have reached a level of maturity that allows not only conceptual but also
practical use. This paper compares the three widespread graph transformation lan-
guages AGG, Fujaba, and PROGRES, considering their latest developments. The
comparison is three-fold and regards conceptual aspects, language properties, and
infrastructure features. Because of the different relevance of these aspects, we do
not determine a clear winner but leave it to the reader.

Keywords: Graph Transformation Languages, AGG, Fujaba, PROGRES

1 Introduction

Graph transformation languages are one branch of visual programming languages, which provide
advanced concepts for modeling software tools. Some languages reached a level of maturity that
allows utilization in practice. In this paper, we compare the three widespread general-purpose
languages AGG, Fujaba, and PROGRES. Our goal is to point out main differences in conceptual
aspects, language properties, and infrastructure features. There exist some comparisons of graph
transformation languages dating back several years, e.g. [BTMS99, FNT98, Roz97]. Compar-
isons that are more recent focus only on particular application areas, e.g. [Agr04] deals with
model integration aspects. In [VSV05], the runtime efficiency of the generated applications is
analyzed. While this paper concentrates on general-purpose languages, [MG05, TEG+05] de-
scribe also languages dedicated to model transformation and to model checking, e.g. GReAT
[KASS03] and GROOVE [Ren04].

We do not only want to update the older comparisons, considering recent developments, but
also lay focus on practical aspects. We do not claim our comparison is complete. This paper
shall support users when deciding, which language is most appropriate for his or her application.
We hope especially a novice in the area of graph transformation languages will profit from this
practical overview.

This paper is structured as follows: InSection 2, we describe the aspects of the graph transfor-
mation languages that we examine and introduce a running application example. In the following
sections, we study how each of the languages AGG, Fujaba, and PROGRES meets the stated re-
quirements and describe specific aspects. Finally,Section 6, summarizes our comparison and
points out strengths and weaknesses of each language.

1 / 14 Volume 6 (2007)

mailto:[fuss$|$mosler$|$ranger$|$schultchen]@i3.informatik.rwth-aachen.de
http://www-i3.informatik.rwth-aachen.de

Comparison of AGG, Fujaba, and PROGRES

2 Compared Aspects

The graph transformation languages are compared by different aspects, which are introduced
in this section. We compare the theoretical concepts building each language’s background, the
language features when specifying a graph transformation system, and the infrastructure offered
to edit and run these systems.

2.1 Theoretical Concepts

Graphs are clear and intuitive data structures, whose fundamentals are mathematically founded.
Since the late 1960s, different approaches tograph grammarshave been developed, which dif-
fer e.g. in their graph model, the expressiveness of transformation rules, and the definition of
semantics. Basically, two main approaches can be distinguished, which are briefly described in
the following.

Thealgebraic approachconsiders a graph as a 2-sorted algebra, where nodes and edges are
typed, attributed, and identified. Thederivationof a graph by applying a graph transformation
rule is defined bypushoutsknown from category theory. The approach allows formal and easy to
understand proofs of properties on graphs and on graph transformation rules, e.g. the amalgama-
tion of graph transformation rules. Two different branches concerning the derivation have been
evolved within the algebraic approach, namely thedouble pushout approach(DPO) [CEH+97]
and thesingle pushout approach(SPO) [EHK+97]. In DPO, a derivation is constructed by two
pushouts using a gluing graph between the left-hand side and the right-hand side of a transfor-
mation rule, which enables to reverse transformations. A graph transformation rule can only
be applied if all edges incident to its match in the working graph and to the context graph are
specified within the transformation rule, which leads to complex specifications. For this reason,
SPO has been developed, which overcomes this restriction and constructs only one pushout for a
derivation. Thus, the graph transformation rules are easier, but the theoretical properties of SPO
are limited.

Theset-theoretic approach[Nag79] offers an intuitive understanding of graph transformation
systems, but does not provide a theoretical foundation that is as powerful as in the algebraic
approach. Graphs are described as sets of nodes and edges and the effect of applying a graph
transformation rule is defined by set-theoretic operations. In contrast to the algebraic approach,
edges are considered as relations between nodes and thus are neither identified nor attributed.
The approach allows more expressiveness within graph transformation rules, e.g. embedding
rules, which enable user-defined embedding of a rewritten sub-graph in its context graph. Fur-
thermore, the application of graph transformation rules can be managed by control structures
offering abacktrackingmechanism for determining matches of transformation rules. The ap-
proach does not provide any means for describing static and derived graph properties. These
aspects are integrated in thelogic-oriented approach[Sch91], which is an enhancement of the
set-theoretic approach. The approach allows to define an explicit graph schema and usespredi-
cate logic formulasfor defining graphs and graph transformation rules.

Besides the fundamental approach, a graph language may be based on different programming
paradigms. As all presented graph languages offer means for typing graph elements, we will
analyze in how far they support the object-oriented paradigm. This includes providing type-
specific attributes and methods, inheritance relations between types, and polymorphism.

Proc. GT-VMT 2007 2 / 14

ECEASST

2.2 Language Properties

In this subsection, we examine properties of graph transformation languages, concerning the
graph modelandgraph transformations, in general. Some of the properties are similar to those
compared in [BTMS99], some are owed to new developments in AGG, Fujaba, and PROGRES.
Table 1shows a feature matrix listing all properties. The sections on AGG, Fujaba, and PRO-
GRES describe properties implemented for each language in detail.

Table 1: Feature matrix with language properties

Property AGG Fujaba PROGRES
kind directed, attributed, labeled directed, attributed, labeled directed, attributed, labeled
graph schema unchecked type graph UML class diagram graph schema with static rule-check graphs
integrity constraints global event-condition rules with

manual application global and node-local ECA rules,
schema constraints

kind typed, attributed, identified typed, attributed, identified typed, attributed, identified
nodes

derived node types multiple inheritance [multiple] inheritance multiple inheritance

kind labeled, attributed, identified,
directed, binary, between nodes

labeled, directed, binary,
between nodes labeled, directed, binary, between nodes

derived edge types paths (textual) paths (materializable) edges

constraints ordered

value types Java objects/standard types Java objects/standard types,
node types

internal standard types, C types, node
types, sets

expressions parsed Java expressions unparsed Java expressions parsed C or PROGRES expressions
derived attributes simulated using methods directed equations

G
raph M

odel

attributes

meta attributes const, static const, static

homo-/isomorphic global option explicit folding per rule element explicit folding per rule element
matching

multiple matches [amalgamated subrules] set nodes, for-each patterns set nodes, star rules

subgraphs nodes, edges nodes, optional nodes, set nodes,
edges, paths, constraints

nodes, optional nodes, set nodes,
edges, paths, restrictions, constraints

NACs neg. subgraphs neg. nodes, neg. edges,
neg. constraints

neg. nodes, neg. edges, neg. paths,
neg. constraints

conditions

attribute conditions yes yes yes
gluing/embedding gluing embedding
signature in parameters in parameters, return value in/out parameters

mechanisms iteration over layers conditional, iteration, sequence,
collaboration stmts, method calls

conditional, iteration, sequence, non-
deterministic choice, transformation calls

transactions yes
Transform

ations
control
programming

backtracking yes

Graph Model

Graphs. The working graphs of all discussed languages aredirected, attributed, node- and edge-
labeled. The structure of the working graphs is constrained bygraph schemasthat define node
and edge types and their relations. Transformation rules should be checked against the schema
to avoid syntactical errors at specification time.Integrity constraintsare used to prohibit certain
patterns in the working graph. They are checked at runtime. Transformations ofhierarchical
graphscan be found in literature but are not implemented in any of the languages.

Nodes. In the three languages, nodes are generallytyped, attributed, and identifiedelements.
Node types can be derived from other types byinheritance.

Edges. Edges are typed, directed and connect two nodes in all three languages. Edges might
be identifiable graph objects or represent an unidentified relation of graph objects. Further prop-
erties of edges are attribution and constraints (e.g. ordered or sorted edges). Derived edges in
the form of paths can be used to simplify otherwise very complex rules. Edges between edges,
inheritance of edges, and n-ary edges are supported in neither language.

3 / 14 Volume 6 (2007)

Comparison of AGG, Fujaba, and PROGRES

Attributes. Besides the type label, graph elements might carry attributes, which are defined
by the element type. Value types can be standard types, often borrowed from host languages
like Java or C (evaluation of expressions might also be borrowed).Derived attributesare not
set directly, but evaluated according to an equation that might reference other graph elements.
Additionally, sets and graph elements are useful attribute values.

Graph Transformation Rules

Graph transformation rules describe possible transformations of the working graph. They can
be divided intocompound rules, combining other rules by control structures andsimple rules.
Simple rules have a left-hand side (LHS) and a right-hand side (RHS). If the LHS is found in the
working graph (i.e. it can be matched), the match is replaced by the RHS.

Matching. A rule match is a morphism that maps a rule’s LHS elements to elements from the
working graph. If LHS elements are mapped to only one working graph element, the morphism is
a homomorphism. Non-homomorphic constructs are e.g. set nodes, amalgamated rules (AGG),
star-rules (PROGRES). If each LHS element is mapped to a different element from the working
graph, the morphism is injective (default). Whether the matching is non-injective (i.e. one
working graph element can play multiple transformation roles) might be determined per graph
grammar, per rule, or per rule element.

Conditions. Conditions define constraints for rule applications. Structural conditions are found
in the LHS of a rule and include nodes, optional nodes, set nodes, paths, and restriction ex-
pressions.Restrictionsconstrain the match of a rule node by attribute or structure conditions.
Attribute conditions are defined by expressions referring to element attributes. Negative applica-
tion conditions (NACs) [HHT96] define structures that must not be found in the working graph,
if a rule is applied; these might be integrated into the LHS or separated and range from simple
negative nodes and edges to negative paths and complete negative partial graphs.

Gluing/Embedding. Gluing means the merging of two nodes into one, which owns all incident
edges and all non-conflicting attributes of both. Embedding is somehow similar: it allows the
redirection of incident edges from one node to another.

Signature. Procedure-like signatures support the use of graph transformation rules in a way
known from imperative programming. Input parameters allow the parameterization of rules,
while output parameters let transformation results influence following rules.

Control Structures. With control structures, the definition ofcompound rulesis possible by
combination through conditional, iteration, and chaining statements. Statements with non-deter-
ministic behavior and backtracking allow the convenient specification of many graph algorithms.
The chaining of rules should be accompanied by transactions, in order to rollback a chain of rules
if one fails.

2.3 Infrastructure

Besides concepts and language properties, the infrastructure, offered to edit, analyze, and run
the graph transformation system is crucial to its applicability. A graph language environment
should provide avisual and textual editorfor specifications. It should allow free-hand as well

Proc. GT-VMT 2007 4 / 14

ECEASST

as syntax-directed editing. At least someanalyzing functions, e.g. a sophisticated type checker,
should be integrated to detect and explain inconsistencies with respect to the language’s static
semantics. Basiclayout algorithmsfor the rules should be available in the editor.

For testing a specification, the language environment should provide aninterpreter. During an
interpreter session, the environment performs a sequence of graph transformations and visualizes
the working graph. Different application strategies for transformation rules should be possible,
e.g. a debugging mode allowing step-by-step execution. Additionally, a code generator should
produce compilable source code for a general programming language to support the development
of stand-alone applications. The generator’s backend should be sufficiently flexible to allow the
extension to further programming languages. A graphical framework providing access to the
specified graph transformation rules should be available to obtain an executable application.

To store large graphs and support efficient manipulation of graph structures, a database should
be provided. It should also support undo/redo of transformation rules and provide persistence
for the working graph. Another requirement concerns the extensibility of the language environ-
ments. Monolithic architectures are hard to extend, while plug-in structures are more flexible.

Sometimes the user is confronted with limited choices concerning the platform for installation
of the language environment. Therefore, the language environments should be available for
at least the most common operating systems, and offer an easy and fast installation. Ideally,
the environment should be implemented in a platform independent language like Java and be
freely available. As all presented languages are distributed under the terms of the GNU (Lesser)
General Public License.

2.4 Example

To explain the different aspects of each graph transformation system in the next sections, we
introduce a simple example of a Shipping Company. The Shipping Company resembles the
example used in [ERT99]. Its graph schema is illustrated inFigure 1as a class diagram. In the
example,Pallets of differentweights are keptin Stores. EveryPallet has to be brought to a certain
City by aTruck, which is modeled by atoDestination-edge storing also thedue date. ATruck has a
maximum loading weight (maxLoad) and stores its current weight (load). The order of aTruck’s
target cities is determined by a route, which is modeled byorderedonRoute-edges. TheTruck is
drivenBy anEmployee of a Store. The boolean attributeonDuty indicates whether theEmployee is
at work.

Figure 2shows the sample graph transformation ruleloadUrgentPallet, which is used for loading

StoreEmployee
onDuty : Boolean ;

drivenBy

employedBy

dockedAt

in

onRoute
{ordered}

Truck
load : Integer ;
maxLoad : Integer ;

on

Pallet
weight : Integer ;1*

*

0..1

0..1 0..1

*0..1

*

0..1
**

0..1

*

City
name : String ;

toDestination
due : Date ;

Figure 1: Graph schema of the Shipping Company

5 / 14 Volume 6 (2007)

Comparison of AGG, Fujaba, and PROGRES

dest : City

e : Employee
onDuty == true ;

s : Store

eB : employedBy

folding

dB : drivenBy

dA : dockedAt

i : in

oR1 : onRoute

c : Cityc : City

before tD : toDestination

dest

d

e s
eB

dB

dA

oR2 tD

o : on
d : Employee

::=

loadUrgentPallet (in Pallet p, out Truck) =

return t ;

p p

due == tomorrow

t : Truck
maxLoad >=
load + p.weight ;

oR2 : onRoute t
load += p.weight;

Figure 2: Graph transformationloadUrgentPallet

a givenPallet p in a suitableTruck t. The match forloadUrgentPallet is determined by the following
constraints: The working graph is searched for the destinationCity dest and the currentStore s of
the givenPallet p, which isdue tomorrow. Additionally, aTruck t dockedAt Store s has to be found,
whose first targetCity is equal to the destinationdest of Pallet p. This is modeled by the negative
nodeCity c, i.e. there exists noCity c, which isbefore City dest on the route ofTruck t. Furthermore,
the maximum load ofTruck t must not be exceeded by theweight of Pallet p. To loadPallet p on
Truck t, anEmployee is needed, which isonDuty. As even the driverd of Truck t may help to load
Pallet p, if he is employed byStore s, Employees d ande are connected by afolding-construct. This
enables thenon-injectivematching of the driver and the store employee in the working graph. A
match found for the LHS is transformed according to the RHS: Thein-edge incident toPallet p is
deleted and a newon-edge is created connectingPallet p andTruck t. The load-attribute ofTruck t

is updated andt is returned.

3 AGG

Conceptually, AGG (Attributed Graph Grammar) [ERT99] follows the algebraic approach to
graph transformation and implements single-pushout behavior. The implementation is based on
the Colimit library [Wol98], which provides colimit construction for category theory of signa-
tures and graph structures. Colimit could easily be used for the transformation of hierarchical
graphs, but AGG does not support this.

An AGG graph grammar consists of a type graph, a start graph, and simple rules.Figure 3
shows a graph grammar for the Shipping Company example fromSubsection 2.4.

The type graphcontains an object-oriented description of node types, edge types, and their
relations. Node types can be derived from other node types by multiple inheritance. Attributes
can be defined for node and edge types. All constraints from the schema (attribute types, edges’
source and target types and multiplicities) have to be checked manually within the rules. AGG
does neither support derived edges (e.g. paths), derived attributes, nor meta attributes (e.g.con-
stant or static). Although the Colimit library would allow complex edges, the language only
supports binary edges between nodes. Edge constraints like ordering or sorting are not supported
either, thus the orderedonRoute-edge has to be modeled asedge-node-edge constructwith an or-
deringbefore-edge in the example’s type graph (seeFigure 3, top left). The AGG feature of graph
constraints is not used in the example, with it one can define graph patterns and their conclusion

Proc. GT-VMT 2007 6 / 14

ECEASST

Figure 3: A simple AGG graph grammar for the Shipping Company example

to check structural properties of the working graph.
Thestart graphdefines an initial working graph. All nodes and edges in a working graph are

typed, identifiable, and might be attributed.Figure 3(top right) shows a simple start graph for
the example, with a small 3.5tTruck having two cities on his route (Berlin before Hamburg) and
a driver, who is anEmployee of theStore. Two Pallets with differentweights are stored in thestore,
with destinations Berlin and Hamburg. They have to arrive on December 1st resp. 6th.

AGG only supports simplerules. The LHS consists only of nodes and edges (no other ele-
ments are available). Injective matching can be switched on and off globally1. With non-injective
matching, the employee node from the working graph can be matched for the depicted rule in
Figure 3as node 6 (driver)andnode 3 (store worker). NACs are subgraphs defined outside the
LHS that must not be fulfilled. Here there must not be anotherOnRoute nodebefore node 9. At-
tribute conditions, e.g.d.before(tomorrow)2, are defined in a special attribute editor (not depicted)
and can contain arbitrary Java expressions. The match is determined by the LHS, NACs, and
attribute conditions. One feature not shown in the example is gluing, i.e. two nodes are merged
into one node. The resulting node owns all non-conflicting attributes and edges. Merge conflicts
have to be solved interactively by the user. For the complete grammar, AGG allows to compute
critical pairs of rules. i.e. rules which execution disable the application of other rules.

The execution of rules can be programmed slightly, by defininglayersfor the rules. Then the
execution loops over the sequence of all rules on one layer, until none is executable anymore,
then the loop is executed on the next layer until the last. Additionally, single rules can be selected
for execution manually.

The editing of graph grammars is done by a graphical editor, which is completely built in Java
and easily installed on different platforms. The editor has a GUI that is intuitive, but does not

1 Non-homomorphic matching, i.e. multiple matches for one rule element, can be obtained in AGG with amalga-
mated subrules [TB94], which is an extension not yet publicly available.
2 d is of typejava.util.Date and the Java methodbefore compares this date with another date (tomorrow).

7 / 14 Volume 6 (2007)

Comparison of AGG, Fujaba, and PROGRES

offer much support for syntax-directed editing. Positive is the good integration of the interpreter
into the AGG editor. The generation of executable code from the graph grammar is not possible
but grammar specifications can be exported to XML files.

The TIGER framework [EEHT05] allows the generation of visual editors for an AGG graph
grammar. For that, the graph grammar has to be decorated by a visual concrete syntax for all
elements. The generated editors are GEF-based Eclipse-plugins, where the user can pick single
rules for execution. The editors use AGG’s Java API to interpret the graph grammar.

AGG is based on a very sound theory and the editor is simple to use and install. This allows
easy testing of prototypical specifications. [MTR06] gives a good example of a small prototyp-
ical reengineering editor specified with AGG, relying on the notion of critical pair analysis. For
an application in larger projects, code generation and control structures are missing.

4 Fujaba

Originally, the focus of Fujaba (From UML to Java And Back Again) was to provide a visual
modeling tool based on UML diagrams and to generate Java code from these models. Mean-
while, Fujaba also supports other metamodels and output formats. Adaptation to special ap-
plication domains is eased by the template-based code generation module and the plugin based
architecture. For example, Fujaba has been applied in [BGS05] to model real-time systems, in-
cluding extensions of the modeling language. Fujaba has also been applied in the MOFLON
framework [AKRS06] for building model transformation systems based on MOF and QVT.

In Fujaba, graph schemas are modeled using simplified UML class diagrams, resembling the
one shown inFigure 1. Classes can be attributed and any Java class or ordinal type is sup-
ported as attribute type. Derived attributes are not directly offered, but can be simulated by a
method replacing the getter-method generated for the attribute. We therefore model thegetLoad

method to derive the truck’sload. Thus, this attribute does not require manual update when pal-
lets are loaded on the truck. Inheritance of classes is supported, although multiple inheritance
is restricted to interfaces. Overloading of methods and polymorphism is handled by the Java
environment at runtime. Attributed associations, inheritance on associations or n-ary relations
are not supported. Fujaba provides ordered associations, which impose a total ordering on the
link instances during runtime. This feature is well-suited to model theonRoute association.

The behavior of applications is modeled using so-calledStory Diagrams[FNTZ98] which
combine UML-collaboration diagrams with activity diagrams. From each Story Diagram, Fu-

Figure 4: Fujaba Story DiagramloadUrgentPallet

Proc. GT-VMT 2007 8 / 14

ECEASST

jaba generates a Java method operating according to the modeled transformation rule. Story
Diagrams consist of one start and at least one stop activity, and an arbitrary number ofStory Pat-
ternsoperating on the runtime graph. These elements are connected through transitions. Story
Patterns correspond to rules in AGG, but incorporate LHS and RHS into one diagram using the
stereotypes«create» and«destroy». For pattern matching, Fujaba offers obligatory, optional, set
and negative nodevariables. By default, Fujaba creates injective morphisms from variables to
objects, so that two variables are never bound to the same object. This behavior can be disabled
per pair of variables. Attribute assertions may constrain the matched objects by an unparsed (thus
arbitrary) Java expression. Furthermore, Fujaba supports obligatory, optional and negative edges
between variables and textual path expressions. For ordered associations, additional constraints
can be specified for the matching, e.g.first or last. Every pattern requires at least onebound
variablewhich can be provided by a parameter of the Story Diagram, thethis object the method
is invoked on, variables bound in preceding patterns or by an arbitrary Java expression. From
these bound variables, the other variables of the pattern are bound to objects from the runtime
graph by traversing links of given type. Transformation rules are conducted after the complete
pattern has been matched, and may create and delete elements, set attributes and call methods on
matched objects.

Figure 4shows a Story Diagram implementing theloadUrgentPallet transformation rule. The
required bound variable is provided by the method parameterp, from which the other variables
are bound. Attribute assertions are used to check if theTruck t is not overloaded and the given
Pallet p needs urgent delivery (due attribute denotes tomorrow). Injective matching is disabled
for variablesd ande by adding the{maybe d==e} constraint. For the orderedonRoute association,
{first} retrieves the first link fromt to a City. If pattern matching succeeds, the runtime graph is
transformed by removing thePallet’s in edge to theStore and creating anon edge to theTruck.

To model the control flow, Story Patterns may hold transitions to multiple successors. In the
depicted example, two stop activities exist. By the transition guard[success], the left one is called
when the transformation rule succeeds and returns the matched truck as return value. Otherwise,
the right stop activity returnsnull. Transitions may form loops, causing repeated execution of
Story Patterns. Also,for-each-patterns allow to process every match of a Story Pattern instead
of only one match.

The formal background of Story Patterns is obtained from the logic-oriented approach de-
scribed inSubsection 2.1. However, some of their semantic aspects are only incompletely de-
fined (cf. [TMG06]). The Fujaba environment also performs very limited checks on the modeled
diagrams, so the specifier is often not warned about erroneous specifications.

The generated source code can easily be integrated into existing projects or used in rapid-
prototyping frameworks. eDOBS is a plugin for the Eclipse IDE which visualizes the runtime
graph of a Fujaba-generated application. With the help of the CoObRA framework, generated
applications are able to store their runtime states persistently. Recently, the graph-oriented data-
base DRAGOS and the related UPGRADE [BJSW02] framework were adapted to support Fu-
jaba. Being entirely written in Java, Fujaba works on multiple platforms and is easy to set up.
Besides the regular stand-alone application, an Eclipse-plugin embedding Fujaba into the IDE is
under development.

Fujaba’s advantage is its extensible architecture and the use of the well-known UML. Major
disadvantages are the lack of a complete semantic definition and the rare validity checks.

9 / 14 Volume 6 (2007)

Comparison of AGG, Fujaba, and PROGRES

5 PROGRES

PROGRES (PROgrammed GRaph REwriting System) [SWZ99] is the eldest of the presented
graph languages and environments. The logic-oriented approach [Sch91] forms the basis of
PROGRES, which offers a proprietary language allowing the specification of a graph schema
and consistent graph transformation rules.

PROGRES provides various constructs for defining agraph schemaof a specification. For
node types, three different types of attributes can be defined: Intrinsic attributes, whose values are
assigned directly, meta attributes, which constitute class attributes and thus have the same value
for every instance, and derived attributes. Values of derived attributes are computed dependent
on attribute values of other nodes and are automatically updated when their values are invalid.
For example, the node typeTruck shown inFigure 5owns a derivedload-attribute, whose value
is the sum of all loadedPallet weights. ThePallet weights are obtained by traversing the incoming
on-edges of theTruck. PROGRES supports the object-oriented paradigm regarding node types,
which includes inheritance relations between node types, polymorphism, type-specific attributes
and methods.Edge typesdefine the type name, the source and target node types, and their
cardinalities.Pathsmay be modeled allowing complex navigations through the working graph,
traversing arbitrary edges of different types. PROGRES also enables the specification ofgraph
constraints, e.g. there are at mostn instances of a certain node type within the working graph.
If such a constraint is violated, an appropriate repair action can be executed. Based on the
schema,incremental analyzescheck the specification for inconsistencies and show appropriate
error messages.

Besides the graph schema, PROGRES offers modeling of graph queries and graph transforma-
tion rules, which may have several input and output parameters. Agraph querydefines a test for
the existence of a graph pattern in the working graph. Agraph transformation rulemodifies the
working graph. For their execution, the underlying graph database DRAGOS [Böh04] provides
transactions for graph operations (ensuring ACID-properties). For every transformation rule,
pre- and postconditionsmay be specified, which imply constraints on the working graph before

::=`4 : Destination

`3 : City

`5 : Store

before
`8 : OnRoute

`6 : Employee

`9 : Employee `1 = p

`2 : Truck

toCity
`7 : OnRoute

toDestCity

toDestination
inStoreemployedBy

toRoutetoRoute

drivenBy
`4 : Destination

`3 : City

`5 : Store

`6 : Employee

`9 : Employee `1 = p

`2 : Truck

toCity
`7 : OnRoute

toDestCity

toDestination
employedBy

toRoute

drivenBy

node_type Truck : ITEM
intrinsic

maxLoad : integer ;
derived

load : integer = 0 + all self.<-on-.weight ;
end ;

folding { `6 , `9 } ;
condition `2.maxLoad > `2.load + `1.weight ; `4.due = tomorrow ; `9.onDuty = true ;
return t := 2´ ;

end ;

transformation loadUrgentPalett (p : Palett , out t : Truck) =

on
dockedAt dockedAt

Figure 5: PROGRES transformation ruleloadUrgentPallet

Proc. GT-VMT 2007 10 / 14

ECEASST

resp. after the execution of the rule. Furthermore, aqualifier determines if a transformation rule
should be applied to one match or to all possible matches in parallel. Graph transformation rules
are classified asproduction(simple rule) ortransaction(compound rule).

Productions are similar to AGG rules and Story Patterns in Fujaba. They are visually specified
and allow to create and delete nodes and edges. They are described by a LHS and a RHS, which
may contain obligatory nodes and edges, paths, optional nodes, set nodes, and restrictions on
nodes. NACs are modeled by negative nodes, edges, paths, and restrictions. Additionally, a
production may have acondition- and atransfer-part to imply conditions on attribute values
resp. to change the value of node attributes. PROGRES allows the specification ofembedding
rulesfor redirecting edges incident to deleted nodes and embedding new nodes into the working
graph. Thefolding-statement enables the non-injective mapping of two nodes in the production
to the same node in the working graph.

Figure 5shows the PROGRES productionloadUrgentPallet introduced inSubsection 2.4. The
production uses two edge-node-edge constructs for the orderedonRoute-edge and the attributed
toDestination-edge, as these sorts of edges are not supported by PROGRES. Thefolding-construct,
the attributeconditions and thereturn-statement are represented as textual statements. As the
load-attribute ofTruck t is defined as derived attribute, its value is not assigned explicitly.

In contrast to productions, transactions contain control structures for combining transforma-
tion rules and queries. This includes to sequence transformation rules and to execute one of a set
of rules non-deterministically. Furthermore, loop- and condition-statements may be used.

PROGRES is the most expressive graph language of the three presented languages and offers
extensive support for modeling big software systems. But the proprietary language is fairly
complex and difficult to learn. From a specification, C and Java source code can be generated.
This code can be used for rapid prototyping by applying the UPGRADE-framework. AHEAD
[JSW00] is a good example of an industrial-sized project specified with PROGRES.

The syntax-directed PROGRES editor, that also features an interpreter, guides the user well,
but is not really intuitive. In addition, it is only available for Linux. A further disadvantage of
PROGRES is its monolithic architecture, which makes the development and implementation of
new language concepts difficult.

6 Summary

Table 2 summarizes aspects of the three languages that are most important to their practical
applicability, e.g. their support at specification time through a rich editor.

Table 2: Language aspects most important to practical applicability

 AGG Fujaba PROGRES
language expressiveness - o ++
most wanted features for
practical applicability

control structures, paths, check
against schema

paths, check against schema,
search without bound object namespaces, view concept

language learnability graphical part intuitive (but
many things hidden in dialogs) UML-like, easy hard due to rich expressiveness

specification editor mixed graphical/dialog-based mixed graphical/unparsed Java mixed graphical/textual, syntax-directed
interpreter manually controllable step-through
code generation adaptable, template-based, Java not adaptable, C and Java
GUI support TIGER [EEHT05] eDOBS, UPGRADE UPGRADE [BJSW02]
language extensibility plug-in architecture

11 / 14 Volume 6 (2007)

Comparison of AGG, Fujaba, and PROGRES

With the algebraic approach, AGG offers a graph transformation language with a sound theo-
retical basis. This offers convenient implementation possibilities for projects relying on theoreti-
cal notions. It provides a well-developed environment which can easily be installed and applied.
However, the language does not seem rich enough for general purpose applications, the main
disadvantage being the lack of control structures. Therefore, AGG still has to prove that it can
be applied in large-scale projects.

The biggest advantage of Fujaba is its use of UML, which requires only little learning effort
from the user. In addition, the vivid community is working intensively on improvements and
further extensions. However, the language lacks a formal definition, forcing the user to inspect
the code when in doubt about language semantics. Additionally, due to the lack of analyzes the
user is not sufficiently guided during the specification process, often leading to malfunctioning
or unexpected behavior of the generated code.

PROGRES offers the most sophisticated language, although there are still some features miss-
ing. The infrastructure, including a syntax-directed editor, an interpreter, and a code generation
mechanism, provides the highest level of maturity. The experience with industrial-sized projects
proves the practical usability of PROGRES. However, the environment does not conform to
today’s standards, requiring a painstaking installation process and providing a relatively incon-
venient interface, particularly to new users. Additionally, it is very hard to extend this extensive
environment and language for new features.

The jury is still out: Because of the different relevance of the compared aspects, we cannot
give final advice, but leave it to the reader to decide which language to use.

Bibliography

[Agr04] A. Agrawal. Model Based Software Engineering, Graph Grammars and Graph
Transformations. Area paper, EECS at Vanderbilt University, 2004.

[AKRS06] C. Amelunxen, A. Königs, T. Rötschke, A. Schürr. MOFLON: A Standard-
Compliant Metamodeling Framework with Graph Transformations. In Rensink
and Warmer (eds.),Model Driven Architecture - Foundations and Applications
(ECMDA-FA’06). LNCS 4066, pp. 361–375. Springer, 2006.

[BGS05] S. Burmester, H. Giese, W. Schäfer. Model-Driven Architecture for Hard Real-
Time Systems: From Platform Independent Models to Code. InProc. of the Euro-
pean Conf. on Model Driven Architecture - Foundations and Applications (ECMDA-
FA’05), Nürnberg, Germany. LNCS 3748, pp. 25–40. Springer, 2005.

[BJSW02] B. Böhlen, D. Jäger, A. Schleicher, B. Westfechtel. UPGRADE: A Framework for
Building Graph-Based Interactive Tools. In Mens et al. (eds.). ENTCS 72, pp. 149–
159. Elsevier Science Publishers, 2002.

[Böh04] B. Böhlen. Specific Graph Models and Their Mappings to a Common Model. Pp. 45–
60 in [PNB04].

[BTMS99] R. Bardohl, G. Taentzer, M. Minas, A. Schürr.Application of Graph Transformation
to Visual Languages. In [EEKR99], pp. 105–180, 1999.

Proc. GT-VMT 2007 12 / 14

ECEASST

[CEH+97] A. Corradini, H. Ehrig, R. Heckel, M. Korff, M. Löwe, L. Ribeiro, A. Wagner.Al-
gebraic Approaches to Graph Transformation – Part I: Basic Concepts and Double
Pushout Approach. In [Roz97], pp. 163–245, 1997.

[EEHT05] K. Ehrig, C. Ermel, S. Hänsgen, G. Taentzer. Generation of visual Editors as Eclipse
Plug-ins. In20th IEEE/ACM Int. Conf. on Automated Software Engineering, ASE’05.
Pp. 134–143. ACM Press, New York, 2005.

[EEKR99] H. Ehrig, G. Engels, H.-J. Kreowski, G. Rozenberg (eds.).Handbook on Graph
Grammars and Computing by Graph Transformation: Applications, Languages, and
Tools. Volume 2. World Scientific, 1999.

[EHK+97] H. Ehrig, R. Heckel, M. Korff, M. Löwe, L. Ribeiro, A. Wagner, A. Corradini.Alge-
braic Approaches to Graph Transformation – Part II: Single Pushout Approach and
Comparison with Double Pushout Approach. In [Roz97], pp. 247–312, 1997.

[ERT99] C. Ermel, M. Rudolf, G. Taentzer.The AGG Approach: Language and Environment.
In [EEKR99], pp. 551–603, 1999.

[FNT98] T. Fischer, J. Niere, L. Torunski. Konzeption und Realisierung einer integrierten
Entwicklungsumgebung für UML, Java und Story-Driven-Modeling. Master Thesis,
University of Paderborn, 1998.

[FNTZ98] T. Fischer, J. Niere, L. Torunski, A. Zündorf. Story Diagrams: A new Graph
Rewrite Language based on the Unified Modeling Language. In Ehrig et al. (eds.),
6th Int. Workshop on Theory and Application of Graph Transformation (TAGT).
LNCS 1764, pp. 296–309. Springer, 1998.

[HHT96] A. Habel, R. Heckel, G. Taentzer. Graph Grammars with Negative Application Con-
ditions.Fundamenta Informaticae26(3/4):pp. 287–313, 1996.

[JSW00] D. Jäger, A. Schleicher, B. Westfechtel. AHEAD: A Graph-Based System for Mod-
eling and Managing Development Processes. In Nagl et al. (eds.). LNCS 1779,
pp. 325–339. Springer, 2000.

[KASS03] G. Karsai, A. Agrawal, F. Shi, J. Sprinkle. On the Use of Graph Transformation
in the Formal Specification of Model Interpreters.Journal of Universal Computer
Science9(11):1296–1321, Nov. 2003.

[MG05] T. Mens, P. V. Gorp. A Taxonomy of Model Transformation and its Application to
Graph Transformation. 2005. , presented at the 1st International Workshop on Graph
and Model Transformation, GraMoT’05, Tallinn, Estonia.

[MTR06] T. Mens, G. Taentzer, O. Runge. Analysis Refactoring Dependencies using Graph
Transformation.Software Systems Modeling (SoSyM), 2006.

[Nag79] M. Nagl. Graph-Grammatiken: Theorie, Anwendungen, Implementierung. Vieweg
Verlag, 1979.

13 / 14 Volume 6 (2007)

Comparison of AGG, Fujaba, and PROGRES

[PNB04] J. L. Pfaltz, M. Nagl, B. Böhlen (eds.). 2nd Int. Workshop on Applications of Graph
Transformations with Industrial Relevance, AGTIVE’03. LNCS 3062. Springer,
2004.

[Ren04] A. Rensink. The GROOVE Simulator: A Tool for State Space Generation. Pp. 479–
485 in [PNB04].

[Roz97] G. Rozenberg (ed.).Handbook on Graph Grammars and Computing by Graph
Transformation: Foundations. Volume 1. World Scientific, 1997.

[Sch91] A. Schürr.Operationales Spezifizieren mit programmierten Graphersetzungssyste-
men. PhD-Thesis, RWTH Aachen University, 1991.

[SWZ99] A. Schürr, A. J. Winter, A. Zündorf.The PROGRES Approach: Language and Envi-
ronment. In [EEKR99], pp. 487–550, 1999.

[TB94] G. Taentzer, M. Beyer. Amalgamated Graph Transformations and Their Use for
Specifying AGG - an Algebraic Graph Grammar System. InInt. Workshop on Graph
Transformations in Computer Science. Pp. 380–394. Springer, 1994.

[TEG+05] G. Taentzer, K. Ehrig, E. Guerra, J. de Lara, L. Lengyel, T. Levendovszky, U. Prange,
D. Varró, , S. Varró-Gyapay. Model Transformation by Graph Transformation: A
Comparative Study. InProceedings of the International Workshop on Model Trans-
formations in Practice, MTiP’05 (Satellite Event of MoDELS 2005). Montego Bay,
Jamaica, 2005.

[TMG06] M. Tichy, M. Meyer, H. Giese. On Semantic Issues in Story Diagrams. In Giese and
Westfechtel (eds.),Fujaba Days 2006. Technical Report tr-ri-06-275, pp. 10–14.
University of Paderborn, Germany, 2006.

[VSV05] G. Varró, A. Schürr, D. Varró. Benchmarking for Graph Transformation. In2005
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC).
Pp. 79–88. IEEE Computer Society, 2005.

[Wol98] D. Wolz. A Colimit Library for Graph Transformations and Algebraic Development
Techniques. PhD-Thesis, TU Berlin, 1998.

Proc. GT-VMT 2007 14 / 14

	Introduction
	Compared Aspects
	Theoretical Concepts
	Language Properties
	Infrastructure
	Example

	AGG
	Fujaba
	PROGRES
	Summary

