
Electronic Communications of the EASST
Volume 45 (2011)

Proceedings of the
Fourth International Workshop on Formal Methods

for Interactive Systems
(FMIS 2011)

Closure and Attention Activation in Human Automatic Behaviour:
A Framework for the Formal Analysis of Interactive Systems

Antonio Cerone

18 pages

Guest Editors: Judy Bowen, Steve Reeves
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

Closure and Attention Activation in Human Automatic Behaviour:
A Framework for the Formal Analysis of Interactive Systems
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Abstract: Automatic behaviourcan be defined as a fast processing human activity
that does not require attention to occur. According to Norman and Shallice’s model
of attention and automaticity the majority of responses areunder fairly automatic
control triggered by environmental cues. In this paper we define a process algebraic
framework to formalise Norman and Shallice’s model and illustrate it through two
case studies: Driving and using an Automatic Teller Machine(ATM). Finally we
show how to use model-checking to analyse model instantiations and present the
outcome of the analysis for the ATM case study.

Keywords: Formal Methods, Interactive Systems, Automaticity, Attention, Ex-
pectancy, Contention Scheduling.

1 Introduction

The use of formal methods in the analysis of interactive systems has started in the 1990’s in the
domain of safety-critical systems, where the relevant human component of the system is repre-
sented by operators with expected expertise and skills. Operator behaviour was often modelled
as defined by the interface requirements, rather than in terms of general cognitive capabilities
and limitations.

Nowadays, as a consequence of ubiquitous computing and widespread technology, issues of
safety and security originated by human-machine interaction are no longer restricted to skilled
operator’s behaviour in traditionally critical domains, such as transportation, chemical and nu-
clear plants, health and defence, but actually permeate many aspect of everyday human life.
Driving behaviour [Ran94] and interaction with an Automatic Teller Machine (ATM) [RCB08]
are two examples of aspects of everyday life in which cognitive errors may lead to safety and
security violations.

Large variations in the typology and motivations of humans interacting with computer systems
make it impossible to define a predicted user’s behaviour: human errors are actually the very
result of an unexpected user behaviour that emerges throughthe interaction. To best capture such
an emergent behaviour, user’s models must specify thecognitively plausible behaviour, that is,
all possible behaviours that can occur and that involve different cognitive processes [BBD00].

A number of recent works have explored the use of formal models to understand how cognitive
errors can affect user performance. Curzon and Blandford [CB04] model the behaviour of a
user who assumes all tasks completed when the goal is achieved but forgets to complete some
important subsidiary tasks (post-completion error). Cerone and Elbegbayan [CE07] set the most
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pessimistic scenario, in which the user is a novice, with minimal skills, and explore alternative
user behaviours corresponding to a variety of attitudes andpersonalities. Rukšėenas, Curzon
and Blandford [RCB08] see rational behaviour as a game between planning aspects,typical of a
well-trained expert user, and reactive aspects, typical ofa novice user.

In this paper we consider human behaviour in performing everyday activities as fairly auto-
matic. This is the context in which typical cognitive errorsanalysed in previous research, such
as post-completion errors, are most likely to occur. Automatic behaviour is, however, by no
means purely reactive; it actually develops throughout an extensive training process and features
a high-level form of consciousness. Furthermore, in many occasions, deliberate and conscious
low-level actions are still required and attention takes control. When attention is activated by
the failure of expectations that the user has developed through experience and training, cognitive
errors may result and emerge in the form of inappropriate deliberate responses.

Formal methods have seldom been used to analyse attentionalmechanisms. Recently Su,
Bowman, Barnard and Wyble [SBBW09] have used process algebraic modelling to explore the
temporal attentional limitation of human operators and have then presented arguments about
how this affects their ability to interact with computer systems. However, their work focuses on
stimulus rich environments in which attention is continuously activated. In our work, instead,
we consider attention as a sparsely activated mechanisms within everyday routine activities.

2 Attention versus Automatic Behaviour

Attentioncan be defined as a selective processing activity that aims tofocus on one aspect of
the environment while ignoring others. Modern research onselective attentiongoes back to the
early 1950s, when Colin Cherry analysed a phenomenon that hecalledcocktail party problem:
humans can selectively attend to one conversation among a large number of conversations going
on around them [Che53]. The research question was to understand which kind of information
could be perceived from unattended conversations. Cherry concluded that only low-level in-
formation, such as distinguishing a female voice from a malevoice, but no information about
meaning, not even the language in which the conversation is carried out, could be extracted from
an unattended conversation. Although this conclusion resulted in the first information processing
model of attention, theearly selection model[Bro58], subsequent studies showed that attention
is most frequently elicited by unattended stimuli that havesome meaningful relation to what we
are consciously doing [GW60] and that, therefore, there is some meaningful analysis of unat-
tended information [Tre60]. In some cases, a full analysis of meaning could even precede the
selection process, as is explained bylate selection theories[DD63] and partly confirmed through
experiments [Mac60].

Automatic behaviouror automaticitycan be defined as a fast processing activity that does not
require attention to occur. In some cases responses may be triggered by stimuli of which we
are not yet conscious, or of which we were previously conscious but we are no longer [Bur94].
For example in theStroop effect, in which the task is to name the colours in which words are
presented, when shown a colour word (e.g. “red”) presented in an incongruent colour (e.g.
“blue”), the participant is actually more likely to read theword rather than saying the colour in
which it is presented [Str35]. Here, there is no conscious way to intervene on the automaticity
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process (unconscious automaticity), unless we brake the rule of the experiments by defocussing
our eyes. However, in most cases automaticity develops following extended consistent practise or
exposition to a regular pattern [SS77a, SS77b]. For example, automaticity is essential in driving a
car and, in such a context, it develops throughout a learningprocess: during the learning process
the driver has to make a conscious effort to use gear, indicators, etc. in the right way and would
not be able to do this while talking or listening to the radio.Once automaticity in driving is
acquired, the driver is aware of the high-level tasks that are carried out, such as driving to office,
turning to the right and waiting at a traffic light, but is not aware about low-level details such as
changing gear, using the indicator and the colour of the traffic light, amber or red, while stopping
at a traffic light (conscious automaticity).

Among several theories that attempt to explain attention and automaticity, in this paper we con-
sider Norman and Shallice Model [NS86]. According to this model, the majority of responses
are under fairly automatic control. They are triggered by environmental cues that contact specific
schemata, which define the routine activities associated with a given task. For example, while
driving, the noise from the engine is a cue that contacts the schema for using the gear and triggers
the driver to change gear: there is no conscious decision in changing gear, and later no recollec-
tion of this specific action. Norman and Shallice propose acontention schedulingmechanism to
solve a clash between two enabled routine activities. For example, while driving and approach-
ing a traffic light that turns to amber, we might either stop orspeed up through the crossing. In
order to select the correct action, the mechanism to solve this clash needs to assess which action
is more effective in achieving the goal of the current task. For example, if the driver is late and
perceives driving through the crossing as safe, then speeding up may be the chosen action.

In general, behaviour is not simply a set of automatic routine activities, but in many occasions
deliberate and conscious actions are required. For example, a driver normally used to drive
on the right side of the road, as in continental Europe, who isdriving in UK or Ireland and is
approaching a roundabout, cannot use the automatic schema that dictates to look to the left and
turn to the right. This schema is now inappropriate because traffic drives on the left rather than on
the right. Norman and Shallice propose aSupervisory Activating System(SAS), which becomes
active whenever none of the routine selection schemata are appropriate. Typical situations that
activate the SAS, and associated examples related to the driving task, are listed as follows:

required decision as it is the case when road signs are in conflict;

expectation failure which can be assessed as

hazard as it is the case for an unexpected sound from the engine;

novelty as it is the case for driving a car different from the usual oneor the above men-
tioned situation of driving on the left rather than on the right;

curiosity for something we see, which may urge us to consciously slow down to better see what
is happening;

temptation such as the sight of a stall selling some food we are craving for, which may urge us
to consciously stop to purchase it;

anger which may be caused by another driver honking to ask for spaceto overtake.

3 / 18 Volume 45 (2011)



A Framework for Formal Analysis of Human Automatic Behaviour

In this paper we focus on user’s expectations. Therefore, wewill incorporate in our model de-
liberate and conscious behaviour that results from the assessment of either a hazard or a novelty.
This assessment is in most cases based on previous experience. For example, experience tell
us that unexpected sounds from the engine are symptoms of mechanical problems. However, if
there is no previous experience, as in the case of driving forthe first time on the left, our mental
model of the task will help. For example our mental model of traffic circulation allows us to
work out that when traffic drives on the left, we need to give way to the right and turn to the left
at a roundabout.

3 Formal Framework

The notation that we use throughout the paper is based upon Hoare’s notation for describing
Communicating Sequential Processes (CSP) [Hoa85]. We will use the followingCSP operators:

prefix a→ b
defines the sequentialisation of two eventsa andb;

external choice P�Q
defines a choice between two possible ordering of actions, whereby the choice is driven
by an external process;

parallel composition P|[S ]|Q
forces the synchronisation of those actions in setS (called synchronisation set) that are
offered by both processes, while allowing all other actionsto occur independently;

interleaving P|||Q
is a special case of parallel composition with empty synchronisation set:

P |||Q = P|[ /0]|Q.

The sort of a process is the set of events that the process may offer throughout its evolution. In
the following we also use representations for a multiple choice:

�i P(ei) = P(e1)� P(e2)� ... �P(en)
�i 6= j P(ei) = P(e1)� P(e2)� ... �P(ej−1)� P(ej+1)� ... �Pn

�e∈D P(e) = P(e1)� P(e2)� ... �P(ek)

whereei for i = 1, ...,n andeare events,P(ei) processes containing eventsei andD = {e1,e2, ...,ek},
with k < n.

3.1 Automaticity Rules

In this section we illustrate how to formalise Norman and Shallice’s routine activity schemata.
We define a schema through anautomaticity ruleconsisting of aguarding conditionand an
action. Possible guarding conditions are: knowledge about the current status of the interaction,
perception of a stimulus, intrinsic or extrinsic motivation, judgment of a situation, etc.
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3.1.1 Closure

An important phenomenon that occurs in automatic behaviouris closure[DFAB98]. When some
part of an ongoing task has been completed there is a tendencyto flash out short-term memory
to be ready to start a new task. This may cause the removal fromshort-term memory of some
important subtasks that are still not completed and result in some form of failure of the main
task, usually calledpost-completion error. Undesired closure most commonly occurs when the
main goal of the task is achieved before completing some subsidiary tasks. A classical example
is provided by an Automatic Teller Machine (ATM) that delivers cash before returning the card.
Since the user’s main goal is to get cash, once the cash is collected the short-term memory
is flushed and the user may leave the interaction forgetting the card in the ATM. That is why
modern ATMs return the card before delivering cash.

Closure has been formally modeled in previous work using Higher Order Logic (HOL) [CB00].
In our approach, in order to model closure, we distinguish two kinds of actions as follows.

goal action whose execution directly results in the achievement of a goal;

task action whose execution does not directly result in the achievementof a goal.

Goal actions activate a closure process, whereas task actions do not. This is modeled in CSP as
follows:

GoalAction(condi,actioni,closurei) =
condi → GoalAction

� start→ (leave→ GoalAction
�k6=i closurek → leave→ GoalAction
� condi → actioni → closurei → leave→ GoalAction)

TaskAction(condj ,actionj ) =
condj → TaskAction

� start→ (leave→ TaskAction
�k closurek → leave→ TaskAction
� condj → actionj → �k closurek → leave→ TaskAction)

with general processes (GoalAction andTaskAction) and categories of events (conditionscond,
actionsaction and closuresclosure) are in bold.

EachGoalAction or TaskAction process defines oneautomaticity rule. Action start is used
to mark the interaction start and actionleave to mark the user leaving the interaction. After
starting the interaction, the user is free to leave the interaction anytime, that is, either without
performing any action or after performing any action. For a goal action defined by process
GoalAction and triggered by eventcondi, theclosurei event occurs only after theactioni event,
whereas any otherclosurek event, withk 6= i, may occur anytime and is independent of the
occurrence ofactioni event. For a task action defined by processTaskAction and triggered by
eventcondj , anyclosurek event may occur anytime and is independent of the occurrenceof the
actionj event. Thus, while composing in parallel processesGoalAction andTaskAction and
forcing their synchronisation on allclosurek events as follows

GoalAction(condi,actioni ,closurei) |[∪k{closurek} ]|TaskAction(condj ,actionj )
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such synchronisation may only occurs after aactionk event.

3.1.2 Contention Scheduling

If we consider the automaticity rule that controls a driver’s behaviour while approaching an
amber light, which exhibits a case of contention scheduling, as we pointed out in Section2, the
driver has two possible responses: (1) stop at the traffic light; (2) speed up through the crossing.
Response (1) is the safer. However, as mentioned in Section2, if the driver is in a hurry and
perceives that driving through the crossing is safe, then response (2) will be chosen. Letstopbe
the event that models response (1) andgothroughbe the event that models response (2).

Let safebe the event that models the perception of the driver that going through the amber
light is safe andunsafeits complementary event. Lethurry be the event that models driver’s
hurry andnohurry the event that models driver’s absence of hurry. A possible CSP model of the
driver behaviour while approaching an amber light is as follows.

AmberLight = hurry→ (safe→ gothrough→ AmberLight

� unsafe→ stop→ AmberLight)

� nohurry→ stop→ AmberLight

ProcessesGoalAction or TaskAction defined in Section3.1.1consider only one single guard-
ing condition. However, we have seen in the example above that contention scheduling usually
requires several nested conditions to establish priorities for contention resolution. Therefore, we
define a parametricContention process as follows:

Contention(Proc,Prock ,condi ,Proci ,condj ,Procj ) = Proc =
condi → Proci(Prock) � condj → Procj (Prock)

whereProc is a name assigned to theContention process whileProck is a name process used in
the recursion that occurs within theProci andProcj processes. In general, there will be several
nestings ofcontentionprocesses with the toplevel havingProc = Prock and defining the auto-
maticity rule. Therefore the example above can be expressedthrough a nesting ofcontention
processes as follows:

Contention(AmberLight,AmberLight,hurry, InaHurry,nohurry,NotInaHurry) =
AmberLight=

hurry→ Contention(InaHurry,AmberLight,
safe,TaskAction(AmberLight,amber,gothrough),
unsafe,TaskAction(AmberLight,amber,stop))

� nohurry→ TaskAction(AmberLight,amber,stop)

Note that this required to extend theGoalAction andTaskAction processes by including as ar-
gument a name for the process to be used in the recursion as follows.

GoalAction(Proc,condi ,actioni ,closurei) =
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condi → Proc
� start→ (leave→ Proc

�k6=i closurek → leave→ Proc
� condi → actioni → closurei → leave→ Proc)

TaskAction(Proc,condj ,actionj ) =
condj → Proc

� start→ (leave→ Proc
�k closurek → leave→ Proc
� condj → actionj → �k closurek → leave→ Proc)

Finally, to show how recursion works within nestedContention processes, we expand the
Contention-based definition of processAmberLightabove as follows:

Contention(AmberLight,AmberLight,hurry, InaHurry,nohurry,NotInaHurry)
= AmberLight
= hurry→ InaHurry � nohurry→ NotInaHurry

where

InaHurry
= safe→ TaskAction(AmberLight,amber,gothrough)

� unsafe→ TaskAction(AmberLight,amber,stop)
= safe→ amber→ gothrough→ AmberLight

� unsafe→ amber→ stop→ AmberLight

NotInaHurry
= TaskAction(AmberLight,amber,stop)
= amber→ stop→ AmberLight

Since including process names as arguments of theContention, GoalAction andTaskAction
processes, although needed for formal rigour, decreases readability, in the rest of the paper
we will use simplified notationContention(condi,Proci,condj ,Procj ) rather than full notation
Contention(Proc,Prock ,condi ,Proci ,condj ,Procj ) as well as the shorter notation for processes
GoalAction andTaskAction defined in Section3.1.1.

3.1.3 Composition of Automaticity Rules

In this section we show how to use the CSP parallel composition to combine automaticity rules.
There are two tricky issues to take into account while composing automaticity rules:

1. identify the correct synchronisation set;

2. deal with rules that incorporate contention scheduling.

Obvious members of the synchronisation set areclosurei events. Moreover, an event may
occur both as a condition in an automaticity rule and as an action in another automaticity rule.
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Such an event needs to be included in the synchronisation setof the parallel composition of
these two automaticity rules. If an event occurs as a condition in two automaticity rules then
there should be no synchronisation on such event, since either of the two automaticity rules
may be non-deterministically triggered by this condition.If an event occurs as an action in two
automaticity rules then there should be no synchronisationon such event, since the two rules are
triggered by distinct conditions.

The presence of multiple (possibly nested) conditions in the contention scheduling requires
the definition of a recursive function that extracts from thelayers of nestings all conditions on
which synchronisation may be needed.

LetAction i denote eitherGoalAction(condi ,actioni ,closurei) orTaskAction(condi ,actioni).
We can build a setR of triples each consisting of one automaticity ruleAction i,j , one set of ac-
tionsAi,j and one set of conditionsCi,j as follows

• Action i,i = Action i, Ai,i = {actioni}, Ci,i = {condi}
if i > 0

• Action i,j = Contention(condi ,Action(i+1),(k−1),condk ,Action(k+1),j),
Ai,j = Ai+1,k−1∪Ak+1,j ,
Ci,j = {condi ,condk}∪Ci+1,k−1∪Ck+1,j ,
if 0 < i < k < j.

The parallel composition of automaticity rulesAutomaticityRules = AutomaticityRulesn is
built

1. by selecting a triple〈Action,A ,C 〉 ∈ R and defining

(a) AutomaticityRules1 = Action

(b) A1 = A

(c) C1 = C

(d) R1 = R−{〈Action,A ,C 〉}

2. by iteratively selecting the other triples〈Action,A ,C 〉 ∈ R and defining

(a) AutomaticityRulesm = AutomaticityRulesm−1 |[S ∪ (∪k{closurek}) ]|Action
whereS = (Am−1∩C )∪ (Cm−1∩A )

(b) Am = Am−1∪A

(c) Cm = Cm−1∪C

(d) Rm = Rm−1−{〈Action,A ,C 〉}

until Rn = /0

3.2 Modelling the Supervisory Activating System

We have seen in Section2 that the Supervisory Activating System (SAS) becomes active when-
ever the routine selection of operations becomes inappropriate. In this paper we restrict our
analysis to the case ofexpectation failure.
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Figure 1: General Architecture

The architecture of the SAS is depicted in Figure1. Action start is used to mark the beginning
of the interaction and actionleaveto mark the user’s act of leaving the interaction.

TheAutomaticityRules process consists of the parallel composition of theGoalAction and
TaskAction processes defined in Section3.1, synchronising on all actions describing closures,
and further synchronises on all conditions and actions involved in the human-computer interac-
tion through the parallel composition with theEnvironment process.

TheEnvironment process defines the environment in which the interaction occurs, including
not only computer interfaces and possibly electrical and mechanical components, but also sub-
jective and social contexts as well as personal, cultural and general perceptions and views. For
example, the fact that a driver is in a hurry is a subjective context while the fact that the driver
perceives driving through an amber light as safe is a personal perception.

TheExpectancyprocess consists of a multiple external choice

Expectancy = �i Expectation(condi ,expecti)

where eachExpectation(condi,expecti), for i = 1, ...,n, is defined as follows

Expectation(condi ,expecti) = condi → expecti → Expectancy

with expecti the event that characterises the user’s expectation determined by conditioncondi .
In our model we assume at most one expectation associated with one condition. However, in

general, one condition may lead to distinct expectations. ProcessExpectation(condi,expecti)
could be generalised to the parallel composition overi andk of processes

Expectation(condi,expectk) = condi → expectk → Expectancy
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but this additional complexity would hinder the illustrative purpose of the model.
Let us defineE = ∪i{expecti}, the set of all expectations, andE C = {condi | expecti ∈ E },

the set of conditions which raise these expectations. For each specific instantiation of our model
we need to define the setC C of all conditions that occur immediately after expectations, each
condition either meeting or failing the corresponding expectation.

TheSASprocess synchronises with the condition expectations (expecti ∈ E ) offered by pro-
cessExpectancyand with all conditions (condi ∈ E C ) that are offered by theAutomaticityRules
process and raise such expectations, and then offers eventsthat express whether each expecta-
tion (expecti ) is met (met) by conditioncond∈ C C or not (failedi). Let F denote the set of all
expectation failures for the specific instantiation of our model. TheSAS process is defined as
follows.

SAS= �cond∈C C cond→ SAS
� start→ ExpectCheck

ExpectCheck= leave→ SAS
�i expecti → �cond∈C C cond→ outcome→ ExpectCheck

whereoutcome= met if the expectation is met andoutcome∈ F otherwise.
Eventsoutcome∈ {met} ∪F are offered by theSAS process to theAssessmentprocess,

which assesses for each expectation failure (failed ∈ F ) whether this is considered by the user
(perceptionfailed) as a hazard or a novelty. This is modeled in CSP as follows.

Assessment= met→ �failed∈F actionfailed → Assessment
�failed∈F failed → actionfailed → perceptionfailed → Assessment

The user’s conscious and deliberate response is modeled in CSP as follows.

Response(perception,action) = perception→ actionperception → Responsei
� actionperception → Response

Let P = {perceptionfailed | failed ∈ F} be the set of perceptions (hazard or novelty). We
define the set of interactionsI as the set of conditions, and possibly their negations, and actions
that are also events of the sort ofEnvironment.

The overall interaction process is modeled in CSP as follows

Interaction = Environment |[I ]|
AutomaticityRules |[{start, leave}∪C C ]|
SAS |[{leave} ]|
Response(hazard, leave) |[{actionnovelty} ]|
Response(novelty,actionnovelty) |[E C ∪E ]|
Expectancy |[{met}∪F ∪P ]|
Assessment

whereactionnovelty is a specific action with which the user responds to the novelty (novelty).
We have assumed that the user’s response to a perceived hazard (hazard) is to leave the in-
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teraction (actionleave). What this means depends on the specific interaction and an additional
process may be requested to fully specify such response.

Furthermore, for simplicity we have considered only one novelty and one hazard, but in gen-
eral a variety of novelties and hazards may occur during interaction. Therefore the parallel
composition may include severalResponseprocesses, each associated with distinct novelty and
hazard events.

3.2.1 Driving Case Study: Model

Let us consider the task of driving to office, whose goal is to park the car in the reserved bay in
the company car park. For simplicity, we model the entire trip as just the task of driving through
one traffic light between departure and arrival.

Using processesTaskAction andGoalAction defined in Section3.1.1and processContention
defined in Section3.1.2we can define processDriveRulesthat incorporates all automaticity rules
for the driving task as follows.

DriveRules = (TaskAction(depart, light) |[{arrived} ]|

TaskAction(green,gothrough) |[{arrived} ]|

Contention(hurry,Contention(safe,TaskAction(amber,gothrough),

unsafe,TaskAction(amber,stop)),

nohurry,TaskAction(amber,stop)) |[{arrived} ]|

TaskAction(red,stop) |[{gothrough,arrived} ]|

GoalAction(gothrough, f ree) |[{ f ree,arrived} ]|

GoalAction( f ree, park,arrived)

After the car departs (depart) it approaches the traffic light (light), which can begreen, amber
or red. The car may stop at the traffic light (stop), or go through it (gothrough), after or without
stopping. Once arrived at the car park, if the driver’s personal parking bay is free (f ree), the
driver parks the car (park). The task is completed and closure is attained (arrived).

We have only one expectation

DriveExpect= Expectation(gothrough,expect free)

in which the driver expects to find the personal bay free at thearrival at the company car park.
The associated condition isgothroughbecause in our simplified model, going through the traffic
light is the action that immediately precedes the arrival atthe car park.

TheDriveSASprocess is modelled as follows

DriveSAS= f ree→ DriveSAS� occupied→ DriveSAS
� start→ DriveExpectCheck

DriveExpectCheck= leave→ DriveSAS
� expect free→ ( f ree→ met→ DriveExpectCheck

� occupied→ f reefailed→ DriveExpectCheck)
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The set of expectations isEDrive = {expect free} and the set of associated conditions isE C Drive =
{gothrough}. The set of conditions that occur after the unique expectationexpect freeisCC Drive =
{ f ree,occupied}. If the personal bay is free (f ree) then the expectation is met (expectmet). If
the personal bay is occupied (occupied) then the expectation fails (f ree f ailed). The set of ex-
pectation failures isFDrive = { f reefailed} and the set of perceptions isPDrive = {novelty}

The assessment of expectation failures is defined as follows

DriveAssess= met→ � j actionj → DriveAssess
� f reefailed→ otherfree→ novelty→ DriveAssess

Note that since our simple model does not include an expectation failure that is perceived as a
hazard,DriveAssessdoes not offer anhazard event. The expectation failure urges the driver
to look for another bay where to park (otherfree) and, when this is found, the expectation is
assessed as a novelty (novelty) and the car parked (park). Therefore, the only response process
is Response(novelty, park). Notice that we assume here that there is always a free parking
bay. To release this assumption would require two distinct novelty events with two different
responses.

The environment part consists of the traffic light and the conditions that allow the driver to
assess whether to drive through the amber light. Let us suppose that the driver perceives that it is
always unsafe to drive through an amber light and that the driver is in a hurry. The environment
is modelled as follows.

DriveEnv= DriveTra f f icLight|||Hurry |||UnSa f e

DriveTra f f icLight = light → (GreenLight� AmberLight� RedLight)
GreenLight= green→ GreenLight� change→ AmberLight
AmberLight= amber→ AmberLight� change→ RedLight
RedLight= red→ RedLight� change→ GrenLight

Hurry = hurry→ Hurry

UnSa f e= unsafe→UnSa f e

The set of interactions isI = {light,green,amber, red,hurry,nohurry,safe,unsafe}. There-
fore, the overall interaction process is modeled in CSP as follows

DriveInteraction= DriveEnv |[IDrive ]|
DriveRules|[{start, leave, f ree,occupied} ]|
DriveSAS|[{leave} ]|
Response(novelty, park) |[{gothrough,expect free} ]|
DriveExpect|[{met, f reefailed,novelty} ]|
DriveAssess

3.2.2 Automatic Teller Machine (ATM) Case Study: Model

We consider a simple ATM task in which the user is triggered toinsert a card (cardI) when the
interface shows (through a message on the display) that the machine is ready (ready), is triggered
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to enter the pin (pinE) by the knowledge that the card has been inserted (cardI), is triggered to
collect the card (cardC) when seeing the card out (cardO) and is triggered to collect the cash
(cashC) when seeing the cash out (cashO).

ATMsRules = TaskAction(ready,cardI) |[{cardI,cashgot} ]|

TaskAction(cardI, pinE) |[{cashgot} ]|

TaskAction(cardO,cardC) |[{cashgot} ]|

GoalAction(cashO,cashC,cashgot)

Note that we have implicitly assumed that the user knows thatthe card is always inserted before
entering the pin, which is anyway the case for any ATM we have encountered in our experience.

We can observe that user’s automatic behaviour does not imply any order between the actions
of collecting the card and collecting the cash; such order isdictated by the specific ATM with
which the user interacts. In particular, we may consider thefollowing ATMs.

ATM1 = ready→ cardI → pinE → cashO→ cashC→ cardO→ cardC→ ATM1

ATM2 = ready→ cardI → pinE → cardO→ cardC→ cashO→ cashC→ ATM2

These are two possible interaction environments. Environment ATM1 delivers the cash before
returning the card, whereasATM2 returns the card before delivering the card.

Depending on which kind of ATM,ATM1 or ATM2, the user has experience with, we have
respectively either expectations

ATMsExpect1 = Expectation(pinE,expectcash) � Expectation(cashC,expectcard)

or expectations

ATMsExpect2 = Expectation(pinE,expectcard)�Expectation(cardC,expectcash)

A user who has experience withATM1, which delivers cash before returning the card, expects
to have the cash delivered (expectationexpectcash) immediately after entering the pin (pinE)
and expects to have the card returned (expectationexpectcard) immediately after collecting the
cash (cashC). Analogously, a user who has experience withATM2, which returns the card be-
fore delivering cash, expects to have the card returned (expectationexpectcard) immediately
after entering the pin (pinE) and expects to have the cash delivered (expectationexpectcash)
immediately after collecting the card (cardC).

TheATMsSASprocess is modelled as follows

ATMsSAS= cardO→ ATMsSAS� cashO→ ATMsSAS
� start→ ATMsExpectCheck

ATMsExpectCheck= leave→ ATMsSAS
� expectcard→ (cardO→ met→ ATMsExpectCheck

� cashO→ cashf ailed→ ATMsExpectCheck)
� expectcash→ (cashO→ met→ ATMsExpectCheck

� cardO→ cardf ailed→ ATMsExpectCheck)
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The set of expectations isEATM = {expectcard,expectcash}. The sets of associated conditions
areE C ATM1 = {pinE,cashC} for ATM1 andE C ATM2 = {pinE,cardC} for ATM2. The set of
conditions that occur after the two expectations isC C ATM = {cashO,cardO}. The expectations
are not met if cash is delivered (cashO) when card is expected (expectcard) and if card is de-
livered (cardO) when cash is expected (expectcash) with resultant set of expectation failures
FATM = {cardf ailed,cashf ailed}. The set of perceptions isPATM = {novelty,hazard}

The assessment of expectation failures is defined as follows

ATMsAssess= met→ (cashC→ ATMsAssess
� cardC→ ATMsAssess)

� cashf ailed→ cardC→ hazard→ ATMsAssess
� cardf ailed→ cashC→ novelty→ ATMsAssess

A user who is returned the card when expecting to be deliveredcash (cashf ailed) may suspect
that there was some problem with the authentication processand perceive the hazard to have
the card confiscated if attempting to perform the transaction again. On the other hand, a user
who is delivered cash when expecting to be returned the card (cardf ailed) perceives the situation
just as a novelty that does not activate any specific response. Therefore, the only response to
expectation failure occurs when a hazard has been assessed and consists of leaving the interaction
as expressed by processResponse(hazard, leave).

The set of interactions isI = {ready,cardI, pinE,cashO,cashC,cardO,cardC}. Therefore,
we consider four overall interaction processes, fori, j = 1,2, which are modeled in CSP as
follows

ATMsInteraction(i, j) = ATMi |[IATM ]|
ATMsRules|[{start, leave,cashO,cardO} ]|
ATMsSAS|[{leave} ]|
Response(hazard, leave) |[E C ATM j∪{expectcard,expectcash} ]|
ATMsExpect|[{met,cardf ailed,cashf ailed,hazard ]|
Assessment

4 Model-Checking Analysis

From an analytical point of view our focus is to verify whether the design of the interface and the
other environmental components addresses cognitive aspects of human behaviour such as closure
phenomena and user expectations that trigger the SAS to activate attention. Although we have
seen in Section3.1.2that our approach supports the modelling of contention scheduling, we are
not dealing with this aspect in our analysis. In fact, the assessment process automatically used
to adjust routine behaviour to solve contention involves many aspects related to culture, back-
ground and beliefs, which cannot be easily incorporated in our framework. Therefore, improving
environmental design to make contention scheduling more effective and beneficial is beyond the
scope of this paper.

Model-checking techniques [CGP99] provide an effective analytical tool to exahustively ex-
plore the system state space and capture the behaviour that emerges from the combination of
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several system components. Closure, automatic behaviour,expectancy and attention are phe-
nomena that represent distinct components of human cognition and action, and their combination
results in an apparently holistic ways of performing tasks.In this context model-checking can be
used to capture errors that emerge when environmental design cannot deal with closure phenom-
ena, or when the outcome of the interaction between automatic behaviour and environment does
not meet human expectations. We use Linear Time Temporal Logic (LTTL) [ MP91] to specify
system properties and then we use model-checking to verify such properties on the CSP model.

4.1 Automatic Teller Machine (ATM) Case Study: Analysis

A formal specification of the ATM case study presented in Section 3.2.2is as follows.

G(ready⇒ (¬cashO)U cardI) (1)

G(ready⇒ (¬cashO)U pinE) (2)

G(((cardI∧ (¬ready)U pinE) ⇒ (¬ready)U cashO)∨

(pinE∧ (¬ready)U cardI) ⇒ (¬ready)U cashO) (3)

G(cardI ⇒ (¬ready)U cardO) (4)

G(cardO⇒ (¬ready)U cardC) (5)

G(cashO⇒ (¬ready)U cashC) (6)

Formulae (1) and (2) specify respectively that inserting the card and enteringthe pin are required
to withdraw cash. Formula (3) specifies that cash can only be delivered if the card is inserted
and the correct pin entered. Formulae (5) and (6) specify that the ATM can be ready for another
transaction only if card and cash are collected.

If we check the conjunction of the above properties on the four systems defined in Section3.2.2
we find out that it holds only forATMsInteraction(2,2). This is the case of an ATM returning the
card first and a user having experience with this kind of ATM. As forATMsInteraction(1,1) and
ATMsInteraction(1,2), in which the ATM delivers cash first, a closure that flashes the short-
term memory may occur after collecting the cash, that is, after achieving the goal of the task.
In this case the user may forget to collect the card and therefore property5 does not hold (post-
completion error). Finally, forATMsInteraction(2,1), the user is returned the card when expect-
ing to be delivered cash and may suspect that there was some problem with the authentication
process. This is perceived as the hazard to have the card confiscated, and the user is likely to
leave the interaction without collecting cash, thus violating property6.

This case study has been implemented using the Concurrency Workbench of the New Century
[CLS00]. The code is available at:

http://www.iist.unu.edu/∼antonio/Research/Software/CWB-NC/ATM/.

5 Conclusion and Future Work

We have proposed a process algebraic framework for modelling cognitive activities, such as clo-
sure, contention scheduling and attention activation, that occur in automatic routine behaviour.
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Although these activities are essential to deal with limitations of short-term memory, solve con-
tentions and respond to unexpected situations, they may cause cognitive errors in interactions
with inappropriate environments. The framework we proposeis general enough to be applied to
very different real-life context, such as driving a car and withdrawing cash at an ATM.

Our model-checking analysis is able to capture the emergence of such cognitive errors. Post-
completion errors, such as the violation of property5 in Section4.1, may be often avoided by de-
signing the environment in such a way to ensure that all subtasks are completed before the goal is
achieved. This is the case ofATM2, which models an ATM that returns the card before delivering
cash. This approach would always work in an ideal world whereall environments are designed
according to the above criterion. However, in the real worldhumans have to frequently deal with
inappropriate environments, thus building up experience that may result adverse in interacting
with “correctly” designed environments. In the context of the ATM case study, although nowa-
days most ATMs work as modeled byATM2, there are still some developing countries where all
ATMs work as modelled byATM1. Thus we can imagine that a user from one of such countries
would have problems while visiting a country where all ATMs work as modeled byATM2.

Our qualitative analysis supports the identification of potential errors but does not give any
clue about their frequency. The development of a framework for quantitative analysis is part
of our future work. We also envisage a more comprehensive framework in which qualitative
analysis is used to identify potential cognitive errors that may be induced by a new environment
design, while quantitative analysis is used to predict the frequency, and thus the criticality, of
such errors.
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