Electronic Communications of the EASST

Volume 42 (2011)

Proceedings of the
4th International Workshop on
Multi-Paradigm Modeling
(MPM 2010)

Using an Alternative Trace for QVT
Vincent Aranega, Anne Etien and Jean-Luc Dekeyser

12 pages

Guest Editors: Vasco Amaral, Hans Vangheluwe, Cécile Hardebolle, Lazlo Lengyel

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

@ ECEASST

Using an Alternative Tracefor QVT

Vincent Aranegal, Anne Etien? and Jean-L uc Dekeyser3

L vincent.aranega@lifl.fr
2 anne.etien@lifl.fr
3 jean-luc.dekeyser@lifl.fr
LIFL - UMR CNRS 8022, INRIA, University of Lillel,
Lille, France

Abstract: Model transformations are the core of the MDE methodolodyeylcan
be expressed using various languages. One of them is QVQM® standard for
transformation languages. QVT also provides a traceghilgchanism. In general,
a trace can be used for many purposes. In this paper, we skdimnitations of the
trace provided by QVT through different scenarios. Furtiane, based on the QVT
language elements, we highlight model transformation eptscthat would require
consideration.

We also propose an alternative trace that takes into actloese concepts. It allows
us to gather information not provided by the QVT trace ands tfully performs
the scenarios. The proposed trace is language indepenttotia be used without
perturbing the QVT transformation execution or the traaeegation/exploitation by
the engine.

Keywords: MDE, QVT, Traceability, Model Transformation

1 Introduction

The Model Driven Engineering methodology (MDE) sets the el@dmetamodels and transfor-
mations as first class citizens in the software developmecggs. It relies on different standards,
one of which is Query/View/Transformation (QVTPpj07], dedicated to model transforma-
tions. The QVT standard describes the syntax and the seraaritihree different sub-languages
for transforming models. ThBelations language is declarative, tt@ore language is fully im-
perative and thé®perational Mapping language is hybrid. Each of these language differently
conceives transformations and adopts its own rule-base@dxsyNevertheless, they all produce
almost the same trace.

In the context of model transformations, the trace linksitipeit elements which were useful
to create the output elements. The trace can be used for niffarngudt purposes, such as impact
analysis (i.e., to identify the effect of changing one adifon related artifacts), code regeneration
(i.e., to automatically regenerate previously generatatkedhat is related to a design artifact),
visualization, flexible process modeling[DK*10]. Usually, these tasks are implemented for a
specific transformation language and make difficult the fiseamy paradigms. In process where
many transformation languages are used, when the tracémadéed, a common formalism is
searched to limit the algorithms rewritting. Mostly, tharsiard is used as such. However, for
traceability purposes, the standard is not always therbditsce.

1/12 Volume 42 (2011)

mailto:vincent.aranega@lifl.fr
mailto:anne.etien@lifl.fr
mailto:jean-luc.dekeyser@lifl.fr

Using an Alternative Trace for QVT @

The QVT standard describes a trace which is recorded alyalmmtransformation execution.
This trace can be serialized at the end of the transformatienution in order to bpost-mortem
inspected. Nevertheless, its main purpose is to suppoxhjeet resolution mechanism, indis-
pensable to perform the transformation. The trace provide®VT is thus mainly internally
used by the engine and is not well adapted to the purpose®pstyidentified.

In this paper, we show in various scenarios that the basarrmdtion required by most ac-
tivities based on trace exploitation are not provided by@NeT trace. These observations con-
cretely rely on the QVTOBor07] implementation of the QVT standai@dperational Mapping
language. We thus present a language-independent alertathe QVT trace that is dedicated
to the previously cited activities and provides the requirdormation.

Section2 introduces a case study and four scenarios requiring trdoemation. Sectior8
shows, by applying the case study with the QVT trace thatatitnformation is missing. From
these limitations, in sectiofiwe propose an alternative. Secti®norresponds to the application
of the case study using our alternative trace. Finallyteelavorks are presented in sectién
whereas conclusions are drawn in secfion

2 Case Study

The case study introduced in this section is the main thrétdtegaper. It refers to the “UML to
Marte” transformation context. After briefly explainingetpurpose of the transformation and in-
troducing the handled metamodel, we present the transfammaritten in the QVTOperational
Mapping language.

2.1 TheUML to Marte Transfor mation

The “UML to Marte” transformation is very classic not becaud the manipulated domains, but
because it establishes a bridge between the UML world andukieess world. Concretely, the
input metamodel is UML enhanced with the Marte profieG0g, and the output metamodel
is the Marte metamodel. The Marte profile is an OMG standadicdéed to the design and the
analysis of real time embedded systems. This transformégioelevant, because it is complex
enough to not be reduced tmae-to-one concept mapping. Moreover, the transformation is not
too complicated to understand, even for non-business &xper

2.2 Input/Output Metamodels of the Transfor mation

The Marte profile, input of the transformation is rich in cepts. We focus on an excerpt, with-
out detailing all the concepts. This excerpt presentedgaifeil (a)contains three main concepts:
Allocate, Distribute andTiler. The stereotypesllocate and Distribute extend theAbstraction
UML element. In the same wa¥jler extends theConnector UML element. The three stereo-
types own several tagged values adding information to tigénat UML elements. These tagged
values are typed using datatypes defined in the profile, ssibfitegerVector. Semantics details
of these stereotypes/tagged values are out the scope phis.

Once again, due to the large amount of elements containdteiivarte metamodel, output

Proc. MPM 2010 2112

(&

ECEASST

(uml)
Abstraction

(uml)
Connector

<<stereotype>> <<stereotype>> ‘ Thler origin_| £ IntegerVector
Allocate LinkTopology — - [® 1| & vectorElem : Integer
— ——1 —
+ kind: AllocationKind AN ‘ L 5
+ nature: AllocationNature 1 | tiler m [;iJI\th'l’l
vﬁﬁﬁ[?g"t'rhldl"?' paving 1 S[H Il'lu*'uvMuU‘m ‘
<<stereotype>> g =
Tiler — >
. fitting 1 |
<<stereotype>> 1|toTiler 1] fromTiler 9
Distribute + origin: IntegerVector repetitionSpace
I + paving: IntegerMatrix 1 .
+ patternShape: ShapeSpecification + fitting: IntegerMatrix [Distribute w»———==| 5 ShapeSpecification
+ repetitionSpace: ShapeSpecification P P = = size : Eint
+ fromTiler: TilerSpecification + tiler: TilerSpecification e} 3 Size
+ toTiler: TilerSpecification : pétternShap}:‘
(a) Marte Profile Excerpt (b) Marte Metamodel Excerpt

Figure 1: Input and output metamodels

metamodel of the transformation, Figutéb) only gathers the elements relative to those pre-
sented in Figuré.(a).

As usual in such a transformation from a profile to the cowadng metamodel, concepts
with the same semantics are found in the input and the oufpluts, Tiler and Distribute are
designed in the Marte metamodel as specific entities. Hawiemie Marte metamodebyiginis
considered as compositional relationship upori tieger Vector element. The other relationships
in the metamodel excerpt are designed using the same way.

2.3 TheUML to Marte Transformation Expressed in QVTO

The “UML to Marte” transformation is quite huge: 1400 lineB@VTO code split into 98
rules. Only pieces of code relative to the elements prelyopiesented are reproduced here.
The presented rules have been pruned to the minimal. Thdyidtg the mapping between
UML and Marte concepts, the transformation of propertied #ue recourse tbelper. Indeed,
this section has two main goals. On the one hand, it providesgh material to define model
synchronization scenario. On the other hand, it precisescidbes the transformation.

Figure2(a) shows an excerpt of theistributedMapping mapping operation dealing witlDis-
tribute. The rule signature (line 54) exposes that tmapping is applied on instance of the
Abstraction concept (owned by the UML metamodel) and produces instapictee Distribute
concept (owned by the RSM package of the Marte metamodedwihen section (line 55 to 59)
expresses a guard that specifies the condition to executelltheThis guard imposes that the
Abstraction element must be stereotypedistribute. Finally, thename property of the created
Distribute has the same value than thame property of the UMLAbstraction (line 64).

Figure2(b) presents an excerpt of theTiler mapping (line 103 to 119) which createJiser
from a Connector stereotypedTliler. The origin property owned by th€onnector is aniInte-
ger\Vector. Itis created from therigin tagged value contained by tider stereotype (line 114
to 116) by calling thestr2Veector helper. According to thestr2Vector helper signature (line 121),
anlnteger\Vector instance is created fromSring. Thishelper performs a specific parsing which
is not described here.

3/12 Volume 42 (2011)

Using an Alternative Trace for QVT @

103. mapping UML::Connector::toTiler() :RSM::linkTopology::Tiler
104. when {

105. not self

106. .getAppliedStereotype('RSM::Tiler')

107. .ocllsUndefined()
108. }
109. {
54. mapping UML::Abstraction::DistributedMapping() : RSM::Distribute 114. “;Jrigin:=self
gg Wsheel;‘ { 115. .getValue(stereotype, 'origin’)
57. getAppliedStereotype("MARTE::MARTE_Annexes::RSM::Distribute’) 116. -oclAsType(String).str2Vector();
58. '= null 119
50. } -
60 { 120.
121. helper String::str2Vector() : Lib::IntegerVector
64. name := self.name; 122. {
67. 1 130. }
(a) QVTO excerptDistributedMapping rule (b) QVTO excerpt: toTiler rule and Sr2Vector
helper

Figure 2: Excerpts of the UML to Marte transformation usingT®

2.4 Scenariosfor Model Synchronization

Toillustrate the QVT trace limitations in contexts whereagceability mechanism is nevertheless
very useful, we define four scenarios occurring in model Bymtization. Such a context choice
is pertinent for two main reasons. First, model synchrdiupnausually uses traceability as main
entry for its algorithm MALO9]. Second, the nature of the information looked for in these
scenarios is very common and frequently manipulated inratbietexts.

In order to make these scenarios a reality, an input and gnuborntodel have been defined and
are partially represented in the figuBeOnly the elements instantiating the concepts handled by
the previously described rules are presented.

<<distribute>>
<Abstration>

:Distribute
name=Fromvhftop

name=Fromvhftop

Tiler

<<tiler>>
<Connector>

:IntegerVector
vectorElem=[0,0]

name=out_uvfout
origin={0,0}

(@) (b)

Figure 3: Input (a) and Output (b) Model Excerpts

The model synchronization strategy is simplified; we arescmus that bigger issues are
raised. However, it is enough to illustrate our purpose:

1. If an element is suppressed in the output model, then {hat iBlements which lead to
its creation should be suppressed. If these latter areviedlah the generation of other
elements in the output model, they also have to be deleted.

2. If an element is modified in the output model, then the el@mehich lead to its creation
should be modified. If these latter are involved in the geii@reof other elements in the

Proc. MPM 2010 4112

@ ECEASST

output model, they also have to be modified.

Conforming to these strategies, we define four scenarigesepting a suppression/modification
action on elements of the output model (figG(a)).

Scenario 1. suppression of thBistribute instance.

Scenario 2: modification of the propertpame owned by theDistribute instance.

Scenario 3: suppression of thimnteger\Vector instance owned by th&ler instance.

Scenario 4. modification of the propertyectorElem owned by thd nteger\ector instance.

In the next section these scenarios are developed using\fieti@ce produced during the
transformation.

3 Performing Model Synchronization Using the QVTO Trace

This section does not aim to propose a solution to the modatsgnization issues, but to
informally present the limitations of the QVT trace evenimgle samples such as the scenarios
previously described.

The QVT trace generated during the execution of the “UML tatefatransformation is used
to synchronize the models following the four scenarios sssively.

Figure4 sketches the part of this trace generated relative to theulse previously presented.
This trace contains two links. One expresses thafetbewvhftop Abstraction instance leads to the
creation of tha=romvhftop Distribute instance by executing theistributedMapping operation.
The other link specifies that theTiler operation uses theut_uvfout Connector to create ailer
instance.

<<distribute>>

. :Distribute
<Abstration> — .
DistributedMapping name=Fromvhftop
name=Fromvhftop

Tiler

<<tiler>>
<Connector>

) :IntegerVector
name=out_uvfout toTiler
- vectorElem=[0,0]

origin={0,0}

Figure 4: Produced QVT Trace View

3.1 Application of the Case Study

The realization of each scenario relies on an analysis sfithce.

Scenario 1. The Fromvhftop Distribute instance is removed. To synchronize the input model,
the elements of the input model leading to its creation mesalso deleted. Analyzing the
QVT trace, only theAbstraction instance enables this creation using DistributedMapping
operation. The synchronization here is quite simple: Abgraction instance is deleted in the
input model.

Scenario 2: The QVT trace does not provide enough information to deteenthe elements
leading to thename property creation. The synchronization here seems difftoyperform.

5/12 Volume 42 (2011)

Using an Alternative Trace for QVT @

Scenario 3. Synchronizing the models corresponds to the removal ahiing model elements
involved in the creation of thinteger\ector. As in the previous scenarios, these elements cannot
be identified using the QVT trace. The synchronization is ttmmpromised.

Scenario 4: Once again, synchronization is hardly enforceable becthes QVT trace does
not provide links between the removed property and the eieteading to its creation.

These four scenarios illustrate the inefficiency of the QY&ce to highlight links between
input and output elements useful for example to perform megechronization. Only the first
scenario succeeds with such a trace. As the concepts, therpies need to be traced. Indeed,
model synchronization may also concern properties suchrezgept in the scenarios 2 and 4.
Moreover, the scenario 3 illustrates that some conceslteger\Vector) may be created using
a helper. Thus traceability must also concern helpers ahdmiyp rules. These four scenarios
show on very common actions upon a moded fnodification/suppression) that the QVT trace
has not a fine enough granularity.

3.2 TheQVT Trace Policy

TheOperational Mapping provides a trace generation policy relying onlyroapping operation.
According to the QVT specificatioritace class instances are automatically created winaap-
ping operation are executed. The traced elements refer onlgreibhthe input and the output
specified in the rule signature or to the rule parameters. cake study has shown the limit of
this policy; other QVT language elements require attention

3.2.1 Thewhen section

Operational Mapping andRelation provides a guard mechanism through wien keyword. The
rule is executed only if this guard is satisfied. So the cosabf an object relies not only on the
element on which the rule has been applied, but also frorhalklements/properties involved in
the guard. Tracing every element involved in the creatioarmfther one may be very useful in
some cases, as illustrated in the case study.

3.2.2 Thequery and the helper operation

Additionally to the mapping, th®perational Mapping language provides two other operations;
query andhelper.

Thequery is an operation associated to a simple request. It does eamtetdelete/modify any
object. For this reason it seems not useful to tracejtieeies.

The helper may lead to the creation/deletion/modification of elemehtsugh side effects.
Moreover, arhelper can be applied many times on the same element to possiblie ai@rent
elements (that whigelper do not appear in the QVT trace). As we have seen on the exanyile,
tracing thehelpersimplies that pertinent information concerning the creafieletion/modification
of elements produced by helpers are missing.

Proc. MPM 2010 6/12

@ ECEASST

3.2.3 ThePrimitive Property

Primitive properties do not appear in the QVT trace sincg #re not used in the object resolu-
tion mechanism. However, as illustrated in the case staflyyration concerning them may be
useful.

The experimentation and the observations made in thisosectincern the QVDperational
Mapping language. However, they are also applicable toRHation language since the trace
policy is relatively common to the three QVT languages.

4 QVT with theLocal Trace

Two solutions can be envisaged to overtake the limitatidnthe QVT trace: enhance it or
provide an alternative trace. We have chosen the secontibsofar two reasons. First, the QVT
trace is dedicated to object resolution. Tracing helpersaspings may lead to errors, since the
QVT trace is internally used to object resolution; tieiper could not be applied many times on
the same element. Tracing the properties would not leadrtwsebut would change the trace
purpose. Second, each QVT engine adopts its own implenamiait the standard. Moreover,
other transformation engines/languages are used. Thaatite trace we provide, thiecal
trace, is fully independent from any transformation language.

Our local trace has been used to to gather fine grain infoomati order to localize errors in
transformation AMEDO9]. Moreover, the local trace has been used with differentehtrdns-
formation languages such as Java and QVTO, showing itsrfdépendence from any trans-
formation language; only its generation has to be adaptacdhd following subsections, we
present the local trace metamodel and its capacity to ppdurace model adapted to “classic”
exploitation/exploration without loosing the originafénmation contained in the QVT trace.

4.1 Loca Trace Metamodel

The metamodel presented in Figuidas already been described (BED0§ AMEDO9]. It is
built around a minimal core close to the trace metamodel éefiry Jouault inJou03. The local
trace metamodel is designed around three main conckpik; ElementRef and RuleRef. The
other concepts of the metamodel are used to structure ttermnadels by providing containers.

srcEltsContainerl..*

= RulesContainef g 1 E LocalTrace 15| ElementsContaine
rulesContainer = name : EString
destEltsContainerl..*
ruleRefs | 0..* links | 0..* elementRefs|0..*
T RuleRef 0.1 links B Unk srclink0..1 srcElements1.* M FlementRef
T name : EString 7 1D : EString = name : EString
ruleRef 0. cstlink0.1 _ destElements 0.+ | & UUID : EString
1
~ BlackBoxRe I ; 4 l eObject
| PrimitivePropertyRef | ClassRef -| EObject
¢ value : EString (from Ecore)

2 type : EString

Figure 5: Local Trace Metamodel

7112 Volume 42 (2011)

Using an Alternative Trace for QVT @

4.1.1 ThelLink concept

TheLink concept establishes a relationship between elements/@d/ah the transformation. It
connects all the input elements useful to create/modifgideutput elements.

4.1.2 TheElementRef concept

The ElementRef concept represents the different elements consummategraddced by the
transformation. It directly points out the corresponditepgent of the input/output model through
a reference t@Object. Moreover, to trace properties, distinction between metids and prim-
itive type class property such &geger or Sring is explicitly designed. ArElementRef is either
a ClassRef or aPrimitivePropertyRef, respectively.PrimitivePropertyRefs own specific proper-
ties: value andtype which correspond to the value and the type of the traced prope
Transformation rules may involve many input and output eets for example through the
QVT when sections. Similarly, the local trace metamodel providaesg@m connection between
Link andElementRef. Thus the elements involved inndhen section may be automatically traced
with the elements on which the rule is applied.

4.1.3 TheRuleRef concept

RuleRef refers to the transformation rule, that creates it. Indbgdegardinghelpers® as a side-
effect operation, th&uleRef concept stores information concerning the rules anchéhgers
evaluated during a transformation and leading to the aeati traceLinks.

The independence of our metamodel to any transformatiayukge implies that it can easily
be used without any adaptation in combination with vari@mgyuage. However, this indepen-
dence obviously does not hold for the generation of the tnameel, which depends on the used
language. Concerning the Q\perational language, we provide a plug-in fragment for the
Eclipse platform and QVTO to generate the trace. Concretelye classes used by QVTO are
overridden. Such a mechanism enables us to generate thermmawithout interfering in the
transformation execution. Moreover, the trace is acckssilb along the transformation execu-
tion, serialized as a model at the end and can thus be explojtexternal algorithms/software
during or after the transformation execution.

5 Application of the Case Study with the Local Trace

In this section, we apply the case study with the local tr&8seconstruction, the generated local
trace model contains all the information provided in the Qx&Ce and more. Figur@sketches
a part of the generated local trace. The links express thdrthmvhftop Distribute instance of
the output model has been created fromREhamvhftop Abstraction instance in the input model
(link 1199). The ruleDistributedMapping has created thiBistribute instance. Moreover, links
between properties provide finer grain information. Thuas,example, thename property of
the Distribute instance in the output model has been generated fromaime property of the
Abstraction instance, by th®istributedMapping rule (link 1195).

1 The concept of helper exists in other languages than QVT asi&TL

Proc. MPM 2010 8/12

@ ECEASST

Link 1199

DistributedMapping
Link 1195

<<tiler>> Link 463 Tiler

<Connector> | -
i :IntegerVector
name=out_uvfout 9
igi vectorElem=[0,0]
origin=1{0.0 Link 437

—
Str2Vector

Figure 6: Generated Local Trace for the Case Study

<<distribute>>
<Abstration>

:Distribute

@3=Fromvhftop

name=Fromvhfto,

4

Each scenario presented in sectiis developed using the local trace.

Scenario 1: The local trace specifies that tReomvhftop Distribute instance is associated to
only one link Link 1199) having a unique source element ffr@mvhftop Abstraction instance.
Thus, to synchronize model in this case and adopting théegiradescribed in sectioB, the
Abstraction instance is removed from the input model.

Scenario 2: The local trace and more precisely thank 1195, enable one to identify the
elementname property of theAbstraction instance in the input model as the element which
creates thename property of th&romvhftop Distribute instance. Thus, to perform the model
synchronization, theame property of theAbstraction instance must be also modified.

Scenario 3: TheLink 438 of the local trace highlights that thetegerVector instance has been
generated from therigin property owned by thdiler instance. Thus, the suppression of the
IntegerVector instance leads to emptying tbeigin property in the input model.

Scenario 4: The local trace expresses with think 437 that, thevectorElem property cre-
ation relies on therigin property owned by th&iler instance. The modification applied on the
vector Elem property affects therigin property in the input model.

Applying the model synchronization scenarios of secHiovith the local trace succeeds. Each
action performed on the output model concerns elemémtspfoperty or class) that are traced.
It is thus simple to find the input model elements which créfa¢en and then perform adequate
modifications to synchronize the models.

6 Reated Work

Traceability is widely spread in computer science domaiaweler, in this paper, we focus on
traceability used in the context of model transformations.

Several metamodels have been proposed as the foundaticaceébility approachesgu0sq
FHNOG, VAB "07]. These metamodels are structurally, relatively diff¢emd often depend on a
specific transformation language. However, they alwaylagahe same basic information. The
traceability metamodel defined by Jouaulb(i0d only contains minimal informationi.e. ele-
ments and links between them. The name of the transformatlerwhich creates the elements
is associated to the link as a property. Based on these witkst al. propose an advanced

9/12 Volume 42 (2011)

Using an Alternative Trace for QVT @

trace for ATL [YWO09]. The proposed trace gathers fine grained information ofAfHetransfor-
mation execution. However, the implementation is reallpefelent from the ATL metamodel
and the ATL Virtual Machine. Our local trace metamodel is atersion of the one defined by
Jouault “core” trace providing a more finer grain trace anghsating the rule concept from the
link to ease manipulations.

In [FHNOg, the authors define a metamodel closed to the Jouault'srooeder to provide a
traceability mechanism to transformations written wite #ermeta language. Since the linked
elements directly refers by Kermeta objects, they can spard to class or primitive property,
but such a distinction is not explicit in the metamodel. Muwver, this metamodel can manage
many “steps” corresponding to a sequence of model transfiiwns. Our local trace meta-
model does not take in account model transformation se@sefadk.a transformations chain).
To solve this problem, we introduced iGEDOY, the global trace metamodel to store the lo-
cal trace sequence. This metamodel links the input/outmdets with their local trace. In our
approach, preoccupations are split: the local trace is sy for the model to model transfor-
mation tracing, whereas the global trace only deals withgadion through the local trace and
its input/output models.

Other techniques to manage several traces, each one aordisp to one transformation in a
chain, are proposed ivVpB *07] and BDFBO7. In [BDFBO07, the authors separate the preoc-
cupations providing two traceabilities. A traceability‘the small” dealing with model to model
transformation and a traceability “in the large” to manag@msformation chain. Their solution
relies on megamodel to reference traces. A " 07], the UniTl approach is not directly de-
signed to solve traceability issues. The main objectivenefduthors is to define a metamodel
enhancing composition and reuse of transformations wmrittevarious languages. Nevertheless,
this metamodel could be easily extended with concepts firajltraceability.

Traceability is not a goal in itself. Its major interest li@sits ability to be used as an algo-
rithm/approach input. In the case of the QVT trace, this @iy corresponds to object reso-
lution and so it is provided is perfectly adapted. Howevelhé¢ used with common algorithms
based on trace, the QVT trace does not gather enough informatternative traces have to be
generated.

In [WKS'09], the authors proposes a debugging support for the @dtion language based
on an alternative trace. They transform the QVT transfoionab a colored Petri nets transfor-
mation (using TROPIC) in order to take benefit from the trgmesluced by TROPIC. However,
adaptation of such an approach to the Q@perational Mapping seems difficult due to the
complexity of this QVT language.

Another trace application for QVDperational Mapping language is studied irKPGBO07].
The authors perform impact analysis using their trace fisma They do not use the QVT trace
due to the way it is generatedgonly accessible and serialized once the transformationrisd
and some restriction of the associated metamodel. Howtsradmit that their impact analysis
is limited in particular because guaride(when sections) should be traced. Unfortunately, from
their trace generation choice, this kind of section is hatticeable. The local trace brings a
solution thanks to its ability to store the elements handethewhen sections.

Proc. MPM 2010 10/ 12

@ ECEASST

7 Conclusion

In this article, through a model synchronization example, have shown that the QVT trace
does not gather enough information for common algorithmuirety trace as input. Indeed,
the QVT trace is designed for the object resolution mecimanist is used internally by the
transformation engine itself and can be invoked by the d@ezl(using specific keywords). The
information contained in this trace are relative only to sokind of elements (class and not
property). Moreover, trace links are only one-to-one lifisussing on the root patterns of the
rules {.e. elements involved in the rule signature).

Based on the case study, we have identified concepts usehddel synchronization but not
contained in the QVT trace. Thus for example, all the elesiappearing in patterns describing
the condition to apply a rule or properties would deserveetéréced. Moreover, rules/mapping
are not the only operations creating or modifying elemehtdpers do it also, but only rules
generate links in the QVT trace. We propose an alternatieeldcal trace metamodel managing
all these aspects. It is language independent. Thus, itsisilfle to use the local trace whatever
the transformation language used.

By gathering more information, the local trace can becomgelavhen dealing with huge
models. One of the future challenges we need tackle is thefiaion of elements to trace in
order to reduce the size of the trace model.

Bibliography
[AMEDOQ9] V. Aranega, J.-M. Mottu, A. Etien, J.-L. Dekeys@&raceability Mechanism for Error
Localization in Model Transformation.)/CSOFT. Bulgaria, July 2009.

[BDFBO7] M. Barbero, M. Didonet, D. Fabro, J. Bézivin. Teability and provenance issues in
Global Model Management. IBCMDA Traceability Workshop. Israel, 2007.

[Bor07] Borland. QVT - O. 2007. http://www.eclipse.org/m&jvto/doc.

[FHNOG6] J. Falleri, M. Huchard, C. Nebut. Towards a Trackghirramework for Model Trans-
formations in Kermeta. IlECMDA Traceability Workshop. Spain, 2006.

[GEDO08] F. Glitia, A. Etien, C. Dumoulin. Traceability fomaMDE Approach of Embedded
System Conception. IBCMDA Traceability Workshop. Germany, 2008.

[HLRO7] M. Hibberd, M. Lawley, K. Raymond. Forensic Debuggiof Model Transformations.
In MODELS USA, 2007.

[[EE9L] IEEE.IEEE standard computer dictionary : a compilation of | EEE standard computer
glossaries. IEEE Computer Society Press, New York, NY, USA, 1991.

[Jou05] F. Jouault. Loosely Coupled Traceability for ATh HCMDA Workshop on Traceabil -
ity. Germany, 2005.

[KDGBO07] I. Kurtev, M. Dee, A. Goknil, K. van den Berg. Traagility-based change manage-
ment in operational mappings. ECMDA Traceability Workshop. Israel, 2007.

11/12 Volume 42 (2011)

Using an Alternative Trace for QVT @

[KSWRO09] A. Kusel, W. Schwinger, M. Wimmer, W. RetschitzeggCommon Pitfalls of Using
QVT Relations - Graphical Debugging as Remedy.GECCS. USA, 2009.

[Kur08] I. Kurtev. State of the Art of QVT: A Model Transforrtian Language Standard. 2008.

[MALO9] I. Madari, L. Angyal, L. Lengyel. Traceability-b&sl incremental model synchroniza-
tion. W. Trans. on Comp. 8(10), 2009.

[NZRO7] L. Naslavsky, H. Ziv, D. J. Richardson. Towards leaging model transformation to
support model-based testing. ASE. USA, 2007.

[Obj03] Object Management Group, Inc. The Model Driven Awetture. Sept. 2003.
http://www.omg.org/mda/.

[Obj07] Object Management Group, Inc. MOF Query / Views / nEfrmations.
http://www.omg.org/docs/ptc/07-07-07.pdf, July 200MG paper.

[OMGO7] UML 2 Superstructure. http://www.omg.org/spedli2.1.2/, Nov. 2007.

[OMGO08] OMG. UML Profile for MARTE, Beta 2. http://www.omgmiz.org/Documents/Speci-
fications/08-06-09.pdf, June 2008.

[PDK*10] R. Paige, N. Drivalos, D. Kolovos, C. Power, G. Olsen, &haler. Rigorous Identi-
fication and Encoding of Trace-Links in Model-Driven Enginiag,.Journal of Soft-
ware and Systems Modelling, 2010.

[VAB *07] B. Vanhooff, D. Ayed, S. V. Baelen, W. Joosen, Y. Berb&IsiTI: A Unified Trans-
formation Infrastructure. IMODELS. USA, 2007.

[WKST09] M. Wimmer, A. Kusel, J. Schonbock, G. Kappel, W. Retsggger, W. Schwinger.
Reviving QVT Relations: Model-Based Debugging Using CetbiPetri Nets. In
Schirr and Selic (eds.MoDELS. USA, 2009.

[YWO09] A. Yie, D. Wagelaar. Advanced Traceability for ATLn lst International Workshop
on Model Transformation with ATL (MtATL 2009). Nantes, France, 2009.

Proc. MPM 2010 12/12

	Introduction
	Case Study
	The UML to Marte Transformation
	Input/Output Metamodels of the Transformation
	The UML to Marte Transformation Expressed in QVTO
	Scenarios for Model Synchronization

	Performing Model Synchronization Using the QVTO Trace
	Application of the Case Study
	The QVT Trace Policy
	The when section
	The query and the helper operation
	The Primitive Property

	QVT with the Local Trace
	Local Trace Metamodel
	The Link concept
	The ElementRef concept
	The RuleRef concept

	Application of the Case Study with the Local Trace
	Related Work
	Conclusion

