
Electronic Communications of the EASST
Volume 42 (2011)

Proceedings of the
4th International Workshop on

Multi-Paradigm Modeling
(MPM 2010)

Using an Alternative Trace for QVT

Vincent Aranega, Anne Etien and Jean-Luc Dekeyser

12 pages

Guest Editors: Vasco Amaral, Hans Vangheluwe, Cécile Hardebolle, Lazlo Lengyel
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Using an Alternative Trace for QVT

Vincent Aranega1, Anne Etien2 and Jean-Luc Dekeyser3

1 vincent.aranega@lifl.fr
2 anne.etien@lifl.fr

3 jean-luc.dekeyser@lifl.fr
LIFL - UMR CNRS 8022, INRIA, University of Lille1,

Lille, France

Abstract: Model transformations are the core of the MDE methodology. They can
be expressed using various languages. One of them is QVT, theOMG standard for
transformation languages. QVT also provides a traceability mechanism. In general,
a trace can be used for many purposes. In this paper, we show the limitations of the
trace provided by QVT through different scenarios. Furthermore, based on the QVT
language elements, we highlight model transformation concepts that would require
consideration.

We also propose an alternative trace that takes into accountthese concepts. It allows
us to gather information not provided by the QVT trace and thus fully performs
the scenarios. The proposed trace is language independent and can be used without
perturbing the QVT transformation execution or the trace generation/exploitation by
the engine.

Keywords: MDE, QVT, Traceability, Model Transformation

1 Introduction

The Model Driven Engineering methodology (MDE) sets the models, metamodels and transfor-
mations as first class citizens in the software development process. It relies on different standards,
one of which is Query/View/Transformation (QVT) [Obj07], dedicated to model transforma-
tions. The QVT standard describes the syntax and the semantics of three different sub-languages
for transforming models. TheRelations language is declarative, theCore language is fully im-
perative and theOperational Mapping language is hybrid. Each of these language differently
conceives transformations and adopts its own rule-based syntax. Nevertheless, they all produce
almost the same trace.

In the context of model transformations, the trace links theinput elements which were useful
to create the output elements. The trace can be used for many different purposes, such as impact
analysis (i.e., to identify the effect of changing one artifact on related artifacts), code regeneration
(i.e., to automatically regenerate previously generated code that is related to a design artifact),
visualization, flexible process modeling [PDK+10]. Usually, these tasks are implemented for a
specific transformation language and make difficult the use of many paradigms. In process where
many transformation languages are used, when the traces arehandled, a common formalism is
searched to limit the algorithms rewritting. Mostly, the standard is used as such. However, for
traceability purposes, the standard is not always the better choice.

1 / 12 Volume 42 (2011)

mailto:vincent.aranega@lifl.fr
mailto:anne.etien@lifl.fr
mailto:jean-luc.dekeyser@lifl.fr

Using an Alternative Trace for QVT

The QVT standard describes a trace which is recorded all along the transformation execution.
This trace can be serialized at the end of the transformationexecution in order to bepost-mortem
inspected. Nevertheless, its main purpose is to support theobject resolution mechanism, indis-
pensable to perform the transformation. The trace providedby QVT is thus mainly internally
used by the engine and is not well adapted to the purposes previously identified.

In this paper, we show in various scenarios that the basic information required by most ac-
tivities based on trace exploitation are not provided by theQVT trace. These observations con-
cretely rely on the QVTO [Bor07] implementation of the QVT standardOperational Mapping
language. We thus present a language-independent alternative to the QVT trace that is dedicated
to the previously cited activities and provides the required information.

Section2 introduces a case study and four scenarios requiring trace information. Section3
shows, by applying the case study with the QVT trace that critical information is missing. From
these limitations, in section4 we propose an alternative. Section5 corresponds to the application
of the case study using our alternative trace. Finally, related works are presented in section6
whereas conclusions are drawn in section7.

2 Case Study

The case study introduced in this section is the main thread of the paper. It refers to the “UML to
Marte” transformation context. After briefly explaining the purpose of the transformation and in-
troducing the handled metamodel, we present the transformation written in the QVTOperational
Mapping language.

2.1 The UML to Marte Transformation

The “UML to Marte” transformation is very classic not because of the manipulated domains, but
because it establishes a bridge between the UML world and thebusiness world. Concretely, the
input metamodel is UML enhanced with the Marte profile [OMG08], and the output metamodel
is the Marte metamodel. The Marte profile is an OMG standard dedicated to the design and the
analysis of real time embedded systems. This transformation is relevant, because it is complex
enough to not be reduced to aone-to-one concept mapping. Moreover, the transformation is not
too complicated to understand, even for non-business experts.

2.2 Input/Output Metamodels of the Transformation

The Marte profile, input of the transformation is rich in concepts. We focus on an excerpt, with-
out detailing all the concepts. This excerpt presented in Figure1(a)contains three main concepts:
Allocate, Distribute andTiler. The stereotypesAllocate andDistribute extend theAbstraction
UML element. In the same way,Tiler extends theConnector UML element. The three stereo-
types own several tagged values adding information to the original UML elements. These tagged
values are typed using datatypes defined in the profile, such as IntegerVector. Semantics details
of these stereotypes/tagged values are out the scope of thispaper.

Once again, due to the large amount of elements contained in the Marte metamodel, output

Proc. MPM 2010 2 / 12

ECEASST

<<stereotype>>

 Allocate

 + kind: AllocationKind

 + nature: AllocationNature

 (uml)

Abstraction

<<stereotype>>

 Distribute

+ patternShape: ShapeSpecification

+ repetitionSpace: ShapeSpecification

+ fromTiler: TilerSpecification

+ toTiler: TilerSpecification

 (uml)

Connector

<<stereotype>>

 LinkTopology

<<stereotype>>

 Tiler

+ origin: IntegerVector

+ paving: IntegerMatrix

+ fitting: IntegerMatrix

+ tiler: TilerSpecification

(a) Marte Profile Excerpt (b) Marte Metamodel Excerpt

Figure 1: Input and output metamodels

metamodel of the transformation, Figure1(b) only gathers the elements relative to those pre-
sented in Figure1(a).

As usual in such a transformation from a profile to the corresponding metamodel, concepts
with the same semantics are found in the input and the output.Thus,Tiler andDistribute are
designed in the Marte metamodel as specific entities. However, in the Marte metamodel,origin is
considered as compositional relationship upon theIntegerVector element. The other relationships
in the metamodel excerpt are designed using the same way.

2.3 The UML to Marte Transformation Expressed in QVTO

The “UML to Marte” transformation is quite huge: 1400 lines of QVTO code split into 98
rules. Only pieces of code relative to the elements previously presented are reproduced here.
The presented rules have been pruned to the minimal. They highlight the mapping between
UML and Marte concepts, the transformation of properties and the recourse tohelper. Indeed,
this section has two main goals. On the one hand, it provides enough material to define model
synchronization scenario. On the other hand, it precisely describes the transformation.

Figure2(a)shows an excerpt of theDistributedMapping mapping operation dealing withDis-
tribute. The rule signature (line 54) exposes that thismapping is applied on instance of the
Abstraction concept (owned by the UML metamodel) and produces instancesof the Distribute
concept (owned by the RSM package of the Marte metamodel). Thewhen section (line 55 to 59)
expresses a guard that specifies the condition to execute therule. This guard imposes that the
Abstraction element must be stereotyped asDistribute. Finally, thename property of the created
Distribute has the same value than thename property of the UMLAbstraction (line 64).

Figure2(b) presents an excerpt of thetoTiler mapping (line 103 to 119) which creates aTiler
from a Connector stereotypedTiler. The origin property owned by theConnector is an Inte-
gerVector. It is created from theorigin tagged value contained by theTiler stereotype (line 114
to 116) by calling thestr2Vector helper. According to thestr2Vector helper signature (line 121),
anIntegerVector instance is created from aString. Thishelper performs a specific parsing which
is not described here.

3 / 12 Volume 42 (2011)

Using an Alternative Trace for QVT

54. mapping UML::Abstraction::DistributedMapping() : RSM::Distribute

55. when {

56. self.

57. getAppliedStereotype('MARTE::MARTE_Annexes::RSM::Distribute')

58. != null

59. }

60. {

 ...

64. name := self.name;

 ...

67. }

(a) QVTO excerpt:DistributedMapping rule

103. mapping UML::Connector::toTiler() :RSM::linkTopology::Tiler

104. when {

105. not self

106. .getAppliedStereotype('RSM::Tiler')

107. .oclIsUndefined()

108. }

109. {

 ...

114. origin:=self

115. .getValue(stereotype, 'origin')

116. .oclAsType(String).str2Vector();

 ...

119. }

120.

121. helper String::str2Vector() : Lib::IntegerVector

122. {

 ...

130. }

(b) QVTO excerpt: toTiler rule and Str2Vector
helper

Figure 2: Excerpts of the UML to Marte transformation using QVTO

2.4 Scenarios for Model Synchronization

To illustrate the QVT trace limitations in contexts where a traceability mechanism is nevertheless
very useful, we define four scenarios occurring in model synchronization. Such a context choice
is pertinent for two main reasons. First, model synchronization usually uses traceability as main
entry for its algorithm [MAL09]. Second, the nature of the information looked for in these
scenarios is very common and frequently manipulated in other contexts.

In order to make these scenarios a reality, an input and an output model have been defined and
are partially represented in the figure3. Only the elements instantiating the concepts handled by
the previously described rules are presented.

<<distribute>>

 <Abstration>

name=Fromvhftop

 <<tiler>>

<Connector>

name=out_uvfout

origin={0,0}

:Distribute

name=Fromvhftop

:Tiler

:IntegerVector

vectorElem=[0,0]

(a) (b)

Figure 3: Input (a) and Output (b) Model Excerpts

The model synchronization strategy is simplified; we are conscious that bigger issues are
raised. However, it is enough to illustrate our purpose:

1. If an element is suppressed in the output model, then the input elements which lead to
its creation should be suppressed. If these latter are involved in the generation of other
elements in the output model, they also have to be deleted.

2. If an element is modified in the output model, then the elements which lead to its creation
should be modified. If these latter are involved in the generation of other elements in the

Proc. MPM 2010 4 / 12

ECEASST

output model, they also have to be modified.

Conforming to these strategies, we define four scenarios representing a suppression/modification
action on elements of the output model (figure3(a)).

Scenario 1: suppression of theDistribute instance.
Scenario 2: modification of the propertyname owned by theDistribute instance.
Scenario 3: suppression of theIntegerVector instance owned by theTiler instance.
Scenario 4: modification of the propertyvectorElem owned by theIntegerVector instance.
In the next section these scenarios are developed using the QVT trace produced during the

transformation.

3 Performing Model Synchronization Using the QVTO Trace

This section does not aim to propose a solution to the model synchronization issues, but to
informally present the limitations of the QVT trace even in simple samples such as the scenarios
previously described.

The QVT trace generated during the execution of the “UML to Marte” transformation is used
to synchronize the models following the four scenarios successively.

Figure4 sketches the part of this trace generated relative to the tworules previously presented.
This trace contains two links. One expresses that theFromvhftop Abstraction instance leads to the
creation of theFromvhftop Distribute instance by executing theDistributedMapping operation.
The other link specifies that thetoTiler operation uses theout uvfout Connector to create aTiler
instance.

<<distribute>>

 <Abstration>

name=Fromvhftop

 <<tiler>>

<Connector>

name=out_uvfout

origin={0,0}

:Distribute

name=Fromvhftop

:Tiler

:IntegerVector

vectorElem=[0,0]
toTiler

DistributedMapping

Figure 4: Produced QVT Trace View

3.1 Application of the Case Study

The realization of each scenario relies on an analysis of this trace.
Scenario 1: TheFromvhftop Distribute instance is removed. To synchronize the input model,

the elements of the input model leading to its creation must be also deleted. Analyzing the
QVT trace, only theAbstraction instance enables this creation using theDistributedMapping
operation. The synchronization here is quite simple: theAbstraction instance is deleted in the
input model.

Scenario 2: The QVT trace does not provide enough information to determine the elements
leading to thename property creation. The synchronization here seems difficult to perform.

5 / 12 Volume 42 (2011)

Using an Alternative Trace for QVT

Scenario 3: Synchronizing the models corresponds to the removal of theinput model elements
involved in the creation of theIntegerVector. As in the previous scenarios, these elements cannot
be identified using the QVT trace. The synchronization is thus compromised.

Scenario 4: Once again, synchronization is hardly enforceable because the QVT trace does
not provide links between the removed property and the element leading to its creation.

These four scenarios illustrate the inefficiency of the QVT trace to highlight links between
input and output elements useful for example to perform model synchronization. Only the first
scenario succeeds with such a trace. As the concepts, the properties need to be traced. Indeed,
model synchronization may also concern properties such as present in the scenarios 2 and 4.
Moreover, the scenario 3 illustrates that some concepts (e.g. IntegerVector) may be created using
a helper. Thus traceability must also concern helpers and not only rules. These four scenarios
show on very common actions upon a model (i.e modification/suppression) that the QVT trace
has not a fine enough granularity.

3.2 The QVT Trace Policy

TheOperational Mapping provides a trace generation policy relying only onmapping operation.
According to the QVT specification,trace class instances are automatically created whenmap-
ping operation are executed. The traced elements refer only either to the input and the output
specified in the rule signature or to the rule parameters. Thecase study has shown the limit of
this policy; other QVT language elements require attention.

3.2.1 The when section

Operational Mapping andRelation provides a guard mechanism through thewhen keyword. The
rule is executed only if this guard is satisfied. So the creation of an object relies not only on the
element on which the rule has been applied, but also from all the elements/properties involved in
the guard. Tracing every element involved in the creation ofanother one may be very useful in
some cases, as illustrated in the case study.

3.2.2 The query and the helper operation

Additionally to the mapping, theOperational Mapping language provides two other operations;
query andhelper.

Thequery is an operation associated to a simple request. It does not create/delete/modify any
object. For this reason it seems not useful to trace thequeries.

The helper may lead to the creation/deletion/modification of elementsthrough side effects.
Moreover, anhelper can be applied many times on the same element to possibly create different
elements (that whyhelper do not appear in the QVT trace). As we have seen on the example,not
tracing thehelpers implies that pertinent information concerning the creation/deletion/modification
of elements produced by helpers are missing.

Proc. MPM 2010 6 / 12

ECEASST

3.2.3 The Primitive Property

Primitive properties do not appear in the QVT trace since they are not used in the object resolu-
tion mechanism. However, as illustrated in the case study, information concerning them may be
useful.

The experimentation and the observations made in this section concern the QVTOperational
Mapping language. However, they are also applicable to theRelation language since the trace
policy is relatively common to the three QVT languages.

4 QVT with the Local Trace

Two solutions can be envisaged to overtake the limitations of the QVT trace: enhance it or
provide an alternative trace. We have chosen the second solution for two reasons. First, the QVT
trace is dedicated to object resolution. Tracing helpers asmappings may lead to errors, since the
QVT trace is internally used to object resolution; thehelper could not be applied many times on
the same element. Tracing the properties would not lead to errors but would change the trace
purpose. Second, each QVT engine adopts its own implementation of the standard. Moreover,
other transformation engines/languages are used. The alternative trace we provide, thelocal
trace, is fully independent from any transformation language.

Our local trace has been used to to gather fine grain information in order to localize errors in
transformation [AMED09]. Moreover, the local trace has been used with different model trans-
formation languages such as Java and QVTO, showing its full independence from any trans-
formation language; only its generation has to be adapted. In the following subsections, we
present the local trace metamodel and its capacity to produce a trace model adapted to “classic”
exploitation/exploration without loosing the original information contained in the QVT trace.

4.1 Local Trace Metamodel

The metamodel presented in Figure5 has already been described in [GED08, AMED09]. It is
built around a minimal core close to the trace metamodel defined by Jouault in [Jou05]. The local
trace metamodel is designed around three main concepts:Link, ElementRef andRuleRef. The
other concepts of the metamodel are used to structure the trace models by providing containers.

Figure 5: Local Trace Metamodel

7 / 12 Volume 42 (2011)

Using an Alternative Trace for QVT

4.1.1 The Link concept

TheLink concept establishes a relationship between elements involved in the transformation. It
connects all the input elements useful to create/modify/delete output elements.

4.1.2 The ElementRef concept

The ElementRef concept represents the different elements consummated andproduced by the
transformation. It directly points out the corresponding element of the input/output model through
a reference toeObject. Moreover, to trace properties, distinction between modelclass and prim-
itive type class property such asInteger or String is explicitly designed. AnElementRef is either
a ClassRef or aPrimitivePropertyRef, respectively.PrimitivePropertyRefs own specific proper-
ties: value andtype which correspond to the value and the type of the traced property.

Transformation rules may involve many input and output elements for example through the
QVT when sections. Similarly, the local trace metamodel provides an-to-m connection between
Link andElementRef. Thus the elements involved in awhen section may be automatically traced
with the elements on which the rule is applied.

4.1.3 The RuleRef concept

RuleRef refers to the transformation rule, that creates it. Indeed,by regardinghelpers1 as a side-
effect operation, theRuleRef concept stores information concerning the rules and thehelpers
evaluated during a transformation and leading to the creation of traceLinks.

The independence of our metamodel to any transformation language implies that it can easily
be used without any adaptation in combination with various language. However, this indepen-
dence obviously does not hold for the generation of the tracemodel, which depends on the used
language. Concerning the QVTOperational language, we provide a plug-in fragment for the
Eclipse platform and QVTO to generate the trace. Concretely, some classes used by QVTO are
overridden. Such a mechanism enables us to generate the local trace without interfering in the
transformation execution. Moreover, the trace is accessible all along the transformation execu-
tion, serialized as a model at the end and can thus be exploited by external algorithms/software
during or after the transformation execution.

5 Application of the Case Study with the Local Trace

In this section, we apply the case study with the local trace.By construction, the generated local
trace model contains all the information provided in the QVTtrace and more. Figure6 sketches
a part of the generated local trace. The links express that the Fromvhftop Distribute instance of
the output model has been created from theFromvhftop Abstraction instance in the input model
(link 1199). The ruleDistributedMapping has created thisDistribute instance. Moreover, links
between properties provide finer grain information. Thus, for example, thename property of
the Distribute instance in the output model has been generated from thename property of the
Abstraction instance, by theDistributedMapping rule (link 1195).

1 The concept of helper exists in other languages than QVT suchas ATL

Proc. MPM 2010 8 / 12

ECEASST

<<distribute>>

 <Abstration>

name=Fromvhftop

 <<tiler>>

<Connector>

name=out_uvfout

origin={0,0}

:Distribute

name=Fromvhftop

:Tiler

:IntegerVector

vectorElem=[0,0]
toTiler

DistributedMapping

)��*Vector

+�n, ��--

+�n, �0�

+�n, ��-2

+�n, ��1

+�n, ���

Figure 6: Generated Local Trace for the Case Study

Each scenario presented in section2 is developed using the local trace.
Scenario 1: The local trace specifies that theFromvhftop Distribute instance is associated to

only one link (Link 1199) having a unique source element theFromvhftop Abstraction instance.
Thus, to synchronize model in this case and adopting the strategy described in section2, the
Abstraction instance is removed from the input model.

Scenario 2: The local trace and more precisely theLink 1195, enable one to identify the
elementname property of theAbstraction instance in the input model as the element which
creates thename property of theFromvhftop Distribute instance. Thus, to perform the model
synchronization, thename property of theAbstraction instance must be also modified.

Scenario 3: TheLink 438 of the local trace highlights that theIntegerVector instance has been
generated from theorigin property owned by theTiler instance. Thus, the suppression of the
IntegerVector instance leads to emptying theorigin property in the input model.

Scenario 4: The local trace expresses with theLink 437 that, thevectorElem property cre-
ation relies on theorigin property owned by theTiler instance. The modification applied on the
vectorElem property affects theorigin property in the input model.

Applying the model synchronization scenarios of section2 with the local trace succeeds. Each
action performed on the output model concerns elements (i.e. property or class) that are traced.
It is thus simple to find the input model elements which createthem and then perform adequate
modifications to synchronize the models.

6 Related Work

Traceability is widely spread in computer science domain. However, in this paper, we focus on
traceability used in the context of model transformations.

Several metamodels have been proposed as the foundation of traceability approaches [Jou05,
FHN06, VAB+07]. These metamodels are structurally, relatively different and often depend on a
specific transformation language. However, they always gather the same basic information. The
traceability metamodel defined by Jouault [Jou05] only contains minimal information,i.e. ele-
ments and links between them. The name of the transformationrule which creates the elements
is associated to the link as a property. Based on these works,Yie et al. propose an advanced

9 / 12 Volume 42 (2011)

Using an Alternative Trace for QVT

trace for ATL [YW09]. The proposed trace gathers fine grained information of theATL transfor-
mation execution. However, the implementation is really dependent from the ATL metamodel
and the ATL Virtual Machine. Our local trace metamodel is an extension of the one defined by
Jouault “core” trace providing a more finer grain trace and separating the rule concept from the
link to ease manipulations.

In [FHN06], the authors define a metamodel closed to the Jouault’s one in order to provide a
traceability mechanism to transformations written with the Kermeta language. Since the linked
elements directly refers by Kermeta objects, they can correspond to class or primitive property,
but such a distinction is not explicit in the metamodel. Moreover, this metamodel can manage
many “steps” corresponding to a sequence of model transformations. Our local trace meta-
model does not take in account model transformation sequences (a.k.a transformations chain).
To solve this problem, we introduced in [GED08], the global trace metamodel to store the lo-
cal trace sequence. This metamodel links the input/output models with their local trace. In our
approach, preoccupations are split: the local trace is onlyused for the model to model transfor-
mation tracing, whereas the global trace only deals with navigation through the local trace and
its input/output models.

Other techniques to manage several traces, each one corresponding to one transformation in a
chain, are proposed in [VAB+07] and [BDFB07]. In [BDFB07], the authors separate the preoc-
cupations providing two traceabilities. A traceability “in the small” dealing with model to model
transformation and a traceability “in the large” to manage transformation chain. Their solution
relies on megamodel to reference traces. In [VAB+07], the UniTI approach is not directly de-
signed to solve traceability issues. The main objective of the authors is to define a metamodel
enhancing composition and reuse of transformations written in various languages. Nevertheless,
this metamodel could be easily extended with concepts for global traceability.

Traceability is not a goal in itself. Its major interest liesin its ability to be used as an algo-
rithm/approach input. In the case of the QVT trace, this algorithm corresponds to object reso-
lution and so it is provided is perfectly adapted. However, to be used with common algorithms
based on trace, the QVT trace does not gather enough information; alternative traces have to be
generated.

In [WKS+09], the authors proposes a debugging support for the QVTRelation language based
on an alternative trace. They transform the QVT transformation to a colored Petri nets transfor-
mation (using TROPIC) in order to take benefit from the tracesproduced by TROPIC. However,
adaptation of such an approach to the QVTOperational Mapping seems difficult due to the
complexity of this QVT language.

Another trace application for QVTOperational Mapping language is studied in [KDGB07].
The authors perform impact analysis using their trace formalism. They do not use the QVT trace
due to the way it is generated (i.e only accessible and serialized once the transformation is done)
and some restriction of the associated metamodel. However,they admit that their impact analysis
is limited in particular because guard (i.e when sections) should be traced. Unfortunately, from
their trace generation choice, this kind of section is hardly traceable. The local trace brings a
solution thanks to its ability to store the elements handledby thewhen sections.

Proc. MPM 2010 10 / 12

ECEASST

7 Conclusion

In this article, through a model synchronization example, we have shown that the QVT trace
does not gather enough information for common algorithm requiring trace as input. Indeed,
the QVT trace is designed for the object resolution mechanism. It is used internally by the
transformation engine itself and can be invoked by the developer (using specific keywords). The
information contained in this trace are relative only to some kind of elements (class and not
property). Moreover, trace links are only one-to-one linksfocussing on the root patterns of the
rules (i.e. elements involved in the rule signature).

Based on the case study, we have identified concepts useful tomodel synchronization but not
contained in the QVT trace. Thus for example, all the elements appearing in patterns describing
the condition to apply a rule or properties would deserve to be traced. Moreover, rules/mapping
are not the only operations creating or modifying elements;helpers do it also, but only rules
generate links in the QVT trace. We propose an alternative, the local trace metamodel managing
all these aspects. It is language independent. Thus, it is possible to use the local trace whatever
the transformation language used.

By gathering more information, the local trace can become large when dealing with huge
models. One of the future challenges we need tackle is the specification of elements to trace in
order to reduce the size of the trace model.

Bibliography

[AMED09] V. Aranega, J.-M. Mottu, A. Etien, J.-L. Dekeyser.Traceability Mechanism for Error
Localization in Model Transformation. InICSOFT. Bulgaria, July 2009.

[BDFB07] M. Barbero, M. Didonet, D. Fabro, J. Bézivin. Traceability and provenance issues in
Global Model Management. InECMDA Traceability Workshop. Israel, 2007.

[Bor07] Borland. QVT - O. 2007. http://www.eclipse.org/m2m/qvto/doc.

[FHN06] J. Falleri, M. Huchard, C. Nebut. Towards a Traceability Framework for Model Trans-
formations in Kermeta. InECMDA Traceability Workshop. Spain, 2006.

[GED08] F. Glitia, A. Etien, C. Dumoulin. Traceability for an MDE Approach of Embedded
System Conception. InECMDA Traceability Workshop. Germany, 2008.

[HLR07] M. Hibberd, M. Lawley, K. Raymond. Forensic Debugging of Model Transformations.
In MoDELS. USA, 2007.

[IEE91] IEEE.IEEE standard computer dictionary : a compilation of IEEE standard computer
glossaries. IEEE Computer Society Press, New York, NY, USA, 1991.

[Jou05] F. Jouault. Loosely Coupled Traceability for ATL. In ECMDA Workshop on Traceabil-
ity. Germany, 2005.

[KDGB07] I. Kurtev, M. Dee, A. Göknil, K. van den Berg. Traceability-based change manage-
ment in operational mappings. InECMDA Traceability Workshop. Israel, 2007.

11 / 12 Volume 42 (2011)

Using an Alternative Trace for QVT

[KSWR09] A. Kusel, W. Schwinger, M. Wimmer, W. Retschitzegger. Common Pitfalls of Using
QVT Relations - Graphical Debugging as Remedy. InICECCS. USA, 2009.

[Kur08] I. Kurtev. State of the Art of QVT: A Model Transformation Language Standard. 2008.

[MAL09] I. Madari, L. Angyal, L. Lengyel. Traceability-based incremental model synchroniza-
tion. W. Trans. on Comp. 8(10), 2009.

[NZR07] L. Naslavsky, H. Ziv, D. J. Richardson. Towards leveraging model transformation to
support model-based testing. InASE. USA, 2007.

[Obj03] Object Management Group, Inc. The Model Driven Architecture. Sept. 2003.
http://www.omg.org/mda/.

[Obj07] Object Management Group, Inc. MOF Query / Views / Transformations.
http://www.omg.org/docs/ptc/07-07-07.pdf, July 2007. OMG paper.

[OMG07] UML 2 Superstructure. http://www.omg.org/spec/UML/2.1.2/, Nov. 2007.

[OMG08] OMG. UML Profile for MARTE, Beta 2. http://www.omgmarte.org/Documents/Speci-
fications/08-06-09.pdf, June 2008.

[PDK+10] R. Paige, N. Drivalos, D. Kolovos, C. Power, G. Olsen, S. Zschaler. Rigorous Identi-
fication and Encoding of Trace-Links in Model-Driven Engineering,.Journal of Soft-
ware and Systems Modelling, 2010.

[VAB +07] B. Vanhooff, D. Ayed, S. V. Baelen, W. Joosen, Y. Berbers.UniTI: A Unified Trans-
formation Infrastructure. InMoDELS. USA, 2007.

[WKS+09] M. Wimmer, A. Kusel, J. Schönböck, G. Kappel, W. Retschitzegger, W. Schwinger.
Reviving QVT Relations: Model-Based Debugging Using Colored Petri Nets. In
Schürr and Selic (eds.),MoDELS. USA, 2009.

[YW09] A. Yie, D. Wagelaar. Advanced Traceability for ATL. In 1st International Workshop
on Model Transformation with ATL (MtATL 2009). Nantes, France, 2009.

Proc. MPM 2010 12 / 12

	Introduction
	Case Study
	The UML to Marte Transformation
	Input/Output Metamodels of the Transformation
	The UML to Marte Transformation Expressed in QVTO
	Scenarios for Model Synchronization

	Performing Model Synchronization Using the QVTO Trace
	Application of the Case Study
	The QVT Trace Policy
	The when section
	The query and the helper operation
	The Primitive Property

	QVT with the Local Trace
	Local Trace Metamodel
	The Link concept
	The ElementRef concept
	The RuleRef concept

	Application of the Case Study with the Local Trace
	Related Work
	Conclusion

