
Electronic Communications of the EASST
Volume 46 (2011)

Proceedings of the
11th International Workshop on

Automated Verification of Critical Systems
(AVoCS 2011)

Integrated Model Checking of Static Structure and Dynamic Behavior
using Temporal Description Logics

Franz Weitl and Shin Nakajima

16 pages

Guest Editors: Jens Bendisposto, Cliff Jones, Michael Leuschel, Alexander Romanovsky
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Integrated Model Checking of Static Structure and Dynamic
Behavior using Temporal Description Logics

Franz Weitl and Shin Nakajima

National Institute of Informatics,
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, 101-8430 Japan

Abstract: This paper presents a new notation for the formal representation of the
static structure and dynamic behavior of software, based on description logics and
temporal logics. The static structure as described by UML class diagrams is rep-
resented formally by description logics while the dynamic behavior is represented
by linear temporal logic and state transition systems. We integrate these descrip-
tions of static and dynamic aspects into a single formalism called LTLDL. LTLDL

enables a concise and natural yet precise definition of the behavior of software w.r.t.
UML class diagrams and state transition diagrams. We demonstrate our approach
on the sake warehouse problem. Further, we describe how properties of finite LTLDL

models can be analyzed based on bounded model checking and SMT (satisfiability
modulo theory) solving. We implemented a restricted SMT solver for finite sets and
relations. This SMT solver helped to reduce the model checking runtime signifi-
cantly as compared to bounded model checking with existing tools.

Keywords: Bounded Model Checking, Temporal Description Logics, SMT

1 Introduction

UML class diagrams and state transition diagrams are widely adopted for modeling software. It is
desirable to detect flaws in these models as early as possible prior to implementation. We propose
a new integrated approach on representing and checking consistency criteria for system models
consisting of class diagrams and state transition diagrams. We base our approach on description
logic, temporal logic, bounded model checking, and satisfiability modulo theory (SMT) solving.

Description logics are expressive for representing the static structure of some application do-
main. Their expressiveness is closely related to UML class diagrams [BCG05]. Temporal logics
are well-suited to describe the behavior of processes in a formal yet abstract way. We propose
to combine these formalisms in a family of temporal description logics called LTLDL, to be able
to address both the static and dynamic aspects of modeled systems. This goes beyond existing
approaches such as Alloy [Jac02] or Spin [Hol04] which focus either on the static structure or
on the dynamic behavior of the modeled system.

For the formal verification of LTLDL properties, we propose a new approach based on bounded
model checking and SMT solving. In a first step, LTLDL models and formulae are transformed
for a certain bound k into a non-temporal SMT(DL) formula which is a Boolean formula over a
restricted theory of finite sets and relations. We implemented a solver for this theory based on
OpenSMT [Bru09]. Experimental results show a higher performance as compared to Boolean
encodings of relational models and SAT solving.

1 / 16 Volume 46 (2011)

Integrated Model Checking using TDL

The contributions of the paper are:

1. Definition of the family of temporal description logics LTLDL as a generalization of
ALC−LTL proposed in [BGL08].

2. Demonstration of the usefulness of LTLDL for representing static and dynamic properties
of software models w.r.t. UML class and state transition diagrams.

3. Approach on model checking LTLDL, based on bounded model checking and SMT solving.

The rest of the paper is organized as follows: first, we introduce the sake warehouse problem
as a demonstration case, and model its static structure and dynamic behavior. Next, we define
LTLDL and discuss its application to the sake warehouse scenario. In the sequel, we present
our approach on bounded model checking LTLDL using SMT solving. Finally, we compare our
approach with existing work and conclude the paper.

2 Sake Warehouse Scenario

We demonstrate our approach using the sake (Japanese liquor) warehouse scenario which has
been published in 1984 [Yam84] as a shared example case for comparing different modeling and
programming methods. In Japan, it has been used extensively to evaluate modeling and analysis
methods [NF97]. We summarize the scenario as follows: A sake shop has a warehouse in which
containers are stored. A container contains bottles of one or more brands of sake. Customers
place orders to the shop. Each order may include one or more brands of sake. If all ordered
brands are on stock, the order is delivered immediately to the customer. Otherwise, the customer
is notified and the order is put on a list of pending orders. Whenever new containers enter the
warehouse, pending orders are checked and delivered in case of sufficient stock.

We use this scenario to illustrate the following steps of our approach:

1. Modeling the static structure in terms of a UML class diagram.

2. Modeling the dynamic behavior in terms of a state transition diagram.

3. Representing target properties w.r.t. the models of step 1) and 2).

4. Checking target properties, using SMT-based bounded model checking.

2.1 Sake Warehouse – Static Structure

Figure 1 depicts a UML model of the static structure of the sake shop scenario.
A sake shop keeps a stock and maintains a list of pending orders (Figure 1 top). The stock

consists of a number of containers each of which may contain bottles of several sake brands
(Figure 1 lhs). The sake shop receives new containers at regular intervals (Figure 1 lhs top).

The sake shop handles orders which are placed by customers (Figure 1 center). Each order
contains one or more requested sake brands (Figure 1 lhs). During the order handling process,
an order may become delivered, or pending if it cannot be delivered immediately because of
insufficient stock (Figure 1 bottom). Pending orders are put on the pending list (i.e., list of

Proc. AVoCS 2011 2 / 16

ECEASST

-name

Sake Shop

-capacity

Stock
11

-id
-capacity

Container

1
*

-name
-nbOfBo�les

Sake Brand

*
*

-name
-address

Customer

*

*

-id
-recvDate

Order

1
*

1*

-pendingDate

Pending

-delivDate

Delivered

+entries()

Pending List

1

*

1 1

1..*

*

-no�fica�onDate

No�fied

contains

in
on

keeps

maintains

has

places lists

handles

1

*

receives

Figure 1: class diagram modeling the static structure of the sake shop.

pending orders) (Figure 1 rhs) and become notified (Figure 1 bottom) as soon as the shop keeper
issues a notification about the delayed order to the customer.

2.2 Sake Warehouse – Behavior

Figure 2 models the basic behavior of the sake shopkeeper.

Wai�ng for Order or New Stock

Order Received

Stock UpdatedPending Order Added

Customer No�fiedStock UpdatedPending Order Delivered

Pending Order Removed

Order DeliveredContainer Received

Ordered Brands
on Stock?

yesno

noyes

Stock Sufficient
for any Pending

Order?

Figure 2: state transition diagram modeling the behavior of the sake shopkeeper.

3 / 16 Volume 46 (2011)

Integrated Model Checking using TDL

Initially, the shopkeeper waits for an order or new incoming stock (Figure 2 rhs top). When an
order is received, it is checked, whether all ordered brands are on stock (Figure 2 rhs bottom).
If this is the case, the stock is updated and the order is delivered (Figure 2 rhs). Otherwise, the
order is added to the list of pending orders and the customer is notified (Figure 2 center).

If the sake shop receives a container, it is put on the stock and the stock is updated (Figure
2 lhs center). Next, it is checked, if there are any pending orders and if the updated stock is
sufficient for delivering any of them (Figure 2 lhs top). If this is the case, an appropriate order
will be picked, removed from the list of pending orders and delivered (Figure 2 lhs). Further
pending orders may be delivered as long as there is sufficient stock (Figure 2 lhs).

3 Sake Warehouse – Representation of Target Properties

We aim at representing properties w.r.t. both the static model and the behavior model of some ap-
plication domain. In the case of our sample scenario, the following properties may be important
to meet:

P1 Whenever a customer places an order, the customer will receive some response which may
either be the delivery of the order or a notification that the order is pending because of
insufficient stock (cf. [Nak08]).

P2 Orders may not be pending forever, i.e., orders delayed due to insufficient stock will be
delivered eventually.

P3 If orders are pending then repeatedly incoming stock will eventually cause an order to be
delivered.

P4 Pending orders will be handled with higher priority, i.e., a pending order of some brand X
will be delivered before new orders of brand X (cf. [Nak08]).

We propose LTLDL for the formal representation of such criteria. LTLDL is a modular composi-
tion of linear temporal logic LTL [Eme90] and description logic (DL) [BCM+03]. This allows
for the representation of properties that address both the static structure and dynamic behavior
since the semantics of UML class diagrams can be represented well by DL, and properties of
state transition diagrams can be expressed by LTL.

LTLDL is similiar to ALC−LTL as introduced in [BGL08]. Section 5 contains a detailed com-
parison of LTLDL with ALC−LTL and other temporal description logics.

Definition 1 (LTLDL syntax)
Let P be a set of symbols representing atomic propositions and DL be the set of formulae of

some decidable description logic DL. Let a ∈ A∪DL be an atomic proposition or DL formula.
Then LTLDL formulae p,q are built according to the following rules:

p,q → a (atomic prop. or DL formula) | ¬p (not) | p∧q (and) | p∨q (or) | p→ q (implies) |
Xp (next) | Fp (future/eventually) | Gp (globally/always) | p U q (until)

Proc. AVoCS 2011 4 / 16

ECEASST

Remark 1 (LTLDL syntax)
LTLDL extends LTL by allowing DL formulae in addition to atomic propositions at locations

where only atomic propositions are allowed in LTL. Hence both LTL and DL are contained in
LTLDL.

Example 1 (LTLDL syntax)
Consider the logic LTLALC, i.e., let DL in Definition 1 refer to the basic description logic

ALC [BN03]. The following are ALC formulae expressing properties related to the class diagram
of Figure 1.

a1 : DeliveredtPendingv Order Every delivered or pending thing is an order.
a2 : Order .

= ∃contains.SakeBrand Orders contain at least one sake brand.
a3 : PendingList v ∀lists.Pending Each pending list contains pending orders, only.
a4 : Orderu∀contains.∃in.Container Orders, which contain sake brands, only, that are...
v Delivered ...available in some container, are delivered.

ALC formulae are build upon atomic concepts and roles, representing sets of objects and binary
relations, respectively. In the formulae above, Delivered,Pending,Order,SakeBrand,PendingList,
Container are atomic concepts, and contains, lists, in are roles, corresponding to classes and as-
sociations in the UML diagram of Figure 1. Since LTLALC subsumes ALC, formulae a1 through
a4 are also LTLALC formulae. However, the following LTLALC formulae are neither in LTL nor
in ALC.

la0 : F(PendingList v ¬∃lists.Pending) The list of pending orders will eventually be empty.
la1 : G(¬(∃places.Order v⊥)→ Always if somebody places an order then...

F(Order v DeliveredtNotified)) ...eventually any order will be delivered or notified.
la2 : GF(Pendingv Delivered) Always, eventually pending orders are delivered.
la3 : G(¬(Pendingv⊥)→ (GF Always, if there is some pending order then...

(SakeShopv ∃receives.Container) ...if the sake shop receives some container infinitely
→ F¬(Delivered v⊥))) ...often then eventually there will be a delivered order.

la4 : G((Orderu∃contains.BrandX Always, non-pending orders of brand X...
u¬Pendingv ¬Delivered) ...will not be delivered...

U(Pendingu∀contains.BrandX ...until all pending orders, which contain nothing...
v Delivered)) ...but BrandX, are delivered.

la1 through la4 are formal representations of properties P1 through P4 listed in the introduction
of section 3.

LTLDL formulae are interpreted w.r.t. finite relational state transition systems M =(S,R,L,∆, I)
where S is a non-empty, finite set of states, R ⊆ S× S is a left-total transition relation, L : S→
P(A) is a labeling of states s ∈ S with sets of atomic propositions L(s)⊆ A that hold at s, ∆ is a
finite set representing some domain of objects, and I : S→ {·I(s)} is a state-dependent interpre-
tation function such that AI(s) ⊆ ∆ and RI(s) ⊆ ∆×∆ for each state s ∈ S, atomic concept A and
atomic role R, respectively. We denote I(s0) |= d iff some DL formula d holds at a state s0 ∈ S
according to the semantics of DL connectives and the interpretation I(s0) of atomic concepts and
roles.

5 / 16 Volume 46 (2011)

Integrated Model Checking using TDL

Definition 2 (LTLDL semantics)
Let M = (S,R,L,∆, I) be a finite relational state transition system and x = (s0,s1, ...) an infinite

path in M. Let d be a DL formula. Then d holds on a path x, in symbols x |= d, iff I(s0) |= d. The
semantics of all other cases (atomic proposition a, Boolean connectives ¬,∧,∨,→, and temporal
connectives X,F,G,U) is identical to the semantics of LTL [Eme90].

Example 2 (LTLDL semantics)
Consider the formula GF(Order v Delivered), i.e., “always it holds eventually that any order is

delivered”. Consider the path x = (s0,s1,s2,s0,s1,s2,s0, ...) where

OrderI(s0) = {o1} DeliveredI(s0) = /0
OrderI(s1) = {o1,o2} DeliveredI(s1) = {o1}
OrderI(s2) = {o1,o2} DeliveredI(s2) = {o1,o2}

i.e., there are two orders o1 and o2 which appear in state s0 and s1, respectively, and which will be
delivered in state s1 and s2, respectively. Then x 6|= G(Order v Delivered) because, for instance,
OrderI(s0) 6⊆ DeliveredI(s0). However, x |= GF(Order v Delivered) because in each state si of x
eventually s2 will be reached and OrderI(s2) ⊆ DeliveredI(s2).

4 Model Checking LTLDL

Definition 3 (LTLDL model checking)
Let M = (S,R,L,∆, I) be a finite relational state transition system, s ∈ S a state, and f a LTLDL

formula. Then the LTLDL model checking problem for M, s, and f , is to decide if x |= f for all
infinite paths (s,s1,s2, ...) in (S,R) starting from s (denoted as M,s |= f).

Theorem 1 (LTL reduction)
Let M = (S,R,L,∆, I) be a finite relational state transition system and f be a LTLDL formula.

Let D = {d1, ...,dn}, n ∈ N, be the set of DL formulae in f . Let A = {a1, ...,an} be a set of
atomic propositions not appearing in f such that there is a bijection d : A↔ D : d(ai) = di.
Let f ′ = f [d1/a1][d2/a2]...[dn/an] be the formula derived from f by substituting all description
logics formula in f with atomic propositions.

Let M′ = (S,R,L′) be such a transition system that L′(s) = L(s)∪{a ∈ A | I(s) |= d(a)}.
Then f ′ is a LTL formula and M′ a LTL transition system and it holds for each s ∈ S: M,x |= f

for all paths x in M′ starting from state s iff M′,x |= f ′ for all paths x in M starting from s.

Proof. This is a direct consequence of the syntax and semantics definition of LTL and LTLDL.

Remark 2 (LTL reduction)
By theorem 1, a model checking algorithm for LTLDL can be constructed by composing a LTL

model checker and DL model checker as follows: First, using the DL model checker to calcu-
late the labeling function L′ in Theorem 1, and then check for M′,x |= f ′ using the LTL model
checker. This straight forward approach, however, is not efficient in the case of systems with

Proc. AVoCS 2011 6 / 16

ECEASST

many states. Hence, we strive for a tighter interaction between the LTL and DL model checker to
avoid calculating the entire reduced model M′. There are two obvious approaches to achieve this:
“on-the-fly model checking” [Hol04] and “bounded model checking” [BCC+03]. In this work,
we adopted the latter approach because its modular structure simplified the implementation of
a LTLDL model checker based on existing tools for bounded model checking and SMT solving
(see section 4.3). However, on-the-fly model checking appears to be equally applicable in our
setting and hence should be addressed in future work (see section 6).

4.1 Bounded LTLDL Model Checking

In bounded model checking [BCC+03], a transition system M, an initial state s and a LTL formula
f is transformed for a given bound k ∈ N into such a non-temporal formula of the form TM,s,k ∧
¬(fk) that the following holds: if TM,s,k ∧¬(fk) is satisfiable then there is a counterexample for
M,s |= f the length of which is less or equal to k and hence M,s 6|= f . We illustrate the approach
of bounded model checking and its application to LTLDL in the following example.

Example 3 (bounded LTLDL model checking)
Consider the following scenario in an order handling process. Initially, there is no order.

Next, a new order o1 is received and the reception of the order is notified to the customer. Next,
another order o2 is received and the previously received order o1 is delivered. The following state
transition system M models this scenario, adopting set type variables order,notified,delivered for
representing the set of orders, notified, and delivered orders, respectively:

state s0 order = notified = delivered = /0; no orders, no deliveries, no notifications.
state s1 order← order∪{o1}; new order o1,

notified← notified∪{o1}; reception of o1 is notified to the customer.
state s2 order← order∪{o2}; new order o2,

delivered← delivered∪{o1}; o1 is delivered.
state s3 = s0 return to state s0.

Let the DL concepts Order, Delivered, Notified represent the set of orders, deliveries, and notifi-
cations as used above. Consider the property “At any time, any order, which is not delivered, is
notified”:

f = G(Orderu¬Delivered v Notified)

We attempt to find a counterexample for f of a certain maximum length k in the state transition
system M starting at s0. As for the given scenario, a sensible bound is k = 2. First, we represent
paths in M with maximum length k by a formula TM,s0,k in which all variables are indexed by
state (static single assignment form). For k = 2 we get:

TM,s0,2 = (order0 = /0)∧ (notified0 = /0)∧ (delivered0 = /0)∧
(order1 = order0∪{o1})∧ (notified1 = notified0∪{o1})∧ (delivered1 = delivered0)∧
(order2 = order1∪{o2})∧ (notified2 = notified1)∧ (delivered2 = delivered1∪{o1})

7 / 16 Volume 46 (2011)

Integrated Model Checking using TDL

Next, f is transformed into a non-temporal formula fk equivalent to f in the scope k. In the given
scenario, if f holds in M then Orderu¬Delivered v Notified holds in each state s0, s1, and s2.
Adopting the semantics definition of the ALC connectives u, ¬, and v we get:

f2 = (order0\delivered0 ⊆ notified0)∧
(order1\delivered1 ⊆ notified1)∧
(order2\delivered2 ⊆ notified2)

Finally, we check if TM,s0,2∧¬ f2 is satisfiable. From TM,s0,2, we get:

order2 = order1∪{o2}= order0∪{o1}∪{o2} = {o1,o2}
delivered2 = delivered1∪{o1}= delivered0∪{o1} = {o1}

notified2 = notified1 = notified0∪{o1} = {o1}
order2\delivered2 = {o2,o1}\{o1} = {o2}

and thus order2\delivered2 6⊆ notified2 which violates f2. Hence TM,s0,2∧¬ f2 is satisfied and we
conclude M,s0 6|= f .

4.2 SMT(DL)

As illustrated by Example 3, we transform LTLDL models and formulae into formulae that con-
tain set-type variables and operations corresponding to the semantics of DL connectives. These
formulae can be interpreted as SMT formulae with sets and relations as background theory. We
define the language SMT(DL) for the representation for such formulae. The concrete (i.e., ma-
chine processible) syntax of SMT(DL) is defined by the following rules:

formula → NOT formula | formula AND formula | formula OR formula | term
term → TRUE | FALSE | boolvar | set = set | rel = rel | subset(set,set)

set → EMPTYSET | setvar | insert(set,int) | remove(set,int) |
union(set,set) | intersect(set,set) | minus(set,set) | some(rel,set) | all(rel,set)

rel → EMPTYREL | relvar | insertrel(rel,int,int) | removerel(rel,int,int)

Table 1: SMT(DL) syntax definition

The basic symbols are composed by the disjoint sets of Boolean variables boolvar, set vari-
ables setvar, variables for binary relations relvar, and integer numbers int serving as elements of
sets and relations. Formulae are built using Boolean connectives NOT, AND, OR. Basic formu-
lae are terms, which may be either Boolean atoms or set expressions corresponding to the DL
connectives .

= and v. Besides the constant “EMPTYSET”, set variables setvar may be used to
represent sets. Further, “insert(set,int)” represents a function inserting a single integer value into
a set and “remove(set,int)” removes an element from a set. Line 4 of Table 1 defines set operators
corresponding to the syntax of the DL expressions CtD, CuD, ¬C, ∃R.C, ∀R.C. Finally, binary
relations may be manipulated by “insertrel”, which inserts a pair of integer values into a relation,
and “removerel”, which removes a pair of integer values from a relation.

Proc. AVoCS 2011 8 / 16

ECEASST

Example 4 (SMT(DL) concrete syntax)
Formula TM,s0,2 of Example 3 reads in SMT(DL) syntax as follows:

(order0 = EMPTYSET) AND (notified0 = EMPTYSET) AND (delivered0 = EMPTYSET) AND
(order1 = insert(order0, 1)) AND (notified1 = insert(notified0, 1)) AND (delivered1 = delivered0) AND

(order2 = insert(order1, 2)) AND (notified2 = notified1) AND (delivered2 = insert(delivered1,1))

Note that orders o1 and o2 in formula TM,s0,2 are represented by integer values 1 and 2, respec-
tively. This is valid in general because we assume a finite interpretation domain (cf. Definition
2) which can be mapped onto integer numbers without loss of information.

Formula f2 of Example 3 reads in SMT(DL) syntax as follows:

subset(minus(order0,delivered0),notified0) AND
subset(minus(order1,delivered1),notified1) AND

subset(minus(order2,delivered2),notified2)

4.3 Prototypical Implementation and Experimental Results

We implemented a partial solver for SMT(DL) based on OpenSMT [Bru09] which is an open
source SMT solver implemented in C++. For the representation of SMT(DL) formulae, we use
the standard format SMT-LIB 1.2. The current implementation is limited to SMT(DL) formulae,
the set and relation expressions of which are bound to finite domains and do not contain cyclic
definitions such as “s = insert(s,1)”. The latter is not a restriction in our application because, in
bounded model checking, LTLDL models are transformed into static single assignment form (cf.
Example 3) which do not contain any cyclic definitions by construction.

The aim of the subsequent two experiments is to determine the runtime of model checking
LTLDL as compared to existing bounded model checkers. The runtime of bounded model check-
ing is dominated by checking the satisfiability of the generated formula TM,s,k∧¬ fk (cf. Example
3).

4.3.1 Experiment 1

In the first experiment, we use a parameterized scenario similar to that in Example 3 to determine
the scaling of runtime w.r.t. the input size:

state s0 order = notified = delivered = /0;
state s1 order← order∪{o1}; notified← notified∪{o1};
state s2 order← order∪{o2}; delivered← delivered∪{o1,o2};
state s3 order← order∪{o3}; notified← notified∪{o3};
state s4 order← order∪{o4}; delivered← delivered∪{o3,o4};
...
state s2n−1 order← order∪{o2n−1}; notified← notified∪{o2n−1};
state s2n order← order∪{o2n}; delivered← delivered∪{o2n−1,o2n};
state s2n+1 order← order∪{o2n+1};

9 / 16 Volume 46 (2011)

Integrated Model Checking using TDL

As a property, we check, if each undelivered order is notified at any time (cf. Example 3):

f = G(Orderu¬Delivered v Notified)

The only state violating f is s2n+1. To detect the error by bounded model checking, the bound
k must be chosen greater or equal to 2n+1, making the case increasingly challenging for larger
n. Moreover, the maximum sizes of the sets for representing received, notified, and delivered
orders grow linearly in n.

To compare the performance of our approach with existing ones, we chose the SAL tool
[MOR+04] since it integrates a variety of state-of-the-art model checking algorithms, including
SAT and SMT-based bounded model checking. SAL uses the SMT solver Yices 1.03 [DM06]
as a backend engine for bounded model checking. The scenario above can be described com-
pactly in terms of the SAL input language by representing the characteristic function 1S : S→
{false, true} : {x ∈ S | 1S(x) = true} = S of each set S as a Boolean array (cf. [KRW09]). The
bounded model checker of SAL translates an input file for a given bound k into a SAT or SMT
formula which is then solved by Yices. For our experiment, we chose the transformation into
SAT because this yielded higher performance. Alternatively to Yices, we also applied Z3 version
3.2 [MB08] and MiniSat 2.0 [ES04] as backend solvers.

An alternative SMT(DL)-based representation (cf. Example 4) for different problem sizes n
and bounds k has been generated. Generally, we distinguish two cases. 1) k = 2n+ 1: in this
case, the generated SAT and SMT(DL) formulae are satisfiable, i.e., the property violation is
detected; 2) k = 2n: the generated SAT and SMT(DL) formulae are not satisfiable.

Figure 3 (top) shows the runtimes of Yices, Z3, MiniSat, and our SMT(DL) solver for the two
cases k = 2n+1 and k = 2n and increasing input sizes n, obtained on a desktop computer with
and 6 GB RAM and Intel Core i7 processor at 3.8 GHz.

The runtime of Yices for k = 2n is slightly lower than in the case of n = 2n+1 (Figure 3 top,
lhs). Yices takes 17.5 seconds for n = 100,k = 201 and 16.2 seconds for n = 100,k = 200.

In the case of Z3, the runtimes for k = 2n+ 1 and k = 2n are almost identical (Figure 3 top,
center). In the given scenario, Z3 is slightly faster than Yices but slower than MiniSat. It takes
15.3 seconds for n = 160,k = 321 and 15.1 seconds for n = 160,k = 320.

In contrast, MiniSat performs significantly faster in the case of k = 2n than in the case of
k = 2n+1 (Figure 3 top, center). It takes 15.4 seconds for n = 240,k = 481 and 7.4 seconds for
n = 240,k = 480.

The runtime of SMT(DL) is almost identical for both cases k = 2n+ 1 and k = 2n (Figure
3 top, rhs). It takes 16.4 seconds for n = 8000,k = 16001 and 16.1 seconds for n = 8000,k =
16000). As compared to MiniSat, the SMT(DL) solver handles 30 times as large problems in
about the same execution time.

4.3.2 Experiment 2

Figure 3 (bottom) shows the runtime of Yices, Z3, MiniSat, and our SMT(DL) solver for check-
ing the formula

f ′ = G(¬(∃places.Order v⊥)→ XX(Orderu¬Delivered v Notified))

Proc. AVoCS 2011 10 / 16

ECEASST

0

5

10

15

20

10 30 50 70 90 120 160 200 … 2000 4000 6000 8000

Yices k=2n+1

Yices k=2n

Z3(sat) k=2n+1

Z3(sat) k=2n

Minisat k=2n+1

Minisat k=2n

SMT(DL) k=2n+1

SMT(DL) k=2nn

s

0

4

8

12

16

20

24

2 4 6 8 10 12 14 16 18 20 24 28 …
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00

Yices k=2n+1
Yices k=2n
Z3(sat) k=2n+1
Z3(sat) k=2n
Minisat k=2n+1
Minisat k=2n
SMT(DL) k=2n+1
SMT(DL) k=2n

n

s

Figure 3: results of Experiment 1 (top) and Experiment 2 (bottom). Execution time of
SMT(DL) solving as compared to SAT solving with Yices, Z3, and Minisat for different input
sizes n.

in a LTLDL model corresponding to the state transition diagram of Figure 2. f ′ reads: “Always
(G), if someone places an order (¬(∃places.Order v⊥)) then two states later (XX) each order
that has not been delivered is notified (Orderu¬Delivered v Notified)”.

As in Experiment 1, Yices is slower than the more recent solvers Z3 and MiniSat. In this
scenario, MiniSat takes 9.2 seconds for n = 32 if a counterexample is found, but 21.5 seconds if
no counterexample is found (Figure 3 bottom, center). Surprisingly, the runtimes of Minisat for
the cases n = 28,k = 57 and n = 32,k = 65 are lower than in the case of n = 24,k = 49. This
may have been caused by the randomized search strategy applied by MiniSat.

In Experiment 2, the runtimes of Yices, Z3, and MiniSat are significantly lower than in Exper-
iment 1. We suppose that the Boolean encoding of the binary relation places in formula f ′ is the
major source of additional complexity. In contrast, the runtime of the SMT(DL) solver is hardly
affected by the presence of a binary relation in Experiment 2 and remains almost identical to Ex-
periment 1. In Experiment 2, the SMT(DL) solver handles at least 200 times as large problems
than MiniSat in the same execution time.

The results of Experiment 1 and 2 indicate that supporting sets and relations in SMT solving
can significantly speed up bounded model checking of relational models as compared to SAT-
based bounded model checking.

11 / 16 Volume 46 (2011)

Integrated Model Checking using TDL

5 Related Work

Description logics are well-known to be appropriate for the formal representation of conceptual
data models such ER diagrams and UML class diagrams. For instance, [CLN98] proposes a
unifying description logics for the logical representation of class-based data models such as ER
and object-oriented data models. [BCG05] presents an encoding of UML class diagrams in the
description logic ALCQI to discover inconsistencies in models by means of description logic
reasoning. We extend these approaches by combining a description logic with a temporal logic
to support the representation of properties related to both state transition diagrams and class
diagrams.

In the past, several combinations of description logics and temporal logic have been sug-
gested [AF01, LWZ08]. A first temporal extension of the description logic ALC called ALCT
was suggested by Schild [Sch93]. In ALCT , the temporal connectives G, F, and U can be ap-
plied to concepts but not to axioms. A similar combination of LTL and ALC is called LTLALC

in [LWZ08]. In contrast, ALC−LTL, as introduced in [BGL08], supports the application of
temporal connectives to ALC axioms but not to ALC concepts.
LTLDL, as proposed in this paper, follows the latter approach because, this way, a higher

degree of modularity between the temporal and non-temporal part of the logic is achieved. This
simplifies the formalization of properties in close correspondence with UML class diagrams (DL
component) and state transition diagrams (LTL component), as well as the implementation of a
model checker. However, LTLDL is different from ALC−LTL in the following aspects:

• LTLDL is a family of logics, obtained by a modular combination of some DL with LTL,
rather than a single logic.

• While in ALC−LTL, atomic propositions are replaced by ALC axioms, LTLDL supports DL
formulae in addition to atomic propositions. This ensures compatibility with propositional
LTL widely adopted in model checking.

• In contrast to ALC−LTL, we do not consider ABox assertions in LTLDL since they seem
to be dispensable for formalizing general domain models represented by UML class dia-
grams.

• As opposed to ALC−LTL, we do not consider rigid symbols, i.e., concepts and roles the
interpretations of which do not depend on states. Incorporating rigid symbols to LTLDL

may be an interesting topic of future research.

[BGL08] focusses on the satisfiability problem of ALC−LTL and the impact of rigid symbols
on the complexity of solving the satisfiability problem. In this paper, we do not consider the
satisfiability problem but the model checking problem of LTLDL. A thorough investigation of
complexity properties will be an issue of future work.

[BBL09] proposes runtime verification based on ALC−LTL. In runtime verification, a mon-
itor constantly observes the behavior of a system in execution and determines if the observed
prefix of an execution trace conforms to a temporal formula. Each state of the execution trace
is represented in a potentially incomplete way by a set of ALC ABox assertions (open world
assumption). In our work, we adopt a model checking approach, i.e., all possible behaviors of

Proc. AVoCS 2011 12 / 16

ECEASST

a system described by a state transition system are considered. However, the information about
each single state is assumed to be complete (closed world assumption).

An algorithm for model checking the temporal description logics ALCCTL has been proposed
in [Wei08]. In this paper, we consider the bounded model checking problem of LTLDL and reduce
it to SMT solving which we believe is a new approach that simplifies the integration of LTLDL

model checking into an existing model checking environment such as SAL and helps to increase
the performance of model checking for bounded sets and relations.

State-of-the-art model checkers supporting linear temporal logic are Spin [Hol04], SAL
[MOR+04], and NuSMV [CCG+02]. However, the input languages of these model checkers
do not support set and relation data types and hence are inefficient for representing properties
w.r.t. relational models.

Alloy is a declarative object-oriented modeling notation, the semantics of which is based on
sets and relations [Jac02]. The notation supports the formulation of assertions. Dynamic aspects
may be addressed in terms of pre- and post-conditions or by explicitly representing time as a
linearly ordered set of states. However, temporal logic for the representation of behavioral prop-
erties is not supported. A tool based on SAT solving automatically analyzes whether assertions
hold in models where the sizes of all sets and relations are bounded by some user chosen con-
stants [JSS00]. In [GT11], an alternative approach is presented which is not limited to bounded
sets: Alloy relational specifications are translated into first order quantified SMT formulae which
are passed on to the SMT solver Z3 [MB08]. However, since the Alloy specification language is
undecidable, the SMT solver may fail to prove assertions.

Event B [Abr10] is a formal specification language for the required behavior of a system,
based on set theory and logic. A central concept is the refinement-based modeling for system
requirements. Consistency and refinement checking of specifications, based on theorem proving,
is supported by the Rodin tool [ABH+10] which generates and manages the necessary proofs.
However, user interaction may be required for certain types of proofs. ProB [LB08], an anima-
tion and model checking tool for (Event) B specifications, supports model checking of properties
expressed in LTL. Similar to Alloy, data types such as sets and relations must be restricted to
small sizes for exhaustive analysis. LTLDL is less expressive than the temporal logic supported
by ProB but the supported constructs are closely related to UML class and state transition dia-
grams. We believe that this simplifies the identification and formalization of relevant consistency
properties which is usually considered as a rather difficult task.

The syntax definition for SMT(DL) (Table 1) is inspired by [KRW09] which suggests a format
for representing finite lists, sets, and maps as part of the SMT-Lib 2.0 format. As for solving
formulae over finite sets, a mapping onto Boolean arrays is suggested. We have adopted this
approach in our experiments with SAL and Yices (see section 4.3). To the best of our knowledge,
none of the currently available SMT solvers implements dedicated decision procedures for sets
and relations.

6 Conclusion

We have presented a new integrated approach on representing both static and dynamic aspects of
software models. We defined LTLDL as a modular composition of linear temporal logic LTL and

13 / 16 Volume 46 (2011)

Integrated Model Checking using TDL

a description logic DL. LTLDL supports representing properties w.r.t. both UML class diagrams
and state transition diagrams. We believe that the close correspondence of LTLDL formulae to
these commonly used diagram notations facilitates the identification and formalization of impor-
tant consistency requirements at an early development stage. Further, we have demonstrated how
LTLDL formulae can be checked by SMT-based bounded model checking. We have implemented
a prototypical SMT solver for formulae containing set-type expressions corresponding to the se-
mantics of LTLDL connectives. As compared to reducing set-type expressions to Boolean arrays,
30 to 200 times as large problems could be solved in the same execution time.

In this paper, we discussed LTLDL from an application-oriented perspective and demonstrated
its usefulness and performance by a case study. Fundamental properties of LTLDL such as ex-
pressiveness and runtime complexity of model checking and deciding satisfiability are left to be
studied in future work.

In our current experiments, we use the input language of SAL for representing LTLDL models,
adopting a Boolean encoding for sets and relations. A more adequate representation language
for LTLDL models offering explicit support for sets and relations is a major issue of ongoing
work. Ongoing is also the improvement of the implemented SMT solver in terms of supported
types of formulae and performance. Issues are, for instance, the support of cyclic expressions
and negation in unbounded domains (cf. section 4.3). To this end, a mapping of SMT(DL)
formulae onto either first order quantified SMT formulae or description logic knowledge bases
seems to be promising and calls for further examination. Finally, further case studies to compare
our approach with existing approaches such as Event-B and Alloy are necessary. In addition,
the comparison with existing state-of-the-art model checkers such as CBMC [CKL04] and Spin
[Hol04], as well as SMT solvers, which support quantified formulae such as Z3 [MB08], is
an important issue of future work. Finally, the applicability and efficiency of on-the-fly model
checking as compared to bounded model checking needs to be addressed in future work.

Acknowledgements: This work is funded by the program “Research at International Science
and Technology Centers” of the German Academic Exchange Service (DAAD). We thank the
reviewers and workshop attendees for their detailed comments which helped to improve the
paper significantly and gave directions for future work.

Bibliography

[ABH+10] J.-R. Abrial, M. Butler, S. Hallerstede, T. S. Hoang, F. Mehta, L. Voisin. Rodin: an
open toolset for modelling and reasoning in Event-B. STTT 12(6):447–466, 2010.

[Abr10] J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge
University Press, 2010.

[AF01] A. Artale, E. Franconi. A Survey of Temporal Extensions of Description Logics.
Annals of Mathematics and Artificial Intelligence (AMAI) 30(1-4):171–210, 2001.

Proc. AVoCS 2011 14 / 16

ECEASST

[BBL09] F. Baader, A. Bauer, M. Lippmann. Runtime Verification Using a Temporal De-
scription Logic. In Ghilardi and Sebastiani (eds.), Frontiers of Combining Systems.
LNCS 5749, pp. 149–164. Springer-Verlag, 2009.

[BCC+03] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, Y. Zhu. Bounded Model Check-
ing. In Zelkowitz (ed.), Highly Dependable Software. Advances in Computers 58,
pp. 118–149. Academic Press, 2003.

[BCG05] D. Berardi, D. Calvanese, G. D. Giacomo. Reasoning on UML Class Diagrams.
Artificial Intelligence 168(1-2):70–118, 2005.

[BCM+03] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, P. Patel-Schneider (eds.). The
Description Logic Handbook - Theory, Implementation and Applications. Cam-
bridge University Press, 2003.

[BGL08] F. Baader, S. Ghilardi, C. Lutz. LTL over description logic axioms. In Proceedings
of the 11th Inernational Conference on Principles of Knowledge Representation and
Reasoning (KR 2008). Pp. 684–694. Morgan Kaufmann, Sydney, Australia, 2008.

[BN03] F. Baader, W. Nutt. Basic description logics. In [BCM+03]. Chapter 2. 2003.

[Bru09] R. Bruttomesso. An Extension of the Davis-Putnam Procedure and its Application
to Preprocessing in SMT. In Proceedings of the 7th International Workshop on Sat-
isfiability Modulo Theories (SMT2009). Montreal, Canada, 2009.

[CCG+02] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Se-
bastiani, A. Tacchella. NuSMV 2: An opensource tool for symbolic model checking.
In Proceedings of Computer Aided Verification (CAV 02). LNCS 2404. Springer,
2002.

[CKL04] E. Clarke, D. Kroening, F. Lerda. A Tool for Checking ANSI-C Programs. In Jensen
and Podelski (eds.), Tools and Algorithms for the Construction and Analysis of Sys-
tems (TACAS 2004). LNCS 2988, pp. 168–176. Springer-Verlag, 2004.

[CLN98] D. Calvanese, M. Lenzerini, D. Nardi. Logics for databases and information sys-
tems. In Chomicki and Saake (eds.). Chapter 8 Description logics for conceptual
data modeling, pp. 229–263. Kluwer Academic Publishers, Norwell, MA, USA,
1998.

[DM06] B. Dutertre, L. de Moura. A Fast Linear-Arithmetic Solver for DPLL(T).
In Proceedings of the 18th Computer-Aided Verification Conference (CAV’06).
LNCS 4144, pp. 81–94. Springer-Verlag, 2006.

[Eme90] E. Emerson. Temporal and Modal Logic. In Leeuwen (ed.), Handbook of Theo-
retical Computer Science: Formal Models and Semantics. Pp. 996–1072. Elsevier,
1990.

[ES04] N. Een, N. Sörensson. An Extensible SAT-solver. In Theory and Applications of
Satisfiability Testing. LNCS 2919, pp. 333–336. Springer-Verlag, 2004.

15 / 16 Volume 46 (2011)

Integrated Model Checking using TDL

[GT11] A. A. E. Ghazi, M. Taghdiri. Relational Reasoning via SMT Solving. In 17th Inter-
national Symposium on Formal Methods (FM). Limerick, Ireland, 2011.

[Hol04] G. J. Holzmann. The Spin Model Checker: Primer and Reference Manual. Addison-
Wesley, 2004.

[Jac02] D. Jackson. Alloy: A Lightweight Object Modelling Notation. ACM Transactions
on Software Engineering and Methodology (TOSEM’02) 11(2):256–290, 2002.

[JSS00] D. Jackson, I. Schechter, I. Shlyakhter. Alcoa: the alloy constraint analyzer. In
Proceedings of the 22nd International Conference on Software Engineering (ICSE
2000). Pp. 730–733. ACM Press, 2000.

[KRW09] D. Kröning, P. Rümmer, G. Weissenbacher. A Proposal for a Theory of
Finite Sets, Lists, and Maps for the SMT-Lib Standard. Published on
http://www.cprover.org/SMT-LIB-LSM/, 2009. Visited 9 Jan 2010.

[LB08] M. Leuschel, M. Butler. ProB: An Automated Analysis Toolset for the B Method.
Journal Software Tools for Technology Transfer 10(2):185–203, 2008.

[LWZ08] C. Lutz, F. Wolter, M. Zakharyaschev. Temporal Description Logics: A Survey. In
Proceedings of the 15th International Symposium on Temporal Representation and
Reasoning (TIME ’08). Pp. 3–14. IEEE Computer Society, Washington, DC, USA,
2008.

[MB08] L. de Moura, N. Bjorner. Z3: An Efficient SMT Solver. In Proceedings of the Inter-
national Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS’08). LNCS 4963, pp. 337–340. Springer-Verlag, 2008.

[MOR+04] L. de Moura, S. Owre, H. Rueß, J. Rushby, N. Shankar, M. Sorea, A. Tiwari. SAL
2. Tool description presented at CAV 2004. LNCS 3114, pp. 496–500. Springer-
Verlag, 2004.

[Nak08] S. Nakajima. Model Checking with SPIN. Chapter 9: Case Study(4). Kindaika-
gakusha, Tokyo, Japan, 2008.

[NF97] S. Nakajima, K. Futatsugi. An object-oriented modeling method for algebraic spec-
ifications in CafeOBJ. In Proceedings of the 19th international conference on Soft-
ware engineering (ICSE ’97). Pp. 34–44. Boston, Massachusetts, United States,
1997.

[Sch93] K. Schild. Combining terminological logics with tense logic. In Proceedings of the
6th Portuguese Conference on Artificial Intelligence. Pp. 105–120. Porto, 1993.

[Wei08] F. Weitl. Document Verification with Temporal Description Logics. PhD thesis, Uni-
versity of Passau, 2008.

[Yam84] T. Yamasaki. Surveys of Program Design Methods Using a Common Example Prob-
lem. Journal of IPS Japan 25(9):934, 1984. In Japanese.

Proc. AVoCS 2011 16 / 16

	Introduction
	Sake Warehouse Scenario
	Sake Warehouse – Static Structure
	Sake Warehouse – Behavior

	Sake Warehouse – Representation of Target Properties
	Model Checking LTLDL
	Bounded LTLDL Model Checking
	SMT(DL)
	Prototypical Implementation and Experimental Results
	Experiment 1
	Experiment 2

	Related Work
	Conclusion

