
Electronic Communications of the EASST
Volume 6 (2007)

Proceedings of the
Sixth International Workshop on

Graph Transformation and Visual Modeling Techniques
(GT-VMT 2007)

Bisimulation Verification for the DPO Approach with Borrowed
Contexts

Guilherme Rangel, Barbara König and Hartmut Ehrig

14 pages

Guest Editors: Karsten Ehrig, Holger Giese
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122



ECEASST

Bisimulation Verification for the DPO Approach with Borrowed
Contexts

Guilherme Rangel1, Barbara König2 and Hartmut Ehrig3

1 rangel@cs.tu-berlin.de
3 ehrig@cs.tu-berlin.de,

Institut für Softwaretechnik und Theoretische Informatik
Technische Universität Berlin, Germany

2 barbara koenig@uni-due.de
Institut für Informatik und Angewandte Kognitionswissenschaft,

Universität Duisburg-Essen, Germany

Abstract:

Bisimilarity is the most widespread notion of behavioral equivalence and hence al-
gorithms for bisimulation checking are of fundamental importance for verifying that
two systems are behaviorally equivalent (seen from the perspective of the environ-
ment). We investigate this problem in the context of behavioral equivalences of
graphs and graph transformation systems, where the extension of the DPO approach
to borrowed contexts provides us with a formal basis for reasoning about bisimilarity
of graphs. In this paper we extend Hirschkoff’s on-the-fly algorithm for bisimula-
tion checking, enabling it to verify whether two graphs are bisimilar with respect to
a given set of productions. We then apply this framework to refactoring problems
and verify instances of a model transformation which describes the minimization of
deterministic finite automata.

Keywords: Bisimulation, Graph Transformation, Refactoring, Automata

1 Introduction

Model transformation [MV05] concerns the automatic generation of models from other models
according to a transformation definition, which describes how a model in the source language
can be transformed into a model in the target language. Such transformations can take place
between different models or, more specifically, inside one single model (refactoring). Software
refactoring is a modern software development activity to cope with the internal modification of
source code to improve system quality, without changing the observable behavior.

Graph transformation systems (GTS) are well-suited to model not only refactorings but also
model transformation (see [MT04] for the correspondence between refactoring and GTS). A GTS
specifies model transformation by defining graph transformation rules to translate one model
into another. The general idea is to have a graph describing an instance of the source model
as a start graph and to apply graph productions until no further production can be applied and
the resulting graph is an instance of the target model. Model transformations via GTS can be
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found in [EE06, EW06, VVE+06]. A crucial question that must be asked is whether a given
refactoring (or model transformation) is behavior-preserving, which means that transforming one
model into another model does not change the original external behavior. In practice, the proof
of behavior-preserving transformations is not an easy task and therefore one normally relies on
test suite executions and informal arguments in order to improve confidence that the behavior
is preserved. In a recent paper Narayanan and Karsai [NK06] proposed a method for checking
bisimilarity in model transformations using GTS which is similar to ours. The new contribution
of our paper is to present an efficient bisimulation checking algorithm, which works on the fly
for infinite state spaces, and to develop the theory in the very general framework of borrowed
contexts [EK04].

In this paper we give a formal treatment of the question of behavior-preserving refactoring.
We define model refactoring by graph transformation rules in the Double Pushout Approach
(DPO) [CMR+97], which is one of the standards for GTS. Our goal is to show that instances
of one model are bisimilar to their refactored counterparts, which implies behavior preservation.
We employ the extension of DPO to borrowed contexts [EK04], which provides the means to
reason about bisimilarity. We also extend Hirschkoff’s [Hir01] on-the-fly bisimulation checking
algorithm to deal with our setting. A case study of refactoring is presented in terms of minimiza-
tion of deterministic finite automata (DFA), where we can test if a given DFA is bisimilar to its
minimal refactored version. Since the procedure to check bisimilarity by hand is quite tedious
we have implemented a tool in Objective Caml [OCa] to support this activity.

2 Graphs with Interfaces and Borrowed Contexts

In this section we recall the DPO approach to graph rewriting and its extension with borrowed
contexts.

Definition 1 (Graph and graph morphism) A graph G = (V,E,s, t, lv, le) consists of a set
V of nodes, a set E of edges, two functions s, t : E → V (source and target) and two labeling
functions for nodes and edges lv : V → ΩV , le : E → ΩE , where ΩV and ΩE are node and edge
labels. A graph morphism f : G1 → G2 is a pair of functions f = ( fE : E1 → E2, fV : V1 →V2),
which is compatible with source, target and labeling functions of G1 and G2, i.e., fV ◦s1 = s2◦ fE ,
fV ◦ t1 = t2 ◦ fE , le2 ◦ fE = le1 and lv2 ◦ fV = lv1 .

In the standard DPO approach, graph productions rewrite graphs with no interaction with any
other entity than the graph itself and the production. In the DPO with borrowed contexts [EK04]
graphs have interfaces and may borrow missing parts of left-hand sides from the environment
via the interface. This leads to open systems which take into account interaction with the outside
world.

Definition 2 (Graphs with interfaces and graph contexts) A graph G with interface J is a
morphism J → G and a context consists of two morphisms J → E ← J. The embedding1 of a
graph with interface J → G into a context J → E ← J is a graph with interface J → G which is

1 The embedding is defined up to isomorphism since the pushout object is unique up to isomorphism.
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obtained by constructing G as the pushout of J → G and J → E.
J //

²²

PO

E

²²

Joo

¡¡

G // G

Definition 3 (Rewriting with borrowed contexts) Given a graph with interface J → G and a
production p : L← I→R, we say that J→G reduces to K→H with transition label2 J→F ←K
if there are graphs D, G+, C and additional morphisms such that the diagram below commutes
and the squares are either pushouts (PO) or pullbacks (PB) with injective morphisms. In this case
a rewriting step with borrowed context (BC for short) is feasible: (J → G) J→F←K−−−−−→ (K → H).

D // //

²²

²²

PO

L
²²

²²

PO

Ioo //

²²

²²

PO

R
²²

²²

G // //

PO

G+

PB

Coo // H

J

OO

// // F

OO

Koo

OO >>

Consider the diagram above. The upper left-hand square merges L and the graph G to be
rewritten according to a partial match G ← D → L. The resulting graph G+ contains a total
match of L and can be rewritten as in the standard DPO approach, producing the two remaining
squares in the upper row. The pushout in the lower row gives us the borrowed (or minimal)
context F , along with a morphism J → F indicating how F should be pasted to G. Finally, we
need an interface for the resulting graph H, which can be obtained by “intersecting” the borrowed
context F and the graph C via a pullback. Note that the two pushout complements that are needed
in Definition 3, namely C and F , may not exist. In this case, the rewriting step is not feasible.
Let us also remark that the arrows depicted as → in the diagram above can also be non-injective
(see [SS05]).

Note that our notion of labels exactly coincides with labels derived by relative pushouts
[LM00, SS05].

3 Bisimilarity

Here we show how to use transition labels in order to check bisimilarity between two graphs
with interfaces. A bisimulation is an equivalence relation between states of transition systems,
associating states which can simulate each other.

Definition 4 (Bisimulation and Bisimilarity) Let P be a set of productions and R a symmet-
ric relation containing pairs of graphs with interfaces (J→G,J→G′). The relation R is called a
bisimulation if, whenever we have (J →G)R (J →G′) and a transition (J →G) J→F←K−−−−−→ (K →
H), then there exists a graph with interface K →H ′ and a transition (J →G′) J→F←K−−−−−→ (K →H ′)

2 Transition labels, derived labels and labels are synonyms in this paper.
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such that (K → H)R (K → H ′).
We write (J → G) ∼ (J → G′) whenever there exists a bisimulation R that relates the two

graphs with interface. The relation ∼ is called bisimilarity.

In the graph setting not all labels that can be derived from a graph and a set of productions are
relevant for the bisimulation. We will distinguish two kinds of transition labels.

Definition 5 Let (J → G) J→F←K−−−−−→ (K → H) be a transition of (J → G). We say that the
transition is independent whenever we can add two morphisms D→ J and D→ I to the diagram
in Definition 3 such that the diagram below commutes, i.e., D→ I → L = D→ L and D→ J →
G = D → G. We write (J → G) J→F←K−−−−−→d (K → H) if the transition is not independent and we
call it dependent.

D //

²²

ºº

''
L

²²

Ioo //

²²

R

²²

G // G+ Coo // H

J

OO

// F

OO

Koo

OO >>

An independent label has a borrowed context F that provides the entire left-hand side L for
G and hence G does not contribute to the rewriting. (A trivial example is a label derived with
D = /0.) The figure above on the right schematically depicts this situation where the partial match
occurs only in the overlap of the interfaces J and I leading to an independent label.

The bisimulation game for graphs mainly takes dependent labels into account. That is, if
we modify Definition 4 in such a way that only dependent transitions (J → G) J→F←K−−−−−→d (K →
H) have to be simulated (either by a dependent or independent transition), then the resulting
bisimilarity ∼ is unchanged (see [EK04]).

One of the main advantages of the borrowed contexts technique is that the derived bisimilarity
is automatically a congruence, which means that whenever one graph with interface is bisimilar
to another, one can exchange them in a larger graph without effect on the observable behavior.
This is very useful for model refactoring since we can replace one part of the model by another
bisimilar one.

Theorem 1 (Bisimilarity is a Congruence [EK04]) The bisimilarity relation ∼ is a congru-
ence, i.e., it is preserved by contextualization as given in Definition 2.

Bisimulation proofs often yield infinite relations. Hence up-to techniques [San95] for bisim-
ulation are useful to relieve the onerous task of bisimulation proofs by reducing the size of
the relation needed to define a bisimulation. Bisimulation up-to is defined by replacing (K →
H)R (K → H ′) by (K → H)F (R)(K → H ′) in Definition 4, where F is a function from rela-
tions to relations that defines the up-to technique (for details see [EK04]). We use for instance
F iso which generates all isomorphic copies of every pair in R. A more powerful up-to technique
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is given by F context, which embeds all pairs into the same contexts (as in Definition 2), for all
pairs and all compatible contexts.

The search of dependent labels among several partial matches might lead to cases where the
pushout complement F or C (see Definition 3) does not exist and so the borrowed context step is
not feasible. In [BGK06] a technique, based on initial pushouts, is defined to check if a partial
match allows the existence of F and C.

Proposition 1 [BGK06] Let p : L ← I → R be a production and f : D → L a monomorphism
such that the diagram below on the left is the initial pushout of f . The pushout complement F
of Definition 3 exists if and only if there is a monomorphism D → G and a morphism JD → J
such that the diagram on the right commutes.

JD //

g
²²

IPO

FD

²²

D
f

// L

JD
g

//

²²

=

D

²²

J // G

Symmetrically one can check that the pushout complement C exists by taking the initial
pushout over D→ G.

4 Partial Match Finding

Here we propose an algorithm that takes as input a graph with interface J → G and a set P of
productions of the form p : L← I → R to find all possible partial matches G← D→ L that will
lead to dependent labels. We first need to introduce partial morphisms.

Definition 6 (Partial graph morphism) Let G = (V,E,s, t, lv, le) be a graph as in Definition 1.
A subgraph S of G, written S ⊆ G, is a graph with V S ⊆ V G, ES ⊆ EG, sS = sG|ES , tS = tG|ES ,
lS
v = lG

v |V S and lS
e = lG

e |ES . A partial graph morphism f : G ⇀ G′ is a total graph morphism
f : dom( f )→ G′ from a subgraph dom( f )⊆ G to G′.

Given L (the left-hand side of a production) and G, we try to find partial matches which lead
to a feasible BC step with a dependent label. We describe a procedure in 5 steps for one single
production p, but it must be carried out for all productions of P . Step 1 determines a subgraph
Lclean of L, which is the largest subgraph of L containing only node and edge labels that also
occur in G. The graph Gclean is defined analogously (with the roles of L and G exchanged). Step
2 creates all possible subgraphs Lsub

i (i ∈ N) of Lclean. Step 3 finds all injective partial matches
pm j : Lsub

i ⇀ Gclean ( j ∈ N). Step 4 splits each partial match pm j as a span of total injective
morphisms L ← Lclean ← D j → Gclean → G. Step 5 stores L ← D j → G as a partial match to
derive a label if L←D j →G satisfies the conditions of Proposition 1 (for the existence of F and
C) and will lead to a dependent label (Definition 5).
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5 Matching Labels and Existence of Derivable Labels

The bisimulation game for graphs demands the comparison of labels. More specifically, two
labels µi = Ji→Fi←Ki (i = 1,2) are called isomorphic (µ1∼= µ2) if they are isomorphic cospans.
Remember that a dependent label can be answered by either a dependent or independent label.
Since the algorithm in the previous section derives only dependent labels, we propose a way
to check whether a dependent label for one graph is also derivable for the other graph. This if
more efficient than deriving all independent labels for the other graph, which could be a lot, and
checking whether they match.

Definition 7 (Derivable Label) Given a graph J → G, a label J′→ F ′← K′ and a set P of
productions, we say that J′→ F ′← K′ is derivable from J →G and P if it yields a feasible BC
step, as in Definition 3.

D //

²²

PO(PB)

L
mi

1

²²

PO

Ioo //

PO
²²

R

²²

G m2
// G+ Coo // H

J ∼ //

??ÄÄÄÄÄÄÄÄ ((

J′ //

PO

F ′
PB

OO

K′oo

OO >>

This can be checked as follows: if there exists an isomorphism J ∼→ J′ we obtain J → F ′

as the composition J ∼→ J′ → F ′ and in addition G → G+ ← F ′ as a pushout of G ← J → F ′.
For all productions P we find all possible total matches mi

1 : L → G+ (i ∈ N). For each mi
1

and m2 : G → G+, if mi
1 and m2 are jointly surjective (i.e., mi

1,V (LV )∪m2,V (GV ) = G+
V and

mi
1,E(LE)∪m2,E(GE) = G+

E ) we can take G ← D → L as a pullback of G → G+ ← L and thus
obtain a pushout. We compute the pushout complement G+ ←C ← I of G+ ← L ← I and the
pushout C → H ← R of C ← I → R. We then check if there exists a morphism K′→C such that
the rightmost square in the second row is a pullback and add the induced morphism K′→ H. If
there exists a total match mi

1 : L→G+, which allows us to complete this diagram, we say that the
label J′→ F ′← K′ is derivable from J → G and P . Note that this is easier than partial match
finding since we are only looking for total matches.

6 Algorithm for Bisimulation “On the Fly”

Classical methods for bisimulation checking (e.g., see [PT87]) take as input the full state spaces
which are derived from the initial processes to be compared. Their drawback is that the whole
state space must first be computed and stored. Fernandez and Mounier defined in [FM91] a
method for building the state space on the fly and checking bisimilarity based on depth-first
search (DFS). Hirschkoff [Hir01] extended their work to not only allow breadth-first search
(BFS), but also to deal with bisimulation up-to.

Hirschkoff’s algorithm takes two states P and Q of labeled transition systems (LTSs) and
checks their bisimilarity by analyzing their state space product, which consists of pairs of the
form (P,Q) as states and transition labels µ between states indicating that both states are able to
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evolve along the same label µ , i.e., (P,Q)
µ→ (P′,Q′). The algorithm initially checks whether P

and Q are immediately bisimilar (none of them has further labels leading to successor states) or
non-bisimilar (one makes a step which the other is not able to mimic). If P and Q are not found
immediately (non-)bisimilar, their state space product is expanded by adding their successors
reached by a common label and so the bisimilarity of (P,Q) can be only known after the recursive
analysis of all successors in the state space product. With this basic technique the LTSs in
question must be finite. But in some cases the algorithm is able to perform finite proofs for
states whose state space product is infinite using up-to techniques in order to handle infinite
bisimulations as finite bisimulations up-to. Hirschkoff proved that the breadth-first version of the
algorithm is computationally complete with respect to a given up-to technique F , which means
that the algorithm can check the bisimilarity of two states if and only if a finite bisimulation
up to F relating the two states to be checked exists. Hirschkoff used his algorithm to check
bisimilarity of polyadic π-calculus [Mil93] processes.

We extend Hirschkoff’s algorithm to check bisimilarity between graphs with interfaces with
respect to a given set of graph productions. We also did minor efficiency improvements and
added extra details to the algorithm, trying to make clear aspects that were not easy to understand
in the original version.

Remember that in order to calculate all dependent labels which originate from a given graph
with interface and a set P of productions we employ the algorithm defined in Section 4 to find
partial matches between the left-hand side of the rules of P and the graph with interface. For
every partial match we then use Definition 3 to complete the whole borrowed context diagram,
which gives us the dependent label and the resulting graph with interface. The matching of labels
is specified in Definition 7.

In the setting of graphs, the bisimulation checking algorithm explores the state space prod-
uct (defined below) of two graphs to be compared. We use here some shortcuts: graphs with
interfaces J → G are represented as P and Q, and labels J → F ← K as µ .

Definition 8 (State Space Product) The state space product of two graphs P0 and Q0 is the
transition system generated from the initial state (P0,Q0) using the following inference rules:

dep1 : P
µ−→d P′ Q

µ′−→Q′

(P,Q)
µ−→ (P′,Q′)

dep2 : P
µ−→P′ Q

µ ′−→d Q′

(P,Q)
µ−→ (P′,Q′)

µ ∼= µ ′

The successors of (P,Q) are all (P′,Q′) such that P′ and Q′ respectively correspond to evolu-
tions of P and Q along an isomorphic label µ . The rules dep1 and dep2 cover the situation when
one dependent label (indicated with→d above) is answered (i.e. matched) by either a dependent
or independent isomorphic label. If one graph can not answer, we say that the pair fails to evolve,
i.e., we can infer immediately that P and Q are not bisimilar.

Definition 9 (Failure) Given two graphs P and Q we say that the pair (P,Q) fails to evolve
whenever it holds:
(P

µ−→d P′∧@Q′ : Q
µ ′−→ Q′ s.t. µ ∼= µ ′)∨ (Q

µ−→d Q′∧@P′ : P
µ ′−→ P′ s.t. µ ∼= µ ′).

The data structures used by the algorithm are: a structure S containing pairs of states that still
have to be inspected; a Table storing information about each pair of graphs under inspection and
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three sets V , W and R, containing pairs of graphs that are respectively supposed to be bisimilar,
known to be non-bisimilar and known to be bisimilar. By accessing S as stack (resp. queue) the
algorithm performs a depth-first (resp. breadth-first) search on the state space product.

The main procedure is bisimulation check, which calls: succeeds, fails and propagate. The
procedure bisimulation check first checks with succeeds whether (P,Q) is immediately bisimi-
lar (e.g. none of them is able to derive any further (dependent) label). If (P,Q) is not immediately
bisimilar, fails checks if the pair fails to evolve or if it is already known as non-bisimilar (i.e.,
it is in W ). If it fails we insert it into W and use propagate to update the information about the
state space product in Table with this new result, which can possibly lead to the discovery of new
(non-)bisimilar graphs. When we find that a new pair evolves to other pairs, we assume that it
is bisimilar (insert it into V ) and only after the analysis of all its successors (where the notion of
successor is specified in Definition 8) we are able to decide whether the pair is really bisimilar
(as we assumed) or not. If by processing S we find a pair that is in V (supposed to be bisimilar)
we move it to R and update Table using propagate. When all pairs have already been analyzed
(S = /0) the algorithm can determine the bisimilarity of (P,Q).

a
(3,5)
(1,4)

(3,6)
S

b

(3,6)(2,5) (3,5)
fails

(2,6)
fails

2 3

a a
1

b 5 6

a a
4

b

(1,4)

a
aa

Table
(P,Q) successors m fails

(1,4)
(2,5)• (2,6)• (3,5)◦ (3,6)◦

2 3 5 6
£¤£¤ false

(3,5) true

(3,6)
(3,6)◦

3 6
¤¤ false

Above, one can see two small transition systems, their respective state space product, the states
under investigation in S and their current information in Table. The states 1–6 represent graphs
and a,b are labels. Consider the pair (1,4) in Table. The entry successors shows the successors
of (1,4) in the state space product together with a boolean value true (•) or false (◦), indicating
which pairs of successors have already been analyzed. The entry m lists the successor states
(e.g. 3 and 6 with false [¤], 2 and 5 with true [£]), indicating which state has found a bisimilar
partner. Whenever a pair of successors has been analyzed, if it turns out to be bisimilar both
m-fields of the pair are set to true (£). Successors (2,5) and (2,6) have been explored and only
(2,5) is bisimilar. If all successors of (P,Q) have been analyzed (all are set to •) and all fields
of m are set to true (£) then (P,Q) is bisimilar. If there is in m at least one graph with false
(¤) then (P,Q) is not bisimilar. The entry fails indicates if a pair fails to evolve (according to
Definition 9). A non-bisimilar pair has always at least one successor leading to a failure, but it
is worth observing that a bisimilar pair might also have successors leading to a failure. In the
example even though (2,6) and (3,5) fail, it is clear that (1,4) is bisimilar.

A new pair (P,Q) is inserted into Table as follows. Using Definition 8 and Definition 9 we can
determine if (P,Q) fails to evolve and if it has successors. We insert (P,Q) into Table with the
following data in case of failure: successors = /0, m = /0 and fails = true. If the pair does not fail
we fill successors with the successors of (P,Q), m with the states of the successors of (P,Q) and
all boolean values are set to false.
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bisimulation check(P,Q) :=
W := /0;
(∗) R := /0; V := /0;
insert (P,Q) into S and Table; status := true;

while S 6= /0 do
take (P0,Q0) from S;
if succeeds((P0,Q0))

then insert (P0,Q0) into R;
propagate((P0,Q0), true);

else if fails ((P0,Q0))
then insert (P0,Q0) into W ;

propagate((P0,Q0), false);

else if (P0,Q0) ∈V

then move (P0,Q0) from V to R;
propagate((P0,Q0), true);

else if (P0,Q0) ∈ R

then propagate((P0,Q0), true);
else {pair (P0,Q0) is new}

insert (P0,Q0) into V ;
{(P0,Q0)

µ→ successor(P0,Q0)}
insert successors of (P0,Q0) into S;
for each successor(P0,Q0) do

if successor(P0,Q0) /∈ Table
∧ successor(P0,Q0) /∈W ∪R∪V

then insert it into Table;
end for

end while
if (P,Q) /∈ R

then return false
else if status then return true else loop back to (∗)

succeeds(P,Q) := Table(P,Q).successors = /0
∧Table(P,Q).fails = false

fails(P,Q):=
if (P,Q) ∈ Table

then Table(P,Q).fails ∨ (P,Q) ∈W
else (P,Q) ∈W

propagate((P,Q),success) :=
if (P,Q) ∈ R ∧ success = false

then status := false;
if (P,Q) ∈ Table

∧Table(P,Q).successors is complete3

then remove (P,Q) from Table;
for each (Pf ,Q f ) ∈ Table with (Pf ,Q f )

µ→ (P,Q) do
Table(Pf ,Q f ).successors(P,Q) := true;
if success

then Table(Pf ,Q f ).m(P) := true;
Table(Pf ,Q f ).m(Q) := true;

if Table(Pf ,Q f ).successors is complete
then

if ∃ j = false ∈ Table(Pf ,Q f ).m
then

insert (Pf ,Q f ) into W ;
propagate ((Pf ,Q f ), false);

else
if (Pf ,Q f ) ∈V

then take it from V to R;
propagate ((Pf ,Q f ), true);

end for

The procedure propagate is in charge of updating the information in Table concerning the
state space product analysis. Every time we rediscover a new pair we decide that it is bisimilar
(i.e., it is moved to R). If during the exploration of the state space we find that this very pair is
non-bisimilar we set the variable status to false, which means that the result of the current run of
the algorithm is not reliable. In this case we restart it retaining the information in W about states
which are already known to be non-bisimilar.

The procedure propagate keeps in Table only the pairs under analysis, removing the ones that
have already been analyzed. Observe that when one pair is propagated, the predecessors of this
pair should also be informed of the new results. When a pair is propagated with true or false
the algorithm always sets this pair as analyzed (true [•]) in the list of successors of each of its
predecessors that are still under analysis (in Table). Only if the pair is propagated with true its
respective graphs in m of its predecessors are set to true (£). When the last successor of a given
pair has been analyzed we can verify whether our initial hypothesis about its bisimilarity is still
true. If the pair has at least one graph in m set as false it is non-bisimilar (our hypothesis was
wrong) and we propagate this result. Otherwise we conclude that our hypothesis was correct and
propagate this information.

If the algorithm has to handle bisimulation up-to we have only to replace in bisimulation check
(P0,Q0) ∈V by (P0,Q0) ∈F (V ) and (P0,Q0) ∈ R by (P0,Q0) ∈F (R) , where F de-

scribes the up-to technique. For the refactoring proposed in this paper (see Section 8) we use

3 This means that either all successors of (P,Q) have already been analyzed (•) or successors = /0.

9 / 14 Volume 6 (2007)



the up-to context technique (F context) [EK04] informally described in Section 3.
Our version of the bisimulation checking algorithm is very similar to Hirschkoff’s. Our main

contribution to the algorithm is the full specification of how Table is used to store and process the
state space product investigation. A small efficiency improvement can be seen in the for each
statement of bisimulation check, where we added extra conditions in order to avoid reanalyzing
pairs already investigated. Furthermore we checked that the algorithm also works in our setting
of borrowed contexts, taking into account especially the issue of independent and dependent
labels.

7 Tool Support for DPO with Borrowed Contexts

The derivation of labels and the bisimulation proof demand a great amount of time even for
small examples and when done by hand they are particularly susceptible to errors. To overcome
this we have implemented a tool in Objective Caml (OCaml), which is a functional language
very appropriate for rapid prototyping. The tool uses directed labeled graphs and when we
want to check the bisimilarity of two graphs, we specify a set of graph productions and also
the graphs with interfaces to be checked. We have already implemented graphs with interfaces,
graph productions, and procedures for label derivation and matching. OCaml is mainly textual,
but for the sake of visualization, our graphs, rules and derived labels can be visualized with the
package Graphviz [gra]. Our next goal is to implement the described algorithm for bisimulation
checking.

8 Refactoring Deterministic Finite Automata

We will now come back to our original motivation: showing that refactoring preserves behav-
ior. Let us first explain how the current theory of DPO with borrowed contexts could be used to
prove that a refactoring process is behavior-preserving. Consider a model M, whose operational
semantics is given by a set OpSemM of graph productions and a refactoring for this model M
as a set RefactoringM of productions of the form L ← I → R. If we can prove for each rule of
RefactoringM that we have the bisimilarity (I → L) ∼ (I → R) with respect to OpSemM, this
means that each rule does not change the behavior of the model under refactoring. Since bisim-
ilarity is a congruence we can compose (I → L) and (I → R) with identical contexts and the
respective compositions remain bisimilar. That is, for all instances of M, RefactoringM preserves
the original behavior. This approach can be currently used only for refactoring rules without
features such as negative application conditions and layers, which are often necessary to model
refactorings.

Each DFA is described as a graph, where nodes are the states and directed labeled edges are
the transitions (see DFA1 and DFA2 above). A loop labeled FS marks a state as final. An
interface node labeled W has an edge pointing to the current state and this edge points initially
to the start state. Note that the node W is the only possibility to establish interaction with the
environment. The node W receives a letter (e.g. ‘a’) from the environment in form of an a-edge
connecting W -nodes. Then, according to the operational semantics (given by the rules Jump,
Loop and Accept) the DFA may change its state. Whenever an accept-edge between W -nodes
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Below we define graph productions to minimize DFAs by eliminating equivalent states. The
idea of the algorithm is to identify the distinguishable states, followed by the merging of equiv-
alent states. Note that to the left of each rule we depict the negative application conditions. The
algorithm is defined by several graph productions spread over three layers, where each layer ap-
plies its rules as long as possible before the rules of the next layer can be used. In practical terms,
the transformation begins with rules of layer 0. If no more rule of layer 0 is applicable, the rules
of layer 1 come into play. The rules in layer 0 (see Figure 1) examine the transitions labels for
every two states and determine if they are distinguishable. The rule in layer 1 merges equivalent
nodes, i.e., nodes without a dist edge between them. Finally, the rules in layer 2 remove all dist
edges and redundant transitions between two states.

Observe that the minimization algorithm demands rules spread over layers and negative ap-
plication conditions and so we are not able to prove that all refactorings via these rules are
behavior-preserving. For this reason our goal in this paper is to check that a given DFA and
its minimal refactored version are bisimilar. Note that for DFAs borrowed context bisimilarity
coincides with language equivalence. Furthermore in our setting bisimilarity on automata seen
as transition systems corresponds to the bisimilarity that we obtain via the borrowed context
technique.

Consider DFA1 and DFA2 previously depicted. By applying the minimization algorithm on
DFA1 we obtain DFA2 as its minimal version. We then call the procedure bisimulation check
and verify that DFA1 and DFA2 are indeed bisimilar. In Figure 2 we show the state space product
for this example, where the omitted interfaces of the graphs in the tuples contain only one node
labeled W . Note that the state space product does not contain independent labels (which exist).
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Figure 1: Productions for DFA minimization

9 Conclusions and Future Work

We have shown how to use the DPO approach with borrowed contexts to automatically check the
bisimilarity of systems specified in terms of graphs. Furthermore we suggested as a case study
for refactoring the minimization of DFAs.

Our plan is to extend this work in such a way that whenever we define a refactoring as graph
productions we should also be able to prove that all instances prior to refactoring are bisimilar
to their refactored counterparts. The first step to be made to accomplish such an objective is
the extension of the current theory of DPO with BC to handle rules with negative application
conditions and layers, which are often used in refactorings.

Acknowledgements: We are grateful to Gabriele Taentzer and Paolo Baldan for interesting
discussions on using DPO with borrowed contexts in the context of refactoring.
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Figure 2: State space product for DFA1 and DFA2
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