
Electronic Communications of the EASST
Volume 49 (2012)

Proceedings of the
First International Workshop on
Bidirectional Transformations

(BX 2012)

Complex Attribute Manipulation in TGGs with Constraint-Based
Programming Techniques

Anthony Anjorin, Gergely Varró and Andy Schürr

16 pages

Guest Editors: Frank Hermann, Janis Voigtländer
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Complex Attribute Manipulation in TGGs with Constraint-Based
Programming Techniques

Anthony Anjorin∗, Gergely Varró† and Andy Schürr

anthony.anjorin, gergely.varro, andy.schuerr@es.tu-darmstadt.de
Real-Time Systems Lab,

Technische Universität Darmstadt, Germany

Abstract: Model transformation plays a central role in Model-Driven Engineer-
ing (MDE) and providing bidirectional transformation languages is a current chal-
lenge with important applications. Triple Graph Grammars (TGGs) are a formally
founded, bidirectional model transformation language shown by numerous case
studies to be quite promising and successful. Although TGGs provide adequate
support for structural aspects via object patterns in TGG rules, support for handling
complex relationships between different attributes is still missing in current imple-
mentations. For certain applications, such as bidirectional model-to-text transfor-
mations, being able to manipulate attributes via string manipulation or arithmetic
operations in TGG rules is vital. Our contribution in this paper is to formalize a
TGG extension that provides a means for complex attribute manipulation in TGG
rules. Our extension is compatible with the existing TGG formalization, and retains
the “single specification” philosophy of TGGs.

Keywords: bidirectional model transformation, triple graph grammars, constraint-
based programming techniques, pattern matching, complex attribute manipulation

1 Introduction and Motivation

Model-Driven Engineering (MDE) has established itself as a viable means of coping with the in-
creasing complexity of modern software systems. Model-driven techniques promise an increase
in productivity and quality of software, as well as support for interoperability and improved
communication with domain experts. Model transformation is a fundamental and central task
for any successful MDE solution [BG01] and an open challenge is catering for bidirectionality.
Bidirectional transformations are relevant for a multitude of applications that cut across various
technologies and communities [CFH+09]. Many different approaches provide support for bidi-
rectionality and aim to reduce the effort of keeping a pair of unidirectional forward and backward
transformations consistent. Important challenges for a bidirectional language, therefore, include
increasing productivity by guaranteeing useful properties and well-behavedness of the pair of
transformations without compromising expressiveness, and providing an efficient, usable imple-
mentation to tackle real-world problems.
∗ Supported by the ‘Excellence Initiative’ of the German Federal and State Governments and the Graduate School of
Computational Engineering at TU Darmstadt.
† Supported by the Postdoctoral Research Fellowship of the Alexander von Humboldt Foundation and associated with
the Center for Advanced Security Research Darmstadt.

1 / 16 Volume 49 (2012)

mailto:anthony.anjorin, gergely.varro, andy.schuerr@es.tu-darmstadt.de

Complex Attribute Manipulation in TGGs with Constraint-Based Programming Techniques

Strategies include providing reversible languages, working with primitives that preserve bidi-
rectionality under composition, deriving the reverse of a given unidirectional transformation au-
tomatically, and exploiting trace information. For a detailed overview of bidirectional languages
and approaches we refer to [CFH+09, Ste08].

The Triple Graph Grammar (TGG) approach [Sch94] provides a language for describing the
simultaneous evolution of two models and a third correspondence model. The specification is
in form of a graph grammar: a set of rules which can be used to generate triple graphs con-
sisting of related source, correspondence and target graphs from which operational rules can be
derived for forward and backward transformations. The derivation process and the control algo-
rithm for applying the operational rules are formally founded, guaranteeing properties such as
correctness, completeness, termination and an upper bound for runtime complexity [KLKS10].
In addition to a mature formal foundation, numerous implementations for TGGs exist, rang-
ing from an interpreter to a code generator, all under active development by different research
groups. The various TGG implementations have been used successfully for different applications
[Kön08, Wag09, DG09, LSRS10], and from the experience gained over the years, improving the
expressiveness of TGGs as a bidirectional transformation language has been identified as a major
challenge. A concrete feature stated by various authors [Sch94, KW07, Kön08, Wag09, DG09]
as being relevant and important, is the manipulation of attribute values in TGG rules. Even
though there has been progress in this direction, the solutions have either neither been fully for-
malized nor implemented [KW07], are restricted to simple attribute manipulation (i.e., attribute
assignments) [Kön08, Wag09, DG09], or require the user to specify a pair of functions, one for
each direction [GH09]. In all cases, it is unclear how support for reuse and composition of such
“attribute constraints” can be provided.

Our contribution in this paper is to formalize an attribute manipulation approach for TGGs,
which is compatible with the existing TGG formalization, preserves the TGG philosophy of
having a single specification of a bidirectional transformation, supports composition and reuse,
and serves as a clear, well-defined interface to Java for user-defined attribute constraints.

The paper is structured as follows: in Sect. 2, a running example is introduced and used
to present a formalization of MDE terminology such as models and metamodels according to
[EEPT06]. Section 3 discusses a TGG specification for this example, explains the challenge of
describing the required attribute manipulation, and presents our extension. Formal results from
[EEE+07] are extended in Sect. 4 to show that our extension is compatible with existing TGG
theory. Our approach is compared with alternative solutions in Sect. 5, while Sect. 6 concludes
with a brief summary and discussion of future work.

2 Running Example and Formalization of Basic MDE Concepts

Various industrial applications have been investigated using TGGs [LSRS10, Kön08, KW07].
In many cases, especially when the application involves a model-to-text transformation [Wag09]
or a generic tree-like data structure exported from a tool, the required TGG rules entail not only
structural changes but also non-trivial attribute manipulation.

Proc. BX 2012 2 / 16

ECEASST

Box

Partition

Card

correctcorrectcorrect

wrong
name : String

Box

index : Integer
Partition

history : Integer
back : String
front : String

Card
nextprevious

Figure 1: Leitner’s learning box with corresponding metamodel

To discuss this in more detail we use a learning box according to the Leitner system1, which
mimics the human short-term and long-term memory and optimizes the frequency with which
flashcards must be repeated for effective learning (Fig. 1). The corresponding metamodel for
the learning box specifies three concepts: A Box represents a single learning box that consists
of Partitions, which can each contain a number of Cards. A box has a name and each
partition has an index that specifies the position of the partition in the box. In addition, each
partition has a next and previous reference to another partition. Cards have string attributes (front
and back) that represent the content to be memorized, e.g., a word in German and its translation
in English. Cards also have an integer attribute, history, used to encode how often the card has
been repeated. As indicated by the arrows in the schematic representation of the learning box to
the left of Fig. 1, if the content of a card is memorized and can be recalled correctly, the card
is moved to the next partition, if the content has been forgotten, the card is moved to the first
partition in the box. These rules (which can also be varied) are the reason why the next and
previous references are not opposites of each other. The first partition is to be repeated every day
while all other partitions should be repeated only when enough cards have reached the partition,
hence, less frequently. In the following, we formalize the concept of models and metamodels
according to [EEPT06].

Models are formalized as graphs consisting of vertices and edges. Additionally, to cater for
attribute values of vertices, data vertices and vertex attribute edges are introduced:

Definition 1 (Graph and Graph Morphism)
A graph G = (VG,EG,srcG, trgG,VD,ED,srcD, trgD) consists of the sets:

(1) VG and VD, called the graph vertices and data vertices, respectively
(2) EG and ED called the graph edges and vertex attribute edges, respectively

and the source and target functions:
(3) srcG : EG→VG, trgG : EG→VG for graph edges
(4) srcD : ED→VG, trgD : ED→VD for vertex attribute edges

Let G and G′ be graphs. A graph morphism f : G → G′ is a tuple (fVG , fEG , fVD , fED) with
fVG : VG→VG′ , fEG : EG→ EG′ , fVD : VD→VD′ , fED : ED→ ED′ such that f commutes with all
source and target functions, e.g., fVG ◦ srcG = srcG′ ◦ fEG .

1 http://en.wikipedia.org/wiki/Leitner system

3 / 16 Volume 49 (2012)

http://en.wikipedia.org/wiki/Leitner_system

Complex Attribute Manipulation in TGGs with Constraint-Based Programming Techniques

The actual values of attributes are formalized by attributing graphs using algebras, which imple-
ment an algebraic signature specifying types or sorts of the attributes (e.g., Integer, String) and
operation symbols (e.g., length: String→ Integer):

Definition 2 (Algebraic Signature, Σ-algebra, Homomorphism)
An algebraic signature Σ = (S,OP) consists of a set S of sorts and a family OP of operation
symbols. A Σ-algebra A = ((As)s∈S,(opA)op∈OP) is defined by:

(1) For each sort s ∈ S, a set As, called the carrier set
(2) For each operation symbol op : s1 . . .sn→ s ∈ OP, a mapping opA : As1× . . .×Asn → As

For Σ-algebras A and A′, an algebra homomorphism h : A→ A′ is a family h = (hs)s∈S of map-
pings hs : As→ A′s, such that ∀ op : s1 . . .sn→ s ∈ OP, and ∀xi ∈ Asi , i ∈ {1, . . . ,n},
hs(opA(x1, . . . ,xn)) = opA′(hs1(x1), . . . ,hsn(xn)).

Graphs can now be attributed by using an algebra to provide the data vertices in the graph:

Definition 3 (Attributed Graph and Attributed Graph Morphism)
Let Σ = (S,OP) be a signature. An attributed graph AG = (G,A) consists of a graph G together
with a Σ-algebra A, such that VD is the disjoint union of all As, i.e.,

⊎
s∈S As =VD.

Given two attributed graphs AG = (G,A) and AG′ = (G′,A′), an attributed graph morphism
f : AG→AG′ is a pair f = (fG, fA) with a graph morphism fG : G→G′ and an algebra homomor-
phism fA : A→ A′ such that fG,VD restricted to As is identical to fA,s, i.e., fG,VD|As

= fA,s, ∀s ∈ S.

Metamodels are models and are, therefore, also formalized as attributed graphs. The attribute
values in a metamodel, however, are used to specify the allowed type and not the concrete values
of attributes in models that conform to the metamodel. This is formalized via a final algebra:

Definition 4 (Final Algebra)
Let Σ = (S,OP) be a signature. The final Σ-algebra Z is defined by:

(1) Zs = {s} for each sort s ∈ S
(2) opZ : Zs1 . . .Zsn → Zs, (s1, . . . ,sn) 7→ s for each operation symbol op : s1, . . . ,sn→ s ∈ OP

The “conforms to” relationship between metamodels and models can now be formalized as a
type morphism between a type graph attributed with a final algebra, and attributed typed graphs:

Definition 5 (Typed Attributed Graph and Typed Attributed Graph Morphism)
Let Σ = (S,OP) be a signature. An attributed type graph is an attributed graph ATG = (TG,Z),
where Z is the final Σ-algebra.
A typed attributed graph (AG, type) over ATG consists of an attributed graph AG and an at-
tributed graph morphism type : AG→ ATG.
A typed attributed graph morphism f : (AG, type)→ (AG′, type′) is an attributed graph mor-
phism f : AG→ AG′ such that type = type′ ◦ f .

A dictionary, the second metamodel for our example, is depicted in Fig. 2 together with a con-
crete model and the corresponding formalization (using Definitions 1–5) as an attributed type

Proc. BX 2012 4 / 16

ECEASST

graph and typed graph, respectively2. A Dictionary has a name and consists of arbitrary
many entries. Every Entry has a level, a string from the set {“beginner”,“advanced”,“master”}
indicating how difficult the entry is, and a content (what is displayed in the dictionary).

signature

name : String
Dictionary

content : String
level : String

Entry

entries

name = "German"
d:Dictionary

content = "der Knoten : Node"
level = "beginner"

e1:Entry

content = "die Kante : Edge"
level = "advanced"

e2:Entry

entries

entries

Dictionary

Entry

d

e1 e2

name

level
content

"German"

"beginner" "advanced"

"der Knoten : Node"

"die Kante : Edge"

String

entries

VG

EG

VD

ED

type

{str, ;}

implements

implements

type graph

typed graph

sigma algebra

final algebra

metamodel

model
conforms to

Figure 2: Metamodel and model of a dictionary and corresponding formalization

To learn a new language, one can start with a learning box and a set of cards with words and
their translations. When all the cards have been successfully memorized, the vocabulary could
be preserved for future reference by transforming the box to a dictionary, which is more suitable
for looking up specific words. The difficulty level of the entries in the dictionary would be
set according to the history of the card so as to personalize the dictionary. A dictionary is,
however, not an ideal format for actually memorizing its contents, and, if most words have been
forgotten, it would be better to transform the dictionary to a suitably “pre-configured” learning
box, which can be used to (re)learn the set of words effectively. Pre-configuration could mean
taking the difficulty level of each entry in the dictionary into account and already placing each
card in a suitable partition, i.e., “easy” entries, from cards that were learnt easily the first time,
can probably be also re-learnt faster and do not need to be placed in the first partition. Using
a bidirectional transformation language for this task could offer various advantages including
reducing the effort of specifying the transformation and guaranteeing consistency.

3 A Constraint-Based Attribute Manipulation Approach for TGGs

The basic idea with TGGs is to describe a bidirectional transformation with a single specification
from which different unidirectional transformations can be derived. This specification is in form
2 Please note that only the types of nodes in the typed graph are indicated to simplify the diagram, i.e., edges are also
typed by the type morphism but this is not indicated in the diagram.

5 / 16 Volume 49 (2012)

Complex Attribute Manipulation in TGGs with Constraint-Based Programming Techniques

of a graph grammar, i.e., a set of TGG rules, and can be regarded as inducing a consistency rela-
tion on related source, correspondence and target models (graph triples) in the following manner:
A triple consisting of source, correspondence and target models is consistent with respect to a
given TGG if it can be generated using rules in the TGG.

Our approach extends TGGs by adding a Constraint Satisfaction Problem (CSP) over at-
tributes for each TGG rule, effectively extending the consistency relationship to encompass not
only the graphical structure of the models but also the relative values of their attributes. In the
following we present basic definitions based on [Sch94, EEE+07, KLKS10, EEPT06], introduc-
ing our new concept of a CSP over attributes in a TGG context, and extending the notion of TGG
rules appropriately. After presenting the TGG for our example, we discuss in Sect. 4 how TGG
rules with attribute constraints can be decomposed into operational rules, which are then used to
derive forward/backward unidirectional model transformations.

Model transformation is achieved by applying a sequence of rules or productions that consist of
a precondition and postcondition. The model fragments or patterns in a rule are formalized as
typed graphs, attributed with arbitrary terms (e.g., x+ y) over variables (e.g., x, y).

Definition 6 (Term Algebra TΣ(X))
Let Σ = (S,OP) be a signature and X = (Xs)s∈S a family of pairwise disjoint sets, which are also
disjoint with OP. Each Xs is called the set of variables of sort s.
The algebra TΣ(X) = ((TΣ,s(X))s∈S,(opTΣ(X))op∈OP) is called the term algebra over Σ and X ,
where the carrier sets (TΣ,s(X))s∈S consist of terms with variables, and with operations defined
by opTΣ(X) : TΣ,s1(X)× . . .×TΣ,sn(X)→ TΣ,s∗(X), ∀op : s1 . . .sn→ s∗ ∈ OP.

Constraints are defined as terms in a term algebra that are of type Bool (evaluate to true or false):

Definition 7 (Constraint Satisfaction Problem (CSP) over TΣ(X))
Let Σ = (S,OP) be a signature with a distinguished sort Bool ∈ S, TΣ(X) a term algebra over Σ

and variables X , and A a Σ-algebra with ABool = {true, f alse}.
A constraint c is a term in TΣ(X) of sort Bool.
A Constraint Satisfaction Problem (CSP) over TΣ(X) is a set C of constraints.
An assignment asgn : X → A is a family of assignment functions asgns : Xs → As, which, ac-
cording to [EEPT06], can always be uniquely extended to asgn : TΣ(X)→ A. An assignment
asgn : X → A fulfills a CSP C , denoted as asgn |= C , if ∀c ∈ C , asgn(c) = true.

The concepts introduced in Definitions 1–7 can be lifted to triples of typed attributed graphs
(G,A) := (GS,A)

sG←− (GC,A)
tG−→ (GT ,A) with a common algebra A, typed over a type graph

triple (T G,Z) := (T GS,Z)
sT G←− (T GC,Z)

tT G−→ (T GT ,Z), with common final algebra Z. The typed
attributed graph morphisms sG and tG connect the correspondence graph GC with the source
graph GS and the target graph GT (sT G and tT G analogously). Due to space limitations, we do
not treat this extension explicitly and refer to [EEPT06, KLKS10] for further details.

Patterns in TGG rules are formalized as graph triples attributed over a term algebra, which is
also used to formalize the constraints (CSP) in TGG rules. TGG rules are applied by determining
a match for the left hand side pattern in a given graph, and replacing this with the right hand side
pattern. In the following, all triple graphs are considered to be typed attributed triple graphs.

Proc. BX 2012 6 / 16

ECEASST

Definition 8 (Triple Graph Rule with CSP)
L R

�

G G��

m�m

Let Σ be a signature and A a Σ-algebra as in Def. 7.
A triple graph rule (or production) p = (L,R,C) consists of triple graphs
L,R : L⊆ R with common term algebra TΣ(X), and a CSP C over TΣ(X).
A match m : (L,TΣ(X))→ (G,A) consists of a graph part mG : L→ G and a
data type part mA : TΣ(X)→ A that is completely determined by an assign-

ment asgn : X → A, such that asgn |= C . In the following this is denoted by G
p@m|=C−−−−−→ G′.

A triple graph rule p can be applied to a triple graph (G,A) at a match m to yield G′ via a Push
Out (PO)3 as depicted in the diagram to the right.

A consistency relation is induced by the TGG language (all models that can be generated using
the TGG), i.e., two models are consistent if they can be extended to a triple in the TGG language.

Definition 9 (Triple Graph Grammar and Triple Graph Grammar Language)
A Triple Graph Grammar is a pair TGG = (T G,P), where T G is an attributed type triple graph
and P is a set of rules. The language L (TGG) is the set of all triple graphs that can be derived
from G /0, the empty triple graph, by applying a finite sequence of triple graph rules in P.

Example: Figure 3 depicts the triple graph rule CardToEntry for our example4. L and R of
the rule are superimposed in a single diagram where required or context elements (L) are black
while the green colour and ++ markup indicate R \ L, i.e., the elements to be created by the
rule. A learning box and its corresponding dictionary (created by another rule that establishes
the basic structures) are extended with cards and entries, respectively.

box : Box dict : Dictionaryb2d : BoxToDict

part : Partition

addPrefix("Question: ", t4, card.front)
addPrefix("Answer: ", t5, card.back)
concat(t4, ": ", t5, entry.content)

card : Card
++

entry : Entry
++

c2e : CardToEntry
++++ ++

contentbackfront

divide(card.history, maxHist, t1)
multiply(t1, 2, t2)
max(part.index, t2, t3)
indexToLevel(t3, entry.level)

history

index

level

++ ++

Figure 3: TGG rule for running example: CardToEntry(maxHist:int)

The CSP of each rule is specified using a textual syntax. For CardToEntry (Fig. 3), the
CSP depicted in the rule specifies all dependencies motivated in the informal description of the
transformation in Sec. 2. The first four constraints specify the dependencies between the his-
tory of a card, the index of its containing partition and the level of the corresponding
3 Triple graph productions are, therefore, non-deleting.
4 The metamodel for the correspondence domain (not shown explicitly due to space limitations) consists of only the
two link types BoxToDict and CardToEntry as used in the rule.

7 / 16 Volume 49 (2012)

Complex Attribute Manipulation in TGGs with Constraint-Based Programming Techniques

dictionary entry. The parameter maxHist of the rule is used to normalize the history of
the current card with divide, such that t1 ∈ [0,1]. As we have three levels for our dictio-
nary, this normalized value is scaled to t2 ∈ [0,2] with multiply. This is then compared
with the actual index of the partition using max, which ensures that the maximum value is
contained in t3. Finally, indexToLevel is used to convert the float t3 to a valid level, i.e., a
string ∈ {“beginner”, “advanced”, “master”}. The remaining three constraints ensure that the
front and back of a card correspond to the content of a dictionary entry, adding the pre-
fixes “Question:” and “Answer:” via addPrefix, after splitting the values via concat
using a colon “:” as a separating character.

Figure 4 shows the connection of the concrete syntax of CardToEntry to the formalization
introduced in Definitions 6–9. Note that variables are trivial terms, constants are formalized as
nullary operations, and, to simplify the diagram, not all terms and operations are shown.

box

part

b2d dict box

part

b2d dict

card c2e entry

L R

t1 t2 t3

part.index 2

maxHist

card.history

"Question"

"Answer" t4 t5

card.front

card.back entry.level

entry.content":"

divide(card.history, maxHist, t1) multiply(t1, 2, t2)

⌃ = {{String, Integer, Bool}, {divide, multiply, 2, . . .}}
X = {XInteger = {part.index, card.history, maxHist, t1, t2, t3},

T⌃,String(X) �

T⌃,Integer(X) �

T⌃,Bool(X) �

XString = {card.front, card.back, entry.content, entry.level, t4, t5}}

VG

EG

VD

ED

morphism

Figure 4: Formalization of TGG rule cardToEntry

4 From TGGs to Model Transformations

Although TGGs can be directly used to evolve three models simultaneously, the real potential
of TGGs as a bidirectional language lies in the automatic derivation of unidirectional model
transformations. To keep the discussion as clear as possible, only the derivation of a forward
transformation is discussed. By replacing source with target and forward with backward all
results can be transferred analogously for the derivation of a backward transformation.

Proc. BX 2012 8 / 16

ECEASST

The main idea is to decompose every TGG rule into a source rule that only transforms the
source component of a triple graph, and a forward rule that retains the source component and
transforms the correspondence and target components (Def. 10). Any source model that can
be created with source rules (referred to as source consistent) can be inspected to determine an
appropriate sequence of forward rules (referred to as a forward graph transformation) that retain
the given source model and extend it to a consistent triple [Sch94, EEE+07]. We extend this
operationalization process to include our introduced CSPs by regarding each constraint as an
atomic unit for which the user must supply corresponding operations implemented in Java.

For example, the constraint indexToLevel from our running example would have (i) a for-
ward operation that determines the corresponding level for the index given by its first argument,
and assigns or binds this value to its second argument, and (ii) a backward operation that deter-
mines the corresponding index for the level given by its second argument, and assigns this value
to its first argument, and (iii) a check operation that ensures both values (index and level) are
consistent. Note that not all possible combinations have to be supported for every constraint,
e.g., the user can decide if indexToLevel makes sense when both arguments are free and
must be assigned consistent default values, or not.

Such atomic constraints with supplied operations can be reused multiple times in different
CSPs, and combined with other constraints in an arbitrary order as shown in our running exam-
ple. The task of operationalizing the complete CSP is now to determine a correct sequence of
corresponding operations (a search plan), such that all variables can be assigned values (bound)
by executing the operations one after the other. This sorting process has to take the mode (for-
ward, backward) and the operations that each constraint supports into account. In our implemen-
tation, we are able to reuse the very same search plan algorithm used for graph pattern matching,
by swapping the typical graph constraints (type, link) with our user defined attribute constraints
(indexToLevel, concat). In this way, the same transformation engine can be used to realize
our extension without adding any further dependencies.

The complete process for each forward rule is performed in the following steps:

1. The left hand side of the forward rule is matched. This determines values for all bound
attributes required for solving the CSP.

2. The search plan (determined at compile time) is executed to bind all remaining attributes.
3. The forward rule is now applied using the determined bindings for all attributes.

Although atomic constraints are operationalized by the user, our approach allows for flexible
composition and reuse, enabling a well-defined means of integrating user defined functionality
in Java with TGGs, and the possibility of establishing reusable libraries of constraints.

In the following, we formalize our approach by extending the Decomposition and Composi-
tion Theorem [EEE+07], which is the basis for proving correctness and completeness of derived
forward graph transformations. The following definition states how a TGG rule can be decom-
posed into operational source and forward rules:

Definition 10 (Derived Triple Rules: Source Rules and Forward Rules)
Given a triple graph G = (GS

sG←− GC
tG−→ GT), the projection to the source is defined as

projS(G) := (GS
/0←− /0 /0−→ /0). For a triple graph morphism f = (fS, fC, fT),

projS(f) := fS. Projections to the target and correspondence are defined analogously.

9 / 16 Volume 49 (2012)

Complex Attribute Manipulation in TGGs with Constraint-Based Programming Techniques

From TGG rule p = (L,R,C), the following operational rules can be derived:

1. A source rule pS = (LpS ,RpS ,C) that transforms only the source component projS(G) of
G. Applying pS requires a match mS with an assignment asgnS : asgnS |= C (Def. 8).

2. A forward rule pF = (LpF ,RpF ,C) that transforms the correspondence and target compo-
nents of G while retaining its source component. Applying pF requires a match mF with
an assignment asgnF : asgnF |= C .

L

R

LS LC LT

RS RC RT=

=

p s c t

sL tL

sR tR

LS

RS=

=

s

LpS

RpS

�

pS

�

�

�

LpF

RpF

pF

s � sLRS LC LT

RS RC RT=

=

c t

tL

sR tR

id

Source Rule TGG Rule Forward Rule

The following Theorem 1 proves that it is always possible to take a sequence of TGG rules,
decompose each rule in the sequence in operational rules according to Def. 10, and reorder the
rules until all the source rules can be applied before all the forward rules. This fundamental result
allows us to apply forward rules to a given source consistent model (the sequence of source rules
is assumed to be already “applied”). We extend this theorem and the proof from [EEE+07]
appropriately, to take our CSPs into account and show that all results still hold.

Theorem 1 (Decomposition and Composition of Triple Graph Transformation Sequences)
Given a TGG = (P, G /0), let pi = (Li,Ri,Ci) ∈ P be the TGG rule with derived operational rules
piS , piF for i ∈ {1 . . .n} according to Def. 10.

• Decomposition : For each transformation sequence

(1) G00
p1@m1|=C1−−−−−−→ G11

p2@m2|=C2−−−−−−→ . . .
pn@mn|=Cn−−−−−−→ Gnn

there is a corresponding match consistent transformation sequence

(2) G00
p1S @m1S |=C1−−−−−−−−→ G10

p2S @m2S |=C2−−−−−−−−→ . . .
pnS @mnS |=Cn−−−−−−−−→ Gn0,

Gn0
p1F @m1F |=C1−−−−−−−−→ Gn1

p2F @m2F |=C2−−−−−−−−→ . . .
pnF @mnF |=Cn−−−−−−−−→ Gnn.

Match consistency means that the source component of the match of each forward rule
piF : Gn(i−1)→Gni, is completely determined by the co-match of the corresponding source
rule piS : G(i−1)0 → Gi0, and the morphism qi : Gi0 → Gn(i−1) that maps the triple (Gi0)
produced by applying the source rule, to the input triple (Gn(i−1)) for the forward rule, and
that the same assignment is used for both the source and forward rule, i.e., asgniS = asgniF .

• Composition : For each match consistent transformation sequence (2) there is a canonical
transformation sequence (1).

• Bijective Correspondence : Composition and Decomposition are inverse to each other.

Proof.
Decomposition: Let TripleAGraphs be the category consisting of typed attributed triple graphs
and typed attributed triple graph morphisms. As shown in [EEE+07], TripleAGraphs together

Proc. BX 2012 10 / 16

ECEASST

with the class M of monomorphisms is an adhesive High-Level Replacement (HLR) category,
meaning that the general theory of adhesive HLR systems [EEPT06] is applicable.

Using the construction in Def. 10, G00
p1@m1|=C1−−−−−−→ G11 can be split into two steps:

G00
p1S @m1S |=C1−−−−−−−−→ G10

p1F @m1F |=C1−−−−−−−−→ G11. As shown in [EEE+07], the Concurrency Theorem
[EEPT06] guarantees that this split is always possible, is unique, and that the resulting steps
are match consistent if the assignment asgn1 for m1 is used for both the source and forward rule,
i.e. asgn1 = asgn1S = asgn1F so that C1 is satisfied in all cases (C1 = C1S = C1F). This choice
ensures that asgn1S does not contradict C1F . As no new data nodes are introduced via the con-
struction, m1 covers all data nodes required for m1S and m1F and, therefore, asgn1 is sufficient
to determine the data parts of both m1S and m1F . Repeating this process, an intermediate match
consistent transformation sequence (1.5) can be derived from (1):

(1.5) G00
p1S @m1S |=C1−−−−−−−−→ G10

p1F @m1F |=C1−−−−−−−−→ G11
p2S @m2S |=C2−−−−−−−−→ G21

p2F @m2F |=C2−−−−−−−−→ G22,

G22
p3S @m3S |=C3−−−−−−−−→ . . .

pnS @mnS |=Cn−−−−−−−−→ Gn(n−1)
pnF @mnF |=Cn−−−−−−−−→ Gnn.

The steps G10
p1F @m1F |=C1−−−−−−−−→ G11

p2S @m2S |=C2−−−−−−−−→ G21 are sequentially independent [EEPT06], as p2S

matches the source component of G11 retained from G10 by p1F . The Local Church Rosser Theo-

rem [EEPT06] guarantees the existence of a sequence G10
p1S @d|=C2−−−−−−→G20

p1F @m1F |=C1−−−−−−−−→G21 with
d = (projS(m2S), /0, /0). The assignments asgn1 and asgn2 determine both matches completely as
m1F remains unchanged and d is derived from m2S . Sequential dependency ensures that asgn2
does not contradict C1. Applying this shift repeatedly to (1.5) leads to match consistent (2).

G00

G11

G22

G10

G21

G20p1S
@m1S

|= C1

p2F
@m2F

|= C2

p1F
@m1F

|= C1

p2S
@d |= C2G00

G11

G22

p1@m1 |= C1

p2@m2 |= C2

G00

G11

G22

G10

G21

p1S
@m1S

|= C1

p1F
@m1F

|= C1

p2S
@m2S

|= C2

p2F
@m2F

|= C2

Composition: Given a match consistent sequence (2):

G00
p1S @m1S |=C1−−−−−−−−→ G10

p2S @m2S |=C2−−−−−−−−→ . . .
pnS @mnS |=Cn−−−−−−−−→ Gn0,

Gn0
p1F @m1F |=C1−−−−−−−−→Gn1

p2F @m2F |=C2−−−−−−−−→ . . .
pnF @mnF |=Cn−−−−−−−−→Gnn, such that ∀i∈ {1 . . .n}, asgniS = asgniF .

Due to sequential dependency and the Local Church Rosser Theorem, we can perform an inverse
shift on (2) to obtain (1.5) while retaining match consistency. Match consistency allows us to
use the Concurrency Theorem to merge corresponding source and forward rules to obtain (1).
Assignments and constraints in (2) are compatible and can also be merged appropriately.

Bijective Correspondence: This is a direct consequence of the bijective correspondence in the
Local Church-Rosser Theorem and the Concurrency Theorem [EEE+07].

11 / 16 Volume 49 (2012)

Complex Attribute Manipulation in TGGs with Constraint-Based Programming Techniques

A forward model transformation can be constructed formally by inspecting a given source consis-
tent source model, determining the sequence of source and forward rules as in (2), and applying
the forward rules to the source model to result in a consistent triple according to Theorem 1:

Definition 11 (Forward Graph Transformation FGT)
Given a source consistent input triple graph GI , i.e., an input triple graph built up with a source

rule transformation sequence: /0 = G00
p1S @m1S |=C1−−−−−−−−→ G10

p2S @m2S |=C2−−−−−−−−→ . . .
pnS @mnS |=Cn−−−−−−−−→ Gn0 = GI ,

the forward graph transformation FGT : GI → GO can be determined using the specified TGG

as: GI = Gn0
p1F @m1F |=C1−−−−−−−−→ Gn1

p2F @m2F |=C2−−−−−−−−→ . . .
pnF @mnF |=Cn−−−−−−−−→ Gnn = GO.

A backward graph transformation BGT can be defined analogously.

Necessary Restrictions
An efficient implementation that constructs an FGT given an input graph and a TGG must:

(i) Determine the correct sequence of source rules that builds up the input graph, and
(ii) For each source rule, derive an assignment for all variables, which satisfies the CSP of the

TGG rule and can be used for the forward rule.
In our current TGG implementation, we apply the following CSP-related restrictions:

1. We require that a partial assignment, i.e., the connection between terms used in the con-
straints and attributes in the rule, can be determined by inspecting the attributes of the input
graph, for which a solution of the CSP must exist. This is enforced already at compile time
during the search plan generation.

2. Attribute constraints of a TGG rule are local with respect to this rule, i.e., can only be
specified over values of attributes of nodes used in the rule (and not in any other).

3. The actual solving/operationalization of individual constraints must be provided by the
user (as Java code). Our solver is used to determine the correct order and choice of opera-
tions for arbitrary sets of constraints in each rule CSP.

5 Related Work

There exist various bidirectional model transformation languages [Ste08, CFH+09] that address
the same basic challenges as the TGG approach which, when used for model synchroniza-
tion, can be regarded as an implementation of symmetric delta-lenses [DXC+11] as shown in
[HEO+11]. In the following we discuss three different groups of related approaches:

Other Bidirectional Languages: An approach that gives a nice contrast to TGGs is Janus, a
bidirectional programming language [YAG08] that provides basic reversible programming prim-
itives. As TGGs are ideal for specifying structural changes in complex graph structures but lack
a means for complex attribute manipulation, and Janus excels in the bidirectional manipulation
of simple data types (attributes) but faces challenges when dealing with complex data struc-
tures (graphs), a combination of both languages would be interesting. Along the same lines,
approaches for bidirectional string manipulation such as Boomerang [BFP+08] could be inte-
grated as a sublanguage in TGG rules for attribute manipulation. Combining such full-fledged
bidirectional programming languages with TGGs would yield an expressive but quite complex
language. It is questionable if one can require users to master two or more non-trivial languages.

Proc. BX 2012 12 / 16

ECEASST

Similar to TGGs, GRoundTram, a bidirectional framework based on graph transformations
[HHI+11], aims to support model transformations in the context of MDE. GRoundTram auto-
matically generates a consistent backward transformation from a given forward transformation
specified in UnQL+, which is based on the graph query algebra UnCAL and places strong em-
phasis on supporting compositionality. In contrast, TGGs provide a rule-based algebraic graph
transformation language from which both forward and backward transformations are automati-
cally derived. Both approaches face a different set of non-trivial challenges also with respect to
attribute manipulation.

Constraint-Based Approaches: Nentwich et al [NCEF02] show with xlinkit that consistency
constraints can be used to implement bidirectional transformations. Although the basic idea of
using constraints serves as inspiration for our extension, xlinkit is geared towards link creation
and XML-based technologies and thus cannot be directly used in our TGG context.

The pattern-based model-to-model transformation approach presented in [GLO09, GLO10]
is inspired by TGGs but is constraint-based rather than rule-based. This means that the lan-
guage of consistent triples is defined by specifying a set of constraints that must be fulfilled as
opposed to specifying a (triple graph) grammar. The advantages of this approach as compared
to TGGs include an easier operationalization for consistency checking and a natural handling
of attribute manipulation via attribute constraints. There are, however, also a few weaknesses
including a more complex operationalization for forward and backward transformations, and
difficulties to guarantee completeness in practice (certain heuristics must be used). Depending
on the application scenario, a rule-based specification can also be more compact and intuitive, as
a constraint-based specification might require numerous (negative) constraints to define the exact
same language. Our approach introduces flexible attribute manipulation to TGGs by combining
both approaches: the TGG rule-based approach and a constraint-based approach for attribute
handling. Our attribute constraints can be formally regarded as a form of application conditions
for TGGs [GEH11], which are only allowed to operate on the attributes in a single TGG rule
without manipulating the triple graph structure. In contrast, [GLO09, GLO10] introduce (at-
tribute) constraints for arbitrary graph triples, not only for patterns. Similar to our approach,
[GLO09, GLO10] use a constraint solver to compute concrete values if these are required.

A constraint-based handling of attributes for general algebraic graph transformation has been
introduced formally in [OL10] via symbolic graphs which might lead to a simpler formalization
for our attribute constraints. Moreover, the idea of increasing efficiency via a lazy evaluation
of attribute constraints and postponing constraint solving is quite interesting. As our generative
approach, however, performs search plan generation already at compile-time, this is probably of
greater importance for an interpretative solution.

Existing Solutions for Attribute Manipulation in TGG Rules: The requirement of support-
ing complex attribute manipulation in TGGs is not new and has already been identified as a major
deficit by various authors [KW07, Kön08, Wag09, DG09, GLO09]. As TGGs have been aligned
with the QVT specification [OMG05] in [Kön08], the approach taken by [Kön08, KW07] is
similar to what is described in the specification. As these approaches have, however, not been
sufficiently formalized, it is unclear how constraints that are more complex than simple expres-
sions consisting of a single parameter (which are trivially revertible), are to be efficiently handled
in an implementation. Furthermore, although black box operations can be integrated with rela-
tions (rules), this does not allow for the same composition and reusability that our approach does

13 / 16 Volume 49 (2012)

Complex Attribute Manipulation in TGGs with Constraint-Based Programming Techniques

by integrating black box constraints in a CSP for each rule. In [DG09], an integration of TGGs
with OCL is presented, which allows arbitrary OCL expressions in TGG rules. Currently only
trivially reversible (attribute assignments) are supported in the implementation. Our solution of
using a constraint solver to support complex expressions and composition can be viewed as a
natural and necessary generalization and formalization of ideas from [Kön08, KW07, DG09].

Other approaches [KRW04, GH09], require the user to specify a pair of functions or con-
straints for each direction that can be implemented in Java or OCL. Although such practical
approaches are quite expressive, they go against the TGG philosophy of providing a single spec-
ification from which different operational rules can be derived. A further problem is that the user
is responsible for guaranteeing and maintaining consistency between the pairs of functions.

In our approach, individual constraints only need to be specified once and can then be reused
and composed freely in a declarative manner in TGG rules. Furthermore, constraint (library)
providers do not need worry about the correct sequence and choice of operations as this is derived
automatically by our constraint solver.

6 Conclusion and Future Work

In this paper, we have presented an extension to TGGs to support complex attribute manipulation
in TGG rules. Our approach has the following advantages:

1. It works well with the existing formalization of TGGs by [Sch94, EEE+07] and handles
the different modi (simultaneous, forward, backward) in a single specification.

2. It is quite flexible, providing a clear interface to user-defined constraints implemented in
Java without introducing too much additional complexity in TGG rules.

3. It allows for a composition and reuse of constraints, which can be provided as libraries.
4. Our tool support offers a concise concrete syntax that visually differentiates between vari-

ables used for user interaction or scripting (maxHist in the running example), and other
variables, which are to be resolved in operational rules. Dependencies between attributes
are indicated unobtrusively in visual TGG rules while the details of the CSP can be speci-
fied with a suitable simple textual DSL.

In the future, we plan to investigate an alternative formalization for handling attributes and terms
with variables in graph transformations [OL10], which might lead to a clearer, simpler theory.
We shall explore further features such as cost functions and optional constraints, and investigate
formal properties of TGGs [KLKS10, EEE+07] to understand how our extension works together
with other advanced TGG concepts and theory. Finally, we shall apply our implementation
in practice, as a part of our metamodelling tool eMoflon5[ALPS11], and gain experience with
various case studies to establish a suitable set of standard libraries of constraints and explore the
exact limits of our approach.

5 www.moflon.org

Proc. BX 2012 14 / 16

ECEASST

Bibliography

[ALPS11] A. Anjorin, M. Lauder, S. Patzina, A. Schürr. eMoflon : Leveraging EMF and Pro-
fessional CASE Tools. In INFORMATIK 2011. LNI 192, p. 281. GI, 2011.

[BFP+08] A. Bohannon, J. Foster, B. Pierce, A. Pilkiewicz, A. Schmitt. Boomerang : Re-
sourceful Lenses for String Data. ACM SIGPLAN Notices 43(1):407–419, 2008.

[BG01] J. Bézivin, O. Gerbé. Towards a Precise Definition of the OMG/MDA Framework.
In Proc. of ASE 2001. Pp. 273–280. IEEE, 2001.

[CFH+09] K. Czarnecki, J. N. Foster, Z. Hu, R. Lämmel, A. Schürr, J. Terwilliger. Bidirec-
tional Transformations: A Cross-Discipline Perspective. In Proc. of ICMT 2009.
LNCS 5563, pp. 260–283. Springer, 2009.

[DG09] D. Dang, M. Gogolla. On Integrating OCL and Triple Graph Grammars. In Models
in Software Engineering. LNCS 5421, pp. 124–137. Springer, 2009.

[DXC+11] Z. Diskin, Y. Xiong, K. Czarnecki, H. Ehrig, F. Hermann, F. Orejas. From State- to
Delta-Based Bidirectional Model Transformations: the Symmetric Case. In Proc. of
MODELS 2011. Volume 2050685, pp. 304–318. Springer, 2011.

[EEE+07] H. Ehrig, K. Ehrig, C. Ermel, F. Hermann, G. Taentzer. Information Preserving Bidi-
rectional Model Transformations. In Proc. of FASE 2007. LNCS 4422, pp. 72–86.
Springer, 2007.

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer. Fundamentals of Algebraic Graph Trans-
formation. Springer, 2006.

[GEH11] U. Golas, H. Ehrig, F. Hermann. Formal Specification of Model Transformations by
Triple Graph Grammars with Application Conditions. In Proceedings of the Interna-
tional Workshop on Graph Computation Models (GCM’10). ECEASST 39, p. 149.
European Association of Software Science and Technology, 2011.

[GH09] H. Giese, S. Hildebrandt. Efficient Model Synchronization of Large-Scale Models.
Technical report, Hasso-Plattner Institute at the University of Potsdam, 2009.

[GLO09] E. Guerra, J. D. Lara, F. Orejas. Pattern-Based Model-to-Model Transformation :
Handling Attribute Conditions. In Proc. of ICMT 2009. LNCS 5563, pp. 83–99.
Springer, 2009.

[GLO10] E. Guerra, J. D. Lara, F. Orejas. Controlling Reuse in Pattern-Based Model-to-
Model Transformations. In Graph Transformations and Model Driven Enginering.
LNCS 5765, pp. 175–201. Springer, 2010.

[HEO+11] F. Hermann, H. Ehrig, F. Orejas, K. Czarnecki, Z. Diskin, Y. Xiong. Correctness
of Model Synchronization Based on Triple Graph Grammars. In Proc. of MODELS
2011. LNCS 6981, pp. 668–682. Springer, 2011.

15 / 16 Volume 49 (2012)

Complex Attribute Manipulation in TGGs with Constraint-Based Programming Techniques

[HHI+11] S. Hidaka, Z. Hu, K. Inaba, H. Kato, K. Nakano. GRoundTram: An Integrated
Framework for Developing Well-Behaved Bidirectional Model Transformations. In
Alexander et al. (eds.), Proc. of ASE 2011. Pp. 480–483. IEEE, 2011.

[KLKS10] F. Klar, M. Lauder, A. Königs, A. Schürr. Extended Triple Graph Grammars with
Efficient and Compatible Graph Translators. In Graph Transformations and Model
Driven Enginering. LNCS 5765, pp. 141–174. Springer, 2010.

[Kön08] A. Königs. Model Integration and Transformation - A Triple Graph Grammar-based
QVT Implementation. PhD thesis, Technische Universität Darmstadt, 2008.

[KRW04] E. Kindler, V. Rubin, R. Wagner. An Adaptable TGG Interpreter for In-Memory
Model Transformations. In Proceedings of the 2nd International Fujaba Days.
Pp. 35–38. 2004.

[KW07] E. Kindler, R. Wagner. Triple Graph Grammars : Concepts , Extensions , Implemen-
tations , and Application Scenarios. Technical report, Software Engineering Group,
Department of Computer Science, University of Paderborn, 2007.

[LSRS10] M. Lauder, M. Schlereth, S. Rose, A. Schürr. Model-Driven Systems Engineering:
State-of-the-Art and Research Challenges. Bulletin of the Polish Academy of Sci-
ences, Technical Sciences 58(3):409–422, 2010.

[NCEF02] C. Nentwich, L. Capra, W. Emmerich, A. Finkelstein. Xlinkit: A Consistency
Checking and Smart Link Generation Service. ACM Transactions on Internet Tech-
nology 2(2):151–185, 2002.

[OL10] F. Orejas, L. Lambers. Symbolic Attributed Graphs for Attributed Graph Transfor-
mation. In Proc. of GraMot 2010. Volume 30. ECEASST, 2010.

[OMG05] OMG. MOF QVT Final Adopted Specification. 2005.

[Sch94] A. Schürr. Specification of Graph Translators with Triple Graph Grammars. In Proc.
of WG 1994. LNCS 903, pp. 151–163. Springer, 1994.

[Ste08] P. Stevens. A Landscape of Bidirectional Model Transformations. In Proc. of GTTSE
2007. LNCS 5235, pp. 408–424. Springer, 2008.

[Ste10] P. Stevens. Bidirectional Model Transformations in QVT: Semantic Issues and Open
Questions. Software and Systems Modeling 9(1):7–20, 2010.

[Wag09] R. Wagner. Inkrementelle Modellsynchronisation. PhD thesis, Universität Pader-
born, 2009.

[YAG08] T. Yokoyama, H. Axelsen, R. Glück. Principles of a Reversible Programming Lan-
guage. In Proc. of CF 2008. Pp. 43–54. ACM, 2008.

Proc. BX 2012 16 / 16

	Introduction and Motivation
	Running Example and Formalization of Basic MDE Concepts
	A Constraint-Based Attribute Manipulation Approach for TGGs
	From TGGs to Model Transformations
	Related Work
	Conclusion and Future Work

