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Observations relating to the equivalences induced on model sets by
bidirectional transformations

Perdita Stevens

Laboratory for Foundations of Computer Science, School of Informatics, University of
Edinburgh

Abstract: A bidirectional transformation on a pair of sets of models induces two
principal equivalence relations on each set of models. Since a model can be uniquely
identified by specifying its equivalence class in each of these relations, they function
as a coordinate system for the model sets, with respect to the transformation. We
prove some results relating to this observation. Using them we give the implication
relationships between various properties of bidirectional transformations. In partic-
ular, we characterise the bidirectional transformations that can be decomposed into
a pair of lenses working “tail to tail”.

Keywords: bidirectional transformation

1 Introduction

The study of bidirectional transformations between model sets is, so far, hampered by lack of
sufficiently deep understanding of the structures involved. This paper aims to be one step in the
right direction.

A recurring informal theme in work on bidirectional transformations is the idea of looking at
different models “through glasses” which make them indistinguishable; for example, if we look
at two correct implementations of the same abstract model through glasses which only care about
what is relevant to the abstract model, they should not be distinguished. This idea is formalised
using equivalence relations on the sets of models which are related by the transformation.

This paper gives a collection of results concerning them, and goes on to exploit these to deduce
(non-)implications between various “niceness” conditions on bidirectional transformations. We
also give examples: an informal, MDD-realistic one, and some tiny, formal ones to illustrate
points and serve as counter-examples to over-optimistic conjectures.

The paper is structured as follows. In Section 2 we introduce notation and terminology, and
give a our first couple of examples. Section 3 introduces the main focus of the paper, defining a
pair of equivalence relations on each model set related by a bidirectional transformation, giving
examples and basic properties. Section 4 exploits them to prove relationships between the various
“niceness” conditions on bidirectional transformations, summarised in Figure 1. Especially, we
show that a condition called simply matching, defined in terms of our equivalences, is achieved
precisely when a bidirectional transformation can be re-expressed as a pair of lenses connected
“tail to tail”. Section 5 discusses related work, and Section 6 concludes.
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Equivalences induced on model sets by bidirectional transformations

2 Background

Here we recapitulate definitions found for example in [Ste10].
For purposes of this paper a bidirectional transformation R : M↔ N between non-empty sets

M and N is given by specifying a consistency relation, also by slight abuse of notation called
R⊆M×N, together a pair of functions

−→
R : M×N→ N

←−
R : M×N→M

whose task is to enforce consistency.
We use the term “model” for the structures related by a bidirectional transformation because

our motivation is from model-driven development, but this does not in fact entail any intention
to restrict what the structures can be: throughout this paper, M and N can be any sets, finite or
infinite, including uncountable.

We will be concerned only with bidirectional transformations that only change a model when
consistency requires it and, in that case, do enforce consistency: that is, those that are correct
and hippocratic.

Definition 1 R : M↔ N is correct if

∀m ∈M ∀n ∈ N R(m,
−→
R (m,n))

∀m ∈M ∀n ∈ N R(
←−
R (m,n),n)

Definition 2 R : M↔ N is hippocratic if for all m ∈M and n ∈ N, we have

R(m,n) ⇒ −→
R (m,n) = n

R(m,n) ⇒ ←−
R (m,n) = m

From now on, all bidirectional transformations will be assumed to be correct and hippo-
cratic. Please note also that many statements we shall make have exactly dual versions with
dual proofs, replacing −→R with←−R etc. Generally we state both versions, but prove only one.

Technically we need not include the consistency relation as part of the definition of a correct
and hippocratic transformation, because we have immediately from the definitions

Lemma 1 R(m,n)⇔−→R (m,n) = n⇔←−R (m,n) = m.

However, the consistency relation is for software engineering purposes the primary part of the
transformation definition, so it is convenient to include it.

In order to help the reader’s intuition we will use the following, informal, running example.
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Example 1 Let the elements of model set M be UML models. Let each element of model set
N be a test suite, given as a set of test classes. Suppose the development team wishes to count a
UML model m as being consistent with a test suite n iff the following two conditions hold:

• for every class in model m, say with name Foo1, there is at least one test class in n, with
the naming convention that each such test class is called TestFooX for some natural
number X ;

• for every string Name such that there is at least one test class in n with a name of the form
TestNameX for an integer X (there could be several different values of X for the same
Name), there is a class called Name in m.2

We write T (m,n) if this holds. Notice that each model typically contains a lot of information not
included in the other. There is a choice of ways to restore consistency, but one possibility is:

• −→T (m,n) deletes any test classes from n whose names are of the form TestNameX but for
which there is no class Name in m. For any class (say called Name) in m not having any
corresponding test class in n, it adds one “skeleton” test class TestName0.

• ←−T (m,n) deletes from m any class for which n contains no test class (along with any other
model elements that must be deleted, such as associations to deleted classes). For any test
class in n whose name is of the form TestNameX but for which there is no class Name
in m, it adds a new class Name to m (in a suitable “default” state, e.g., not related to any
other class, and having no attributes or operations).

Appropriately implemented, this bidirectional transformation could (and should) be correct and
hippocratic.

A well-known problem is that these definitions alone are too weak to enforce “sensible” be-
haviour. Unfortunately the most natural extra conditions to impose have the disadvantage that
they seem to be too strong in practice. One well-known possibility, here using terminology
coined in [Dis08], is:

Definition 3 R : M↔ N is history ignorant if for all m,m′ ∈M and n,n′ ∈ N, we have

−→
R (m,

−→
R (m′,n)) =

−→
R (m,n)

←−
R (
←−
R (m,n′),n) =

←−
R (m,n)

The terminology for special properties of bidirectional transformations is mildly problematic,
partly because different perspectives make different names seem natural. In earlier versions of
this paper, what we now call history ignorance was termed strong undoability. This was natural to

1 For simplicity, in the example we assume that UML class names are strings containing only characters from [A-Za-
z], and in particular that there is only one package!
2 Note that there could be other test classes in n whose names were not of this form, e.g. called BasicSetUpTest,
Performance; these are deemed to be irrelevant for purposes of determining consistency with a given UML model.
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us because the notion called undoability in [Ste10] demanded the same conditions as above, but
only for m∈M and n∈N satisfying R(m,n). That notion makes the bidirectional transformation
undoable in the following sense: suppose that (m,n) is a consistent pair of models, and suppose
the developer of m modifies it to m′, propagates the modification by applying

−→
R , and then wishes

to undo the modification, returning to m. To say that the transformation is undoable is to say
that now, applying

−→
R will return the situation to exactly what it was in the beginning, the pair

(m,n); mistakes can be undone – provided that the initial pair of models was consistent. History
ignorance is a stronger form of undoability, in that it demands the same conditions for more
model pairs. Indeed, the condition does capture a notion of undoability that is stronger, in the
following sense. Suppose our indecisive developer starts from any pair of models (m,n), not
necessarily consistent, and behaves as before. The final pair of models, (m,n′) say, may of
course not be identical to the initial pair (m,n), since

−→
R always ensures consistency and the

original state may not have been consistent. Still, the developer’s mistaken modification to m has
no effect in the final situation, in the sense that n′ is the very same model that would have been
the result of

−→
R (m,n); the mistake has been undone, even though the initial state of the pair of

models might not have been consistent.
An alternative perspective, though, is that a history ignorant bidirectional transformation al-

lows the developer to be safely ignorant of the history of when modifications to their model have
been propagated to the other side: for example, if a developer starts with m′ and modifies it to
m, it does not matter whether

−→
R was ever applied to m′; provided that it is applied to m at the

end, the effect on the other side’s model will be the same regardless. We use the term history
ignorance here for consistency with [Dis08, XSHT11].

Whatever our terminology, the special situation that we have when a bidirectional transforma-
tion is history ignorant would clearly be hugely advantageous to the usability of a bidirectional-
transformation enabled tool, because the tool could reasonably propagate changes as and when
it was convenient to do so without needing the developer’s permission. It is unfortunate that
realistic bidirectional transformations do not have this property. As we shall see in Section 4, the
essential reason why they do not is that the information that is relevant to consistency is usually
interdependent with the rest of the information in a model, whereas history ignorance requires
the consistency-relevant information to be independent of the rest.

History ignorance is also algebraically a more natural condition than undoability, as we shall
see. That it is indeed stronger than undoability is illustrated by the following (minimal) example,
this one given formally.

Example 2 Let M = {a,b,c}×{false, true} and let N = {a,b,c}. For all x,y ∈ {a,b,c}, φ ∈
{false, true}, let: R((x,φ),y) hold iff x = y;

−→
R ((x,φ),y) = x;

←−
R ((x,φ),y) = (y,¬φ) if (as sets) {x,y}= {a,c}

= (y,φ) otherwise.

Then R is correct, hippocratic and undoable, but not history ignorant. A counterexample to his-
tory ignorance is that

←−
R (
←−
R ((a, true),c),b)=

←−
R ((c, false),b)= (b, false) whereas

←−
R ((a, true),b)=

(b, true). However, it is easy to check that there is no counterexample to undoability.
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Example 3 The example begun in Example 1 is not even undoable. Suppose we start with
a UML model m containing class Foo and a test suite n which has a test class TestFoo1
containing some actual test code, and also consistent in every other way so that T (m,n). We
modify m in a way which involves deleting Foo, giving m′, and apply

−→
T . This results in test class

TestFoo1 being deleted, and the code which it contained being lost. If we now edit m′ back to
its original state m, and again apply

−→
T , the resulting test suite will include a skeleton test class

for Foo, called TestFoo0, but the lost test code is not restored. That is,
−→
T (m,

−→
T (m′,n)) 6= n.

3 Coordinate grid induced by a bidirectional transformation

Suppose we are given a bidirectional transformation R which is correct and hippocratic (but not
necessarily undoable).

Recall the equivalences from [Ste08] (but presented here with slightly different symbols for
better readability), defined in terms of R.

Definition 4 The equivalence relations ∼M
F and ∼M

B on M, and ∼N
F and ∼N

B on N, are defined
as follows:

• m∼M
F m′⇔∀n ∈ N.

−→
R (m,n) =

−→
R (m′,n)

• m∼M
B m′⇔∀n ∈ N.

←−
R (m,n) =

←−
R (m′,n)

and dually,

• n∼N
F n′⇔∀m ∈M.

−→
R (m,n) =

−→
R (m,n′)

• n∼N
B n′⇔∀m ∈M.

←−
R (m,n) =

←−
R (m,n′)

Notice that it is immediate that these relations are indeed equivalence relations.
Intuitively, m ∼M

F m′ says “m and m′ do not differ in any way that is visible on the N side”.
The reader familiar with lenses will recognise that this generalises ∼g. On the other hand, m∼M

B
m′ says that “the only differences between m and m′ are those visible on the N side, so that
they become indistinguishable after any synchronisation with an element of N”. The reader
familiar with [BFP+08] will recognise that this generalises∼max, the coarsest equivalence with
respect to which a lens is quasi-oblivious. In an even more specialised setting, that of constant
complement view updates, it generalises the equivalence defined in Theorem 7.2 of [BS81]. We
can import the latter into the symmetric setting and demonstrate the relationship as follows.

Definition 5 The relation ≡ on M is defined as follows:

m≡ m′⇔∃n ∈ N.
←−
R (m,n) = m′

In general, this is not an equivalence relation, even though for consistency with [BS81] we
have used the≡ symbol for it. For history ignorant bidirectional transformations R, however, we
see that it is an equivalence relation because it coincides with ∼M

B :
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Proposition 1 Let R be a history ignorant bidirectional transformation. Then m ∼M
B m′ iff

m≡ m′.

We postpone the proof until Section 4, by which point we will have introduced some conse-
quences of our definitions which make it easier.

We will generally suppress the superscripts and just write ∼F , ∼B.

Example 4 Returning to the informal example of Examples 1, 3, we see that:

• m ∼M
F m′ iff the set of names of classes in m is the same as the set of names of classes in

m′;

• m ∼M
B m′ iff m and m′ are identical apart from (perhaps) containing different classes in

the default state, that is, if one can be edited into the other just by adding and/or deleting
default state classes.

• n ∼N
F n′ iff n and n′ are identical apart from (perhaps) differing in the set of Names for

which they include a “skeleton” test class called TestName0. (In particular, if n con-
tained a skeleton TestName0, n′ could be equivalent even if it did not contain any test
class TestName0. However, if n’s TestName0 had been filled in with some test code,
then in order to be equivalent, n′ would have to have a TestName0 with identical code.)

• n ∼N
B n′ iff the set of class names derived by taking class name Name for every test class

in n whose name is of the form TestNameX for some integer X (ignoring any test classes
with names not of that form) is the same as the set of names derived from n′ using the
same procedure.

Very informally, the fact that ∼M
B and ∼N

F are relatively fine – e.g. one feels that it would be
unlikely for a randomly chosen m and m′ to happen to be such that m ∼M

B m′ – arises from the
fact that both models can hold plenty of information not present in the other; it is not likely
that m and m′ will have only differences which are visible on the N side, because most potential
differences between them are invisible there.

If we represent a bidirectional transformation R by giving a table for
−→
R and a table for

←−
R ,

each with a row for each element of M and a column for each element of N, the equivalences can
be read off: m∼F m′ if the rows for m and m′ in the

−→
R table are identical, n∼F n′ if the columns

for n and n′ in the
−→
R table are identical, and similarly for the∼B equivalences using the

←−
R table.

Example 5 Let us represent Example 2 in this way.−→
R a b c

(a, true) a a a
(b, true) b b b
(c, true) c c c
(a, false) a a a
(b, false) b b b
(c, false) c c c

←−
R a b c

(a, true) (a, true) (b, true) (c, false)
(b, true) (a, true) (b, true) (c, true)
(c, true) (a, false) (b, true) (c, true)
(a, false) (a, false) (b, false) (c, true)
(b, false) (a, false) (b, false) (c, false)
(c, false) (a, true) (b, false) (c, false)
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We read off that (x,φ)∼F (x′,φ ′) iff x = x′, while m∼B m′ only when m = m′. Looking at N,
n∼F n′ always, while n∼B n′ only when n = n′.

Remark 1 Clearly, that n ∼F n′ always is equivalent to saying that
−→
R ignores its second argu-

ment, that is, that the transformation is a lens in the sense of [FGM+07].

We shall use this as the definition.

Definition 6 A bidirectional transformation R is a lens if it is correct and hippocratic and fur-
thermore

−→
R ignores its second argument, which we therefore omit for notational convenience.

The relationship between lenses and bidirectional transformations is easy to see and was dis-
cussed in Section 4.4 of [Ste10], although in the context of undoability rather than history igno-
rance. We will not introduce lens notation and laws, but simply state for the benefit of readers
familiar with lenses:

Proposition 2 Let R be a (for once, not necessarily correct and hippocratic) bidirectional
transformation in which

−→
R ignores its second argument. Then

1. R is a well-behaved lens in the sense of [FGM+07] iff it is correct and hippocratic.

2. R is a very well-behaved lens in the sense of [FGM+07] iff it is correct, hippocratic and
history ignorant.

The following easy result was proved in [Ste08] and illustrated above.

Proposition 3 If both m1 ∼F m2 and m1 ∼B m2 then m1 = m2.

This results shows that a model is uniquely determined by specifying its ∼F and its ∼B equiv-
alence class. Given a model m, we can think of its ∼F equivalence class as its x-coordinate and
of its ∼B equivalence class as its y-coordinate. Specifying coordinates in this sense determines
at most one model, but some pairs of coordinates specify no model; that is, if a given ∼F equiv-
alence class and a given ∼B equivalence class intersect, they do so in a set of just one model, but
it is in general possible that they do not intersect. We think of the elements of a model space laid
out in a coordinate grid in this way; some squares on the grid are empty, but no square contains
more than one model.

Let MF be a transversal3 of ∼F and MB be a transversal of ∼B.
We may identify M with a subset of MF×MB: that is, henceforth we notate any element m∈M

as (mF ,mB) where mF is the unique element of MF satisfying mF ∼F m and mB is the unique
element of MB satisfying mB ∼B m . The closure of M, M, is the whole of MF ×MB. Similarly
for N, we let NF be a transversal of ∼F and NB be a transversal of ∼B.

Remark 2 We are identifying a model by specifying its equivalence class in each of two equiv-
alence relations. We have a notational choice to make here: do we represent a model m by giving

3 Recall that a transversal T for an equivalence relation on a set A is a set T ⊆ A comprising exactly one element of
each equivalence class.
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representatives of each equivalence class, (mF ,mB) or do we use some notation for the equiv-
alence classes themselves, ([m]∼F , [m]∼B)? Each choice has strengths and weaknesses. Since
there is, in our setting, generally no canonical choice of representative of an equivalence class,
the latter choice appeals; but it has the disadvantage that we must either define new symbols for
a version of R lifted to equivalence classes, and juggle both versions in our work, or risk the
confusion that might result from our abusing notation by not doing so. Instead we choose the
former option, despite the disadvantage that it involves an arbitrary choice of transversal. What
we gain is that when we write, for example, mF , it does not matter whether we think of mF as
partial information concerning a model m = (mF ,mB) or as a model in its own right: it is both.

It is important to understand, however, that it is not generally possible to ensure that the
elements of MF are all ∼B equivalent; see Lemma 3.

This way of representing models is useful because it separates relevant from irrelevant infor-
mation for purposes of applying the components of the bidirectional transformation.

Lemma 2 1. Whenever m∼F m′ and n∼B n′ we have R(m,n)⇔ R(m′,n′); that is, whether
R((mF ,mB),(nF ,nB)) is determined from mF and nB alone: it is R(mF ,nB).

2. Whenever m ∼F m′ and n ∼F n′ we have
−→
R (m,n) =

−→
R (m′,n′); that is, the value of

−→
R ((mF ,mB),(nF ,nB)) is determined by mF and nF alone: it is

−→
R (mF ,nF).

3. Whenever m ∼B m′ and n ∼B n′ we have
←−
R (m,n) =

←−
R (m′,n′); that is, the value of

←−
R ((mF ,mB),(nF ,nB)) is determined by mB and nB alone: it is

←−
R (mB,nB).

Proof. If R(m,n) and m′ ∼F m then since n =
−→
R (m,n) =

−→
R (m′,n) we must have R(m′,n) by

Remark 1. Similarly,
←−
R (m,n) = m iff R(m,n) in which case if n′ ∼B n then also R(m,n′). In

other words, whether R((mF ,mB),(nF ,nB)) is determined by the entries mF and nB alone. Since
mF itself is an element of M, and nB itself is an element of N, we have R(m.n) = R(mF ,nB).

Similarly, if
−→
R ((mF ,mB),(nF ,nB)) = (n′F ,n′B) then by definition

−→
R ((mF ,m′′B),(nF ,n′′B)) =

(n′F ,n′B) for any other m′′B,n′′B; in other words the result of
−→
R ((mF ,mB),(nF ,nB)) is determined

by the entries mF , nF alone. Dually,
←−
R ((mF ,mB),(nF ,nB)) is determined by mB, nB alone.

Remark 3 In terms of the symmetric lens formalism of [HPW11], MB×NF forms a minimal
complement.

Example 6 In model set M of Example 2, let us pick MF = {(a, true),(b, true),(c, true)} (the
second element of each pair being an arbitrary choice) and MB = M. With respect to these
choices, the coordinate grid for M is:

(a, true) (a, true)
(b, true) (b, true)
(c, true) (c, true)
(a, false) (a, false)
(b, false) (b, false)
(c, false) (c, false)

(a, true) (b, true) (c, true)
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For NF we may take any of {a}, {b}, {c}; for NB we must take {a,b,c}. The coordinate grid
for N is a single column, because the transformation is a lens with N its abstract side.

In terms of the coordinate grid, whether m is consistent with n is determined by the column of
m and the row of n. It is natural to ask whether one column can be consistent with more than one
row. The answer is yes, but only provided that the rows do not overlap, in the following sense:

Lemma 3 Suppose R(mF ,nB) and R(mF ,zB) where nB,zB ∈NB and nB 6= zB. Then there cannot
exist any nF ∈ NF such that both (nF ,nB) ∈ N and (nF ,zB) ∈ N.

Dually, suppose R(mF ,nB) and R(wF ,nB) and mF 6= wF . Then there cannot exist any mB ∈MB

such that both (mF ,mB) ∈M and (wF ,mB) ∈M.

Proof. Suppose that such an nF did exist. Then
−→
R (mF ,(nF ,nB)) = (nF ,nB) by hippocraticness

and similarly
−→
R (mF ,(nF ,zB)) = (nF ,zB). But (nF ,nB)∼F (nF ,zB) so (nF ,nB) = (nF ,zB) which

is a contradiction.

4 Applications of equivalences

In this section we exploit the results of the previous section to investigate the relationships be-
tween different special properties of bidirectional transformations.

We know that given m1,m2 ∈ M there can be at most one m ∈ M such that m ∼F m1 and
m∼B m2. An important special case is when there is exactly one: every square in our “coordinate
grid” is occupied.

Definition 7 M is full with respect to bidirectional transformation R if for any m1,m2 ∈M there
exists m ∈M such that m∼F m1 and m∼B m2.

Intuitively, when we specify a model m ∈M by specifying its ∼F and ∼B equivalence classes,
what we are doing is picking out the information in m which is relevant to the question of whether
m is consistent with some model in N. As we have seen, this consistency is completely deter-
mined by m’s ∼M

F equivalence class (and dually, for a model n ∈ N its consistency is determined
by its ∼N

B class). In the simplest practical cases, this consistency-relevant information may actu-
ally be identifiable in the model, as being, for example, the set of model elements of particular
types contained in the model; however, our set-up also works generally.

What it means for M to be full is that the consistency-relevant information is in in a certain
sense independent of the rest of the information needed to specify a model fully; there is no
redundancy in the representation. If M is full, and if m = (mF ,mB) is changed by modifying one
of the pieces of information (say mF is changed to m′F ), it will not be necessary for the other
piece of information to be modified as a side-effect, because fullness tells us that (m′F ,mB) will
definitely exist as a model in M. This simplifies the situation in an important way. Contrast the
more usual situation we see in Examples 1, 3; the information in m ∈M on which consistency
depends (the set of class names) is strongly interdependent with the rest of the information in the
model. For example, suppose we take m1 to be a model containing only a class Foo in default
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state (no attributes or other associated information), and m2 to be a model containing a class Bar
which is not in default state (say it has an attribute, or a state machine, or whatever). It is clear
that there can be no model m such that m∼F m1 and m∼B m2. In order for m∼F m1 to hold, the
set of names of classes in m must be the singleton {“Foo”}; in order for m ∼B m2 to hold, the
non-default-state class Bar must be in m.

More generally, we may informally consider that the more sparsely the coordinate grid is
populated, the more dependency there is between the consistency-relevant information and the
rest.

Definition 8 Let R : M ↔ N be a bidirectional transformation inducing equivalences and a
coordinate system as usual. We say that R is matching if there is a bijection f : MF → NB such
that R(mF , f (mF)) for all mF ∈MF . We say that R is simply matching if, in addition, R(mF ,nB)
holds only when nB = f (mF).

Lemma 4 If N is full, then given mF ∈MF there exists a unique nB ∈ NB satisfying R(mF ,nB).
Dually if M is full, then given nB ∈ NB there exists a unique mF ∈ MF satisfying R(mF ,nB).
Therefore if both M and N are full, then R is simply matching.

Proof. Follows directly from Lemma 3.

Proposition 4 The following are equivalent:

1. R : M↔ N is history ignorant.

2. M and N are full with respect to R.

3. For each m∈M and n∈N we have
−→
R (m,n)∼F n and

←−
R (m,n)∼B m: that is,

−→
R stabilises

the coordinate grid columns of N and
←−
R stabilises the coordinate grid rows of M.

Proof. 1⇔ 3 is immediate from the definitions. Next we show (1,3)⇒ 2. Let m1,m2 ∈M. We
must construct m∈M such that m∼F m1 and m∼B m2. Write m1 = (m1F ,m1B), m2 = (m2F ,m2B).
Pick any (nF ,nB) ∈ N. Then, using 3., for some wF ∈MF ,zB ∈ NB we have

−→
R ((m1F ,m1B),n) = (nF ,zB)

←−
R ((m2F ,m2B),(nF ,zB)) = (wF ,m2B)

and by correctness R(m1F ,zB) and R(wF ,zB). Using 1. and Lemma 4, m1F = wF so we have
constructed (m1F ,m2B) = m ∈M as required. Dually for N.

Finally we show 2⇒ 3. Consider
−→
R (m,(nF ,nB) = (n′F ,n′B); we must show that nF = n′F . Since

R is correct, R(m,(n′F ,n′B)) which is equivalent to R(m,n′B). Since N is full, (nF ,n′B) ∈ N, and
since R(m,n′B), by hippocraticness

−→
R (m,(nF ,n′B)) = (nF ,n′B). But since (nF ,nB) ∼F (nF ,n′B),

(n′F ,n′B) =
−→
R (m,(nF ,nB)) =

−→
R (m,(nF ,n′B)) = (nF ,n′B) so nF = n′F as required.

Corollary 1 If R is history ignorant, then R is simply matching.

The following example shows that not every undoable transformation is simply matching.
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Example 7 We slightly modify Example 2 so that undoability is retained but simple matching
is lost.

Let M = N = {a,b,c}×{false, true}. For all x,y ∈ {a,b,c}, ψ,φ ∈ {false, true}, let:
R((x,φ),(y,ψ)) iff x = y;
−→
R ((x,φ),(y,ψ)) = (x,ψ);

←−
R ((x,φ),(y,F)) = (y,¬φ) if (as sets) {x,y}= {a,c}

= (y,φ) otherwise
←−
R ((x,φ),(y,T )) = (y,φ)

This transformation is still correct, hippocratic and undoable, but not history ignorant. To see
that it is not simply matching, observe that {(a,F),(a,T )} is a ∼M

F -equivalence class which is
consistent with two ∼N

B -classes, viz. {(a,F)} and {(a,T )}. Our “twist” has ensured that these
two classes remain separate, because

←−
R ((c,T ),(a,F)) = (a,F) 6= (a,T ) =

←−
R ((c,T ),(a,T )).

Now it is easy to prove Proposition 1 relating Bancilhon and Spyratos’ equivalence to our∼M
B .

Proof. Suppose first that m≡ m′, that is, ∃n ∈ N.
←−
R (m,n) = m′. We need to show that m∼B m′.

Since R is history ignorant, by Proposition 4, m′ =
←−
R (m,n)∼B m as required.

Conversely, suppose m ∼B m′; we must show that ∃n ∈ N.
←−
R (m,n) = m′. By Corollary 1

there is a unique nB ∈ NB such that R(m′,nB). Then by correctness of R and by Lemma 2,
←−
R (m,nB)∼F m′. By Proposition 4,

←−
R (m,nB)∼B m∼B m′. Finally by Proposition 3, this implies

that
←−
R (m,nB) = m′ as required. (Notice that any n∼N

B nB would have done as well.)

Once we have a simply matching bidirectional transformation R it is natural to relabel the ele-
ments of MF and NB so that both are identified with a matching transversal P, so that
R((p,mB),(nF , p′)) iff p = p′. This is reminiscent of constant complement bidirectional transfor-
mations, but it is important to be aware (a) that M⊆ P×MB but equality does not hold in general;
(b) that while

−→
R ((p,mB),(nF , p′)) = (n′F , p), we do not necessarily have n′F = nF . In fact, by

Lemma 2 n′F depends on p and nF . We will write
−→
R ((p,mB),(nF , p′)) = ( fp(nF), p). Dually,

←−
R ((p′,mB),(nF , p)) = (p,bp(mB)).

The property of being simply matching is an interesting one, being strictly weaker than being
history ignorant, satisfied by realistic examples such as Example 1, and yet not universally true. It
turns out that there is an alternative characterisation of this class of bidirectional transformations:
it comprises those that can be constructed by placing two lenses “tail to tail” in a certain way.

Definition 9 Let R : M↔ N be a simply matching bidirectional transformation with matching
transversal P. Then we define lenses RM : M ↔ P and RN : N ↔ P as follows, exploiting the
representation of elements of M as elements of P×MB:

• RM(m, p) iff
−→
RM(m) = p iff m = (p,mB) for some mB ∈MB.

• ←−RM((p′,mB), p) = (p,bp(mB)).

• Dually, RN(n, p) iff
−→
RN(n) = p iff n = (nF , p) for some nF ∈ NF , and
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• ←−RN((nF , p′), p) = ( fp(nF), p).

The following lemma is obvious:

Lemma 5 RM and RN are indeed correct and hippocratic.

The following construction of a bidirectional transformation from a pair of lenses has been
recorded before, see for example Theorem 6 of [Dis08]; here we shall show that it produces
exactly the simply matching bidirectional transformations.

Definition 10 Let RM : M↔ P and RN : N ↔ P be any lenses sharing a common view. Then
the bidirectional transformation R = 〈RM,RN〉 : M↔ N constructed from RM and RN is defined
thus:

• R(m,n) iff
−→
RM(m) =

−→
RN(n)

• −→R (m,n) =
←−
RN(n,

−→
RM(m))

• ←−R (m,n) =
←−
RM(m,

−→
RN(n))

Proposition 5 Given lenses RM : M↔ P and RN : N↔ P,

1. 〈RM,RN〉 is indeed correct and hippocratic.

2. 〈RM,RN〉 is simply matching with common transversal in bijection with P.

Proof. Let R = 〈RM,RN〉.

1. Correctness: let n′ =
−→
R (m,n) =

←−
RN(n,

−→
RM(m)). We have to show that R(m,n′), that is, that

−→
RM(m) =

−→
RN(n′). Now

−→
RN(n′) =

−→
RN(
←−
RN(n,

−→
RM(m))) =

−→
RM(m) as required. Hippocratic-

ness: suppose R(m,n), that is,
−→
RM(m) =

−→
RN(n), and consider

−→
R (m,n) =

←−
RN(n,

−→
RM(m)) =

←−
RN(n,

−→
RN(n)) = n by hippocraticness of RN .

2. We show that the∼M
F equivalence classes are the sets (

−→
RM)−1({p}) for p ∈ P. Suppose m1

and m2 are in (
−→
RM)−1({p}). Then for any n∈N,

−→
R (m1,n) =

←−
RN(n,

−→
RM(m1)) =

←−
RN(n, p) =

←−
RN(n,

−→
RM(m2)) =

−→
R (m2,n), so m1 ∼F m2 as required. Conversely, suppose that m1 ∼F m2

and pick n1 such that
−→
RN(n1) =

−→
RM(m1) = p1. Then since

−→
R (m1,n1) =

−→
R (m2,n1) by

hypothesis, we have n1 =
←−
RN(n1,

−→
RM(m1)) =

←−
RN(n1,

−→
RM(m2)) so by correctness of RN we

must have RN(n1,
−→
RM(m2)), that is,

−→
RN(n1) =

−→
RM(m2) = p1 as required. It follows from

the definition of R that R is simply matching.

We may summarise Lemma 5 and Proposition 5 in the following (informally-stated) theorem:

Theorem 1 A bidirectional transformation R : M↔ N is simply matching if and only if it can
be decomposed into a pair of lenses working “tail to tail”. Any such decomposition gives rise to
a choice of matching transversal for R, and vice versa.

Proc. BX 2012 12 / 16



ECEASST

Example 2 is simply matching; take f ((a, true)) = a etc. Example 1 is also simply matching,
for each possible subset of the set of all legal class names determines and is determined by a
transversal element (of both MF and NB) and T (mF ,nB) holds iff the sets thus determined by mF

and nB are identical. Notice that since we have already observed that neither of these examples
is history ignorant, and that Example 1 is not even undoable, this shows that simply matching is
a strictly weaker condition.

The following tiny example, which is matching but not simply matching, illustrates some of
the difficulty inherent in “less nice” bidirectional transformations.

Example 8 Let M = N = {0,1} and let R(m,n) hold iff mn = 0.
−→
R and

←−
R are determined by

correctness and hippocraticness:
R 0 1
0 T T
1 T F

−→
R 0 1
0 0 1
1 0 0

←−
R 0 1
0 0 0
1 1 0

0 6∼F 1 because
−→
R (0,1) = 1 6= −→R (1,1); 0 6∼B 1 because

←−
R (0,1) = 0 6=←−R (1,1); thus each

element of M forms an equivalence class under each equivalence, and dually for N. Therefore
there is only one choice of transversal, and we identify the elements with the equivalence classes.

Considered as a subset of MF ×MB, M is the diagonal subset {(0,0),(1,1)} where (0,0) rep-
resents 0 and (1,1) represents 1. That is, the coordinate grids for M and N are both, identically:

1 1
0 0

0 1
We have here the simplest possible example in which there are two distinct elements of MF

(0 and 1) compatible with one element of NB (0), and only one of those MF elements (0) is
also compatible with a second, distinct element of NB (1). In other words, both columns of
M’s coordinate grid are compatible with the 0 row of N’s, and the 0 column of M’s grid is also
compatible with the 1 row of N’s. Note that neither the rows, nor the columns, of the coordinate
grids overlap in the sense of Lemma 3.

Clearly R is not undoable. For example, R(0,1), but
−→
R (0,

−→
R (1,1)) =

−→
R (0,0) = 0 6= 1.

Example 9 Finally, lest the reader suspect that all bidirectional transformations be matching,
we record an example which is not.

Let M = {0,1} and N = {a,b,c}. Let R,
−→
R and

←−
R be as follows:

R a b c
0 T T F
1 F T T

−→
R a b c
0 a b a
1 c b c

←−
R a b c
0 0 0 1
1 0 1 1

We read off that the only non-trivial equivalence is that a∼N
F c. Taking a as the representative

of their ∼N
F equivalence class, the coordinate grids are

1 1
0 0

0 1

c c
b b
a a

a b
This is not undoable, since although R(0,b), we have

←−
R (
←−
R (0,c),b) =

←−
R (1,b) = 1.

13 / 16 Volume 49 (2012)



Equivalences induced on model sets by bidirectional transformations

Figure 1: Implications between properties of correct hippocratic bidirectional transformations.
Labels p;q on arrows indicate that p is for the implication and q for absence of the reverse
implication, “def” meaning direct from the definition.

   

very wellbehaved lens

lens
history ignorant bx

simplymatching bx

matching bx

undoable bx

def; Ex 8

correct and hippocratic bx def; Ex 9

def;Ex 1

def;Ex 2 Cor 1;Ex 1

incomparable
(Ex 1,Ex 7)

def;Ex 1

Prop2;def

To summarise, Figure 1 gives the implication relationships between different special cases of
bidirectional transformations.

5 Related work

Defining equivalence relations on model sets that are induced by bidirectional transformations
goes back at least to [BS81] in the special case of constant complement view updates in databases
and to [BFP+08] in the less special case of lenses. We have demonstrated the relation of our work
to those papers.

A major concern of the model-driven development community, as it has started to consider
bidirectional transformations, has been the generalisation to the symmetric case, in which nei-
ther model set comprises strict abstractions of the models in the other model set. An early work
on properties of such bidirectional transformations was the present author’s MODELS’07 paper
that led to [Ste10]; Diskin’s MODELS’08 paper [Dis08] explored further, including, as already
remarked, defining history ignorance and discussing the construction of a bidirectional transfor-
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mation from a pair of lenses.
Neither of those papers, however, made use of equivalences on model sets comparable to those

considered in the earlier database and lens work. These were first generalised to the symmetric
case as part of the work in [Ste08], but only a few results relating to them (identified here) were
given in that paper.

Later work has included [XSHT11], focusing on the additional problems posed by concurrent
updates, and a body of work exemplified by [DXC+11] on delta-based bidirectional transforma-
tions. The latter defines several other properties of bidirectional transformations; there is more
work to be done to fully elucidate the connections.

6 Conclusion

We have laid out some results relating to the principal equivalence relations induced on model
sets by a correct and hippocratic bidirectional transformation between them. By means of these
results we have established implications and non-implications between many different conditions
that can be placed on bidirectional transformations to ensure that they are “nice”.

A topic of conversation among people interested in bidirectional transformations has long been
the extent to which the symmetric case, in which we relate models neither of which is a strict
abstraction of the other, raises essentially new problems from the asymmetric case studied earlier
in the database field. In practice, it is often possible to conceptualise a symmetric bidirectional
transformation as a pair of lenses placed “tail to tail”, that is, having a common view: the view
captures the information which is common to both models, and the lenses manage the synchro-
nisation. Actually writing the transformation this way would have the obvious drawback that it
would involve a great deal of duplication between the two lenses. In this paper, we have char-
acterised the bidirectional transformations that could, in principle, be written in this way; they
are the simply matching ones. Although we have shown that not all bidirectional transforma-
tions are simply matching, we have the impression that a large class of practical examples (such
as our Example 1 etc.) are in fact simply matching. A bidirectional transformation language
that gave good, usable facilities for expressing and working with simply matching transforma-
tions might be practically useful even if it did not permit the expression of non-simply-matching
transformations.

We have also begun, but not reported here, an investigation into subspaces and subspace pairs
of model sets, which capture the fact that teams of developers can agree to stay within certain
subspaces of the model spaces, in which case it is desirable that applying a transformation will
not move them outside their agreed zone. In future work we will build on this to investigate the
implications of adding an information orderings to a model set, and relate this work to the study
of monoids of edits acting on model spaces.

Acknowledgements: The author thanks the referees, the participants in the Bx’12 workshop,
and Zinovy Diskin, for very helpful comments, including some that we hope will lead to future
work.
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