
Electronic Communications of the EASST
Volume 50 (2011)

Recent Advances in Multi-paradigm Modeling
(MPM 2011)

Reusing Model Transformations across Heterogeneous Metamodels

Manuel Wimmer, Angelika Kusel, Werner Retschitzegger,
Johannes Schönböck, Wieland Schwinger,

Jesús Sánchez Cuadrado, Esther Guerra, and Juan de Lara

13 pages

Guest Editors: Vasco Amaral, Cécile Hardebolle, Hans Vangheluwe, László Lengyel, Peter
Bunus

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Reusing Model Transformations across Heterogeneous Metamodels

Manuel Wimmer1, Angelika Kusel3, Werner Retschitzegger3,
Johannes Schönböck2, Wieland Schwinger3,

Jesús Sánchez Cuadrado4, Esther Guerra4, and Juan de Lara4

1 Universidad de Málaga, Spain
2 Vienna University of Technology, Austria
3 Johannes Kepler University Linz, Austria
4 Universidad Autónoma de Madrid, Spain

Abstract: Model transformations are key enablers for multi-paradigm modeling.
However, currently there is little support for reusing transformations in different
contexts since they are tightly coupled to the metamodels they are defined upon,
and hence reusing them for other metamodels becomes challenging. Inspired from
generic programming, we proposed generic model-to-model transformations, which
are defined over so-called metamodel concepts, which are later bound to specific
metamodels. Nevertheless, the current binding mechanism lacks automated reso-
lution support for recurring structural heterogeneities between metamodels. There-
fore, based on a systematic classification of heterogeneities, we propose a flexible
binding mechanism being able to automatically resolve recurring structural hetero-
geneities between metamodels. For this, the binding model is analyzed and required
adaptors are automatically added to the transformation.

Keywords: Transformation Reuse, Metamodel Heterogeneities

1 Introduction
Multi-paradigm modeling [MV02] fosters the description of systems using the most appropriate
formalism and level of abstraction. Hence, transformations become key enablers in this ap-
proach to transform models between different languages and abstraction levels. So far, transfor-
mation development is a type-centric activity, because transformations are defined over and thus,
tightly coupled to the types of specific metamodels (MMs). However, the defined transformation
may apply to other MMs as well, which share similar characteristics, i.e., in case of metamodel
evolution. The main obstacle in reusing model-to-model transformations are structural hetero-
geneities between MMs, a well-known problem in database integration [LN07], which occur if
semantically similar concepts are realized in different ways in different MMs. In particular, such
structural heterogeneities may break existing transformations if applied to other MMs. Thus,
an automatic resolution of these heterogeneities is desirable to increase reuse of transformations
and thus, to avoid a tedious and error-prone manual adaptation.

In this respect, this paper extends ideas from our previous work (cf. [CGL11, LG10]), where
– inspired from generic programming – we proposed generic model transformations. Generic
model transformations are not defined over specific MMs, but over so-called concept MMs. This
offers an extra level of indirection, because concept MMs can be bound to specific MMs, making

1 / 13 Volume 50 (2011)

Reusing Model Transformations across Heterogeneous Metamodels

the generic transformation reusable for specific MMs. If structural heterogeneities occur between
the concept MMs and the specific MMs, adapters have to be manually defined for their resolution.
To ease the burden of resolving recurring structural heterogeneities, we propose an approach to
automatically derive adapters for generic transformations. These adapters realize a virtual view
on the specific MM providing required features of the concept MM which are expressed struc-
turally different in the specific MM. These adapters effectively establish a subtype relationship
[SJ07] between the concept MM and the specific MM. Please note that concept and the specific
MM are assumed to correspond to a single meta-metamodel, e.g., Ecore. Based on our previous
work for establishing a classification of MM heterogeneities [WKK+10b], we provide a compre-
hensive set of adapters for resolving structural heterogeneities between Ecore1-based MMs. As
a proof of concept we discuss an implementation on top of ATL [JABK08] where the reuse of
generic transformations is achieved by means of a Higher Order Transformation (HOT) [TCJ10]
by adding helper functions realizing the virtual view. However, our approach is applicable to
other transformation languages offering a MM and supporting helper functions (e.g., QVT).

Outline. Section 2 shortly reviews generic model transformations and highlights points for
improvements. Whereas Section 3 presents obstacles for transformation reuse on the basis of a
running example, the subsequent Section 4 introduces the approach for automatically deriving
adapters. Finally, Section 5 elaborates on related work, and Section 6 concludes the paper.

2 Generic Model Transformations in a Nutshell
In our previous work [CGL11], the notion of generic model transformations (i.e., decoupling
of transformation logic and MMs) as a reuse mechanism has been presented which are defined
between so-called concept MMs. Concept MMs specify the requirements (e.g., needed attributes
and references etc.), which a specific MM must fulfill to qualify for the source domain or target
domain of a transformation (cf. upper part of Fig. 1 for a simple example). The elements (classes,
attributes, and references) of the concept MMs can be seen on a conceptual level as variables that
have to be bound to the elements of specific MMs (cf. lower part of Fig. 1) by means of a binding
model (cf. middle part of Fig. 1). The established bindings between concept MMs and specific
MMs are used as input for a HOT, which rewrites the generic model transformation, i.e., the
concept types are replaced by specific types, to obtain a specific model transformation.

As can be seen in Fig. 1, in the course of the binding not only naming differences but also
more challenging structural heterogeneities have to be resolved between the source concept MM
and the specific source MM. In our example, UMLClass exhibits a reference to an optional
superclass whereas Component exhibits the inverse reference to its subcomponents. Thus, a
crucial issue to increase reuse of generic transformations is a flexible binding mechanism which
is able to overcome structural heterogeneities automatically. Although the binding language we
proposed in [CGL11] allows specifying OCL-based adapters to resolve heterogeneities, there
exist three points for improvements. First, although heterogeneities are recurring, no automatic
resolution thereof is supported by the binding language forcing the transformation reuser to
specify complex OCL code manually (cf. 1 in Fig. 1). Second, the adaptations for resolving
heterogeneities between concept MMs and specific MMs are scattered across the specific model

1 http://www.eclipse.org/modeling/emf

Proc. MPM 2011 2 / 13

ECEASST

Source Concept MM Target Concept MMGeneric Model Transformation
rule UMLClass2Class {

from uClass : UML!UMLClass
to class : CD!Class (

name <- uClass.name,
superClass <- uClass.superClass

)

Class
name:String

0..1

superClass

UMLClass
name:String

0..1

superClass

}
)

}

inputbinding UMLClass2Component{
class UMLClass to Component

Binding Model
Binding Class2JavaClass{
class Class to JavaClass

Binding Model

HOTinput inputfeature UMLClass.name
is Component.name
feature UMLClass.superClass
is Component.allInstances() ->

select(c | c.subComponents ->
i l d (lf)) > fi t()

feature Class.name
is JavaClass.name
feature Class.superClass
is JavaClass.extends

}Complex HOT3

output
includes(self)) -> first();

}

rule Component2JavaClass {
from component : C!Component
to jClass : Java!JavaClass (

Recurring heterogeneities
have to be resolved manually

1 Adaptations are scattered
across transformation logic

2

JavaClass
name:String

0..1

extends

Component
name:String

0..*

subComponents
j (

name <- component.name,
extends <-

C!Component.allInstances() ->
select(c |c.subComponents ->
includes(self)) -> first() name:Stringname:String

Specific Source MM Specific Target MM
)

}

Specific Model Transformation

Figure 1: Generic Model Transformations at a Glance

transformation leading to hardly maintainable transformations (cf. 2 in Fig. 1). Finally, since the
adaptation of the transformation code comprises the challenging rewriting of OCL expressions,
a complex HOT has to be developed (cf. 3 in Fig. 1), which is still challenging [TCJ10].

In order to alleviate these problems, in this paper we propose an automated mechanism to
resolve commonly occurring heterogeneities (cf. Section 3.2), based on a library of generic
and composable adapters. We also simplify the HOT proposed in [CGL11], leading to a simpler
adaptation mechanism and more comprehensible specific transformations. We restrict to the case
of generic transformations defined over a concept MM on the source domain, and a specific MM
on the target. Supporting genericity on the target is left to future work.

3 Metamodel Heterogeneities: Obstacles for Transformation Reuse
In this section, first, a motivating example for transformation reuse is presented, and subse-
quently, an overview on potentially arising heterogeneities between Ecore-based MMs is given.

3.1 Motivating Example
In order to motivate our approach, Fig. 2 depicts an example of a generic model transformation
between ClassDiagrams and ERDiagrams for demonstration purposes. Since our approach
is independent of the concrete implementation of the generic transformation, we omit implemen-
tation details thereof. Instead, the focus is on how to apply the existing transformation such that
it works for a specific source MM (cf. bottom of Fig. 2). In this respect, one can see that a major
obstacle to reuse the existing transformation are the heterogeneities that exist between the source
concept MM and the specific source MM (cf. 1 - 4 in Fig. 2), as detailed in the following.

Concept Package. Although the concept Package serves in both MMs as a container for
model elements, the containment hierarchies differ. Whereas in the source concept MM, the class
Package nests UMLClasses via the reference ownedClasses, the specific class Package
offers the reference ownedElements to nest any kind of named elements (cf. 1 in Fig. 2).

3 / 13 Volume 50 (2011)

Reusing Model Transformations across Heterogeneous Metamodels

NamedElementSource Concept MM NamedElement
How to adapt the Class2ER

transformation such that it worksNamedElement
name:String

NamedElement
name:String

transformation such that it works
with the specific source MM?

Property
primitiveType:String

UMLClass
Package ownedClasses 0..*

0..*superClasses
dP ti

0..*

ERModel
Class2ER

1 4
primitiveType:StringownedProperties

N dEl tSpecific Source MM EntityType

entities
0..*

2 3

NamedElement
name:String

Specific Source MM
ownedElements 0..*

features
0..* Attribute

1

3
AttributeJavaClassPackage extends

class
1..1 SimpleType0..1

simpleType

0..1

Target Concept MM
Attribute
type:String2 3 4

Figure 2: Motivating Example with Exemplary Heterogeneities

Concept UMLClass. In the context of the concept UMLClass several heterogeneities arise.
Whereas the source concept MM supports multiple inheritance, the specific source MM supports
single inheritance only (cf. 2 in Fig. 2). Second, a difference in linking can be detected since
in the source concept MM the class UMLClass owns its properties by means of the reference
UMLClass.ownedProperties whereas in the specific source MM, attributes refer to their
owning class via the reference Attribute.class (cf. 3 in Fig. 2).

Concept Property. Finally, there is a heterogeneity in the context of the concept Property.
Whereas the source concept MM allows to describe the primitive type of a property by means of
a simple attribute value (cf. attribute Property.primitiveType), the specific source MM
explicates this fact by means of an object of type SimpleType (cf. 4 in Fig. 2).

Before delving into details about how to resolve these heterogeneities, a major question is,
which heterogeneities between Ecore-based MMs might occur at all. For this, a summary on
potential heterogeneities based on our previous work [WKK+10b] is provided in the following,
allowing to clearly factor out the applicability but also the boundaries of our approach.

3.2 Metamodel Heterogeneities at a Glance
Heterogeneities occur if semantically similar concepts are realized in different ways leading to
differently structured MMs [WKK+10a]. Since we focus on Ecore-based MMs, a systematic
classification of different kinds of heterogeneities is obtained by investigating potential variation
points [WKK+10b]. To shortly recall this classification for the purposes needed in this paper,
Fig. 3(a) depicts the relevant extract of the Ecore meta-metamodel which is used for defining
MMs. Assuming that both, concept MM and specific MM use the same Ecore concept, differ-
ences in all the owned meta-features may arise (cf. Fig. 3(a)). The term meta-feature denotes
features of Ecore elements, e.g., the feature name of ENamedElement. In this paper, we fo-
cus on heterogeneities of meta-features of EAttributes and EReferences, and leave the
heterogeneities of EClasses as future work except naming differences between classes.

Fig. 3(b) shows the application of the classification to heterogeneity 3 of the example. When
comparing the values of the meta-features in the abstract syntax, one can see that six differences
occur, comprising three naming differences, a multiplicity difference, a containment difference,
and a direction difference (since the reference UMLClass.ownedProperties in the concept
MM, exhibits the inverse direction in the specific MM (cf. reference Attribute.class)).

Proc. MPM 2011 4 / 13

ECEASST

ENamedElementENamedElement
name : String Naming Diff

EClassifier
ETypedElement

Order Diff EClassifier
…

ordered : boolean
lowerBound : int
upperBound : int

Multiplicity DiffMultiplicity Diff

EClass

upperBound : int

EDataType
abstract : boolean

1..1 eAttributeType
1..1eSuperTypes

0..* …

eStructuralFeatures

eReferenceType
yp

Context Diff Direction Diff

Target Diff
0..*EStructuralFeature EReference

containment : boolean
Datatype Diff

Target Diff

… containment : boolean

EAttribute
Containment Diff

EAttribute
…

(a) Heterogeneities in Ecore-based MMs

UMLClass Attributeax UMLClass

ownedProperties
0..*

Attribute

JavaClass

class
1..1

3
3

cr
et
e
Sy
nt
a

:EClass :EClass

Property
primitiveType:String

JavaClass

Co
nc

Naming Diff

name = ‘UMLClass‘
abstract = false

eStructFeatures

name = ‘Attribute‘
abstract = false

ER f
eStructFeaturesNaming Diff

Direction
Diff

name = ‘ownedProperties‘
ordered = true
lowerBound = 0

:EReference
name = ‘class‘
ordered = true
lowerBound = 1

:EReference

ac
t S

yn
ta
x

Multiplicity
Diff

ECl

upperBound = -1
containment = true

eRefType

ECl

upperBound = 1
containment = false

eRefType

A
bs
tr
a

Containment Containment
DiffNaming Diff

:EClass
name = ‘Property‘
abstract = false

:EClass
name = ‘JavaClass‘
abstract = false

Source Concept MM Specific Source MMSource Concept MM Specific Source MM

(b) Heterogeneity 3 of Running Example

Figure 3: Heterogeneity Classification and Exemplary Application

4 Automatic Generation of Adapters
To resolve the afore presented heterogeneities, two approaches might be taken to allow the
generic model transformation to work with the specific MM. First, the specific source MM might
enforce a change of the generic transformation, whereby this idea is closely related to program
transformation [Vis01]. Second, the specific source models might be transformed such that they
conform to the source concept MM and thus, might act as input of the generic transformation
definition. Thereby, the transformation definition remains unchanged, but the models get trans-
formed by a preceding transformation, being closely related to data transformation [Len02].

We follow a hybrid approach by combining the advantages of both ideas, namely (i) direct
trace links between specific source and target models, since the instantiation of a generic trans-
formation leads to a single transformation (advantage of program transformation approach), and
(ii) an lightweight adaptation process, since the generic transformation code does not have to be
rewritten – except of renaming classes which is a trivial rewriting rule (advantage of data trans-
formation approach). The core idea is to extend the generic model transformation by adapters
which provide a virtual view on the specific models such that they correspond to the interpreta-
tion of the generic MM (cf. Fig. 4). By this, a subtype relationship between the concept MM
and the specific MM is established, whereby a specific MM is a subtype of a concept MM if the
specific MM provides at least the classes with features that the concept MM provides [SJ07]. By
this, transformations depending on the concept MM may also work with any sub-MM.

Considering the example (cf. Fig. 4), obviously, there is no subtype relationship between the
concept MM and the specific MM so far, since the specific MM misses four features, which the
concept MM defines, namely Package.ownedClasses, JavaClass.superClasses,
JavaClass.ownedProperties, Attribute.primitiveType (highlighted in dashed
lines in Fig. 4). To establish the required subtype relationship, the binding model allows to
describe “fuzzy” correspondences between semantically related features in a simple one-to-one
fashion. These are used to automatically derive adapters to actually resolve the heterogeneities

5 / 13 Volume 50 (2011)

Reusing Model Transformations across Heterogeneous Metamodels

NamedElement
name:String

NamedElement
name:String

Generic Model
Transformation

Property
primitiveType:String

UMLClassPackage
ownedClasses 0..*

0..* 0..* ERModelClass2ER

Source Concept MM

primitiveType:String
superClasses ownedProperties

1 binding UML2Java{
i

entities
0 *2 class Package to Package

3 feature Package.ownedClasses
4 is Package.ownedElements
5 l UMLCl t J Cl

EntityType0..

features
*5 class UMLClass to JavaClass

6 feature UMLClass.superClasses
7 is JavaClass.extends
8 feature UMLClass ownedProperties

Target Concept MM

0..* Attribute
type:String

8 feature UMLClass.ownedProperties
9 is Attribute.class
10 class Property to Attribute
11 feature Property.primitiveType

d l

p y p yp
12 is Attribute.simpleType.name
13 } Binding Model

Specific Model
NamedElement
name:String

ownedElements
0..*

Adapters

p
Transformation

Attribute
primitiveType:String

JavaClassPackage
0..1

extends
class
1..1 SimpleType0..1

simpleType

0 *

Adapters

Add features by adapters, such

Specific Source MMownedClasses
0..* 0..*

superClasses
ownedProperties
0..* that the specific MM becomes a

subtype of the concept MM

Figure 4: Exemplary Bindings between Heterogenous MMs

as described in the following subsection. This corresponds to the idea of keeping the bindings
as simple as possible and derive information required to actually resolve the heterogeneities
automatically [ABM05]. Since the adapters are merely added to a generic transformation, but do
not change it, imperative and declarative code is supported.

4.1 Automatic Resolution of Heterogeneities by Reasoning
In order to obtain a heterogeneity model including the heterogeneities as classified in Fig. 3(a)
from the binding model, the values of the meta-features are compared (cf. Section 3.2). With the
help of this heterogeneity model, in the subsequent transformation adaptation, first, correspond-
ing different class names are resolved by rewriting using a HOT (cf. Fig. 5). To exemplify this,
lines 1-5 of List. 1 depict an exemplary rule of the generic model transformation of our running
example as well as the rewritten rule in lines 1-5 of List. 2. Second, required adapter templates
are instantiated in the HOT by calling predefined rules, which allow to resolve heterogeneities
as described in Section 3.2. Adapter templates define how to resolve recurring heterogeneities
in a generic way by depending only on the input provided by the heterogeneity model. Thus,
they can be instantiated, i.e., the variable parts are replaced by the entries of the binding model,
to establish a subtype relationship between the source concept MM and the specific MM. These
instantiated templates (representing the virtual view) are then added to the actual transforma-
tions by means of helper functions in ATL (so-called attribute helpers) by the HOT. These helper
functions allow to extend the specific MM by missing features required by the source concept
MM. Whenever a feature is invoked by the transformation, which is only available in the source
concept MM, this invocation is intercepted by a helper function which provides the adapter to
the specific MM. To exemplify this, List. 2 (cf. lines 7-9) includes the helper function generated
for the reference Package.ownedClasses of the MM concept. Thereby, a correspondingly
named feature in terms of the specific MM concepts is introduced, thereby resolving naming dif-
ferences. Without this adapter the transformation would break in line 4, since the class Package
in the specific MM does not contain a reference named ownedClasses.

Proc. MPM 2011 6 / 13

ECEASST

Transformation AdapterHeterogeneity Reasoner

G i M d l

Source
Concept 2Generic Model

Transformation

Concept
MM

Source Specific

Adapt the generic model
transformation by (1)

rewriting class names and (2)

2

Hetero‐
geneity

Binding
Model

Concept
MM

Source
MM

g ()
adding adapters

Model HOT
ode

Compare meta‐features
for each binding and

1

Adapter
Templates

Specific
Source
MM

for each binding and
calculate the

heterogeneity model
MM

Source
Concept MM

Comparison of meta‐
f t t l l t th

1 Adapt the generic model
transformation by (1) rewriting class

2
Concept MM

Binding
Adapter
Templates

features to calculate the
heterogeneity model

transformation by (1) rewriting class
names and (2) adding adapters

Specific ModelSpecific

Model
Templates

Hetero‐ Specific Model
Transformation

Heterogeneity

Specific
Source MM

geneity
Model Transformation g y

Reasoning Adaptation
Generic Model
Transformation

Figure 5: Overview of Reasoning Process

Listing 1: Exemplary ATL Rule of Generic Model Transformation
1 -- Extract of generic transformation
2 r u l e Package2ERModel {
3 from s: UML!Package
4 to t: ER!ERModel (entities <- s.ownedClasses)
5 }

Listing 2: Exemplary ATL Rule of Specific Model Transformation
1 -- Extract of specific transformation -> only class names have been changed
2 r u l e Package2ERModel {
3 from s: Java!Package
4 to t: ER!ERModel (entities <- s.ownedClasses)
5 }
6
7 -- Added helper function to resolve the heterogeneity, realizing the adapter
8 he lp er c o n t e x t Java!Package def : ownedClasses : Sequence(Java!JavaClass) =
9 self.ownedElements -> select(x| x.oclIsKindOf(Java!JavaClass));

4.2 Heterogeneity Reasoning and Adapter Generation in Action
This section applies the proposed approach to the example by presenting the automatically gen-
erated adapters for each binding of Fig. 4. Due to space limitations, only for the first binding the
adapter template is shown, while for the rest only the resulting concrete adapters are given.

4.2.1 Binding Package.ownedClasses→ Package.ownedElements

Discovered Differences: NamingDiff, TargetDiff

B
ref

A

C

Y

ref‘
X

Z

B Y

Source Concept MM Specific Source MM

Corresponding Target class of concept
reference ref in the specific MM (Y)reference ref in the specific MM (Y)

must be a subclass of the target class of
the specific reference ref‘ (X)

Figure 6: Target Difference

Target Difference. A target difference arises if two
corresponding references as specified in the binding
model point to different target classes. Such a binding
is only valid iff the corresponding target class (cf. Y in
Fig. 6) of the concept reference (cf. ref in Fig. 6) in
the specific MM is a subclass of the target class (cf.
X in Fig. 6) of the specific reference (cf. ref’ in Fig. 6), since the set of elements re-
ferred by ref is then a subset of the elements referred by ref’. Considering our running
example, a target difference exists between the references Package.ownedClasses and
Package.ownedElements. Since this binding satisfies the above condition, it is valid.
Therefore, the adaptation can be fulfilled by a helper function computing the corresponding
subset (cf. List. 3).

7 / 13 Volume 50 (2011)

Reusing Model Transformations across Heterogeneous Metamodels

Listing 3: Adapter for Resolving the Naming Difference & Target Difference
he lp er c o n t e x t Java!Package def : ownedClasses : Sequence(Java!JavaClass) =
self.ownedElements -> select(x| x.oclIsKindOf(Java!JavaClass));

List. 4 shows the template for producing such adapters. Thereby the OCL context is set to
the specific source class of the reference (<specificRef.owner>). The helper has to be
named equally to the feature in the concept model (conceptRef.name>) and the return type
has to correspond to the type in the specific MM. In order to get this return type we need to
first get the target class of the reference in the concept model. This target class is then used
to resolve the specific target class by means of the binding model (denoted in the template by
<conceptRef.type.resolve>). In order to select only elements of the corresponding
subclass, we select those elements that are direct and indirect instances of the equivalent type in
the specific MM.

Listing 4: Adapter Template for Target Difference
he lp er c o n t e x t <specificRef.owner> def : <conceptRef.name> : <conceptRef.type.resolve> =

self.<specificRef.name> -> select(x| x.oclIsKindOf(<conceptRef.type.resolve>));

4.2.2 Binding UMLClass.superClasses→ JavaClass.extends

Discovered Differences: NamingDiff, MultiplicityDiff
Multiplicity Difference. Multiplicity differences arise in case of different lower or upper

bounds of features. To ensure a correct resolution of a multiplicity difference, several precondi-
tions must hold. In particular, the lower bound of the specific feature must be greater or equal
than the lower bound of the feature in the concept MM. This is since the generic transformation
expects at least a certain number of elements (i.e., the lower bound), which could lead to an
error if the lower bound is underrun. In the context of the running example, the lower bounds of
the references UMLClass.superClasses and JavaClass.extends are both 0, i.e., the
condition is fulfilled and the binding is valid. To resolve a multiplicity difference, it is further-
more of special interest if the upper bound is set to exactly one, i.e., only a single element might
be returned, or to a value greater than one, i.e., a collection of elements might be returned. If a
feature returning a single element in the specific model should be bound to a feature returning
a collection, the element needs to be wrapped into a collection, excluding OclUndefined in
case the feature is unset. This resolution strategy is needed in the context of our running ex-
ample to resolve the heterogeneity between the references UMLClass.superClasses and
JavaClass.extends as can be seen in List. 5. If a feature returning a collection in the
specific MM should be bound to a feature returning a single element in the concept MM, it is
possible to return, e.g., the first element of the collection to ensure syntactic correctness, although
this does not reflect the full semantics of the specific MM’s feature, since elements are discarded.

Listing 5: Adapter for Multiplicity Difference
he lp er c o n t e x t Java!JavaClass def : superClasses : Sequence(Java!JavaClass) =

Sequence{self.extends} -> excluding(OclUndefined);

4.2.3 Binding UMLClass.ownedProperties→ Attribute.class

Discovered Differences: NamingDiff, DirectionDiff, MultiplicityDiff, ContainmentDiff

Proc. MPM 2011 8 / 13

ECEASST

Direction Difference. A direction difference occurs, if a reference has the inverse direction of
another one. In such situations, logic is needed to compute from one reference the corresponding
inverse reference. In the context of our example the reference UMLClass.ownedPropert-
ies of the concept MM has to be expressed by means of the reference Attribute.class of
the specific MM. Since UMLClass.ownedProperties is assumed to return a set of referred
Properties, the corresponding set of Attributes has to be computed from the information
provided by the reference Attribute.class. For this purpose, first allInstances() of
Attributes are queried, and then filtered by an appropriate OCL condition (select(a|
a.class = self)) as shown in List. 6. Please note, that in case that the inverse reference
has an upper bound greater than 1, the object (i.e., self) has to be contained in the set of
objects returned by the reference (e.g., select(a| a.classes->including(self)).
Furthermore, since the multiplicity of the inverse end of the reference Attribute.class is
unknown, the multiplicity difference that occurred at first sight no longer has any effect.

Listing 6: Adapter for Direction Difference
he lp er c o n t e x t Java!JavaClass def : ownedProperties : Sequence(Java!Attribute) =
Java!Attribute.allInstances() -> select(a| a.class = self);

Containment Difference. Ecore-based MMs allow to define a containment hierarchy of MM
elements by corresponding references which may not only be accessed in the forward direction
(i.e., parent→ children), but also in the backward direction (i.e., children→ parent). For this pur-
pose, ATL provides access to the parent of an element by calling refImmediateComposite.
Thus, if there are differences in the containment hierarchies of the concept MM and the spe-
cific MM, a corresponding attribute helper named refImmediateComposite has to be de-
fined. In the context of the running example an attribute helper has to be defined for the class
Attribute. To realize the parent access in the specific MM a corresponding path must exist
in the binding model, enabling the derivation of the adapter as shown in List. 7.

Listing 7: Adapter for Containment Difference
he lp er c o n t e x t Java!Attribute def : refImmediateComposite() : Java!JavaClass =
self.class;

4.2.4 Binding Property.primitiveType→ Attribute.simpleType.name

Discovered Differences: NamingDiff, ContextDiff
Context Difference. A context difference arises if corresponding features are owned by

different classes, e.g., the attribute Property.primitiveType in the concept MM cor-
responds to the attribute SimpleType.name. Since the context of these attributes differs,
the binding model has to specify how to find the attribute in the specific MM that corresponds
to the attribute of the concept MM, i.e., a corresponding path specification is required (cf.
simpleType.name in the binding model). The resulting adapter code is shown in List. 8.
The example assumes only single-valued references, but in general also multi-valued references
might occur on the specified path. In this case, suitable collect operations are needed.

Listing 8: Adapter for Context Difference
he lp er c o n t e x t Java!Attribute def : primitiveType : String =

i f self.simpleType <> OclUndefined then self.simpleType.name e l s e OclUndefined e n d i f;

9 / 13 Volume 50 (2011)

Reusing Model Transformations across Heterogeneous Metamodels

4.2.5 Remaining Classification Differences

In the following, we shortly elaborate on the resolution of the not yet discussed differences.
Order Difference. Order Differences occur if one feature is defined to be ordered whereas

the other one is not. Thus, the underlying implementation has to either maintain ordering infor-
mation (e.g., OCL type Sequence) or omit it (OCL type Set), whereby ATL uses sequences
per default. Nevertheless, in general, to resolve order differences, corresponding collection casts
(asSequence(), asSet()) might be introduced.

Datatype Difference. Finally, datatype differences occur if the datatypes of specified at-
tributes differ. To resolve this kind of heterogeneity, appropriate datatype casts might be used, if
the involved datatypes are compatible.

4.2.6 Composition of Adapters

After discussing the adapters in isolation, the resolution of more complex scenarios compris-
ing several differences at once demands for a composition of adapters. This composition has
to follow certain rules. For attributes, composition of adapters is only allowed in the follow-
ing order (evaluation starts from right to left as detailed below): NamingDi f f ◦OrderDi f f ◦
MultiplicityDi f f ◦DatatypeDi f f ◦ContextDi f f . To exemplify this, Fig. 7 shows a simple ex-
ample requiring the composition of three adapters to resolve a naming, datatype and multiplicity
difference. Following the order defined above, first the datatype difference (i.e., cast from Int
to Real), followed by the multiplicity difference (i.e., wrapping a single element into a set) and
finally, the naming difference is resolved.

Concerning references, the situation is slightly different: NamingDi f f ◦((OrderDi f f ◦Multi-
plicityDi f f ◦TargetDi f f ◦ContextDi f f) ‖ DirectionDi f f) ‖ContainmentDi f f . Although the
corresponding differences (i.e., NamingDiff – ContextDiff) are resolved analogously, the resolu-
tion of direction differences and containment differences is independent of any other difference
and thus, require isolated adapters (cf. parallel composition operator).

h l t t X d f lLi t S (R l)

Resolution of Naming Difference

Naming Difference o Multiplicity Difference o Datatype Difference

3

A
realList:Real [0..*]

Source Concept MM Specific Source MM

X
i:Int [0..1]

helper context X def : realList : Sequence(Real) =
Sequence{self.i.oclAsType(Real)} -> excluding(OclUndefined);

Resolution of Datatype Difference

Resolution ofMultiplicity Difference

1
2 Resolution ofMultiplicity Difference2

Figure 7: Composition of Adapters

5 Related Work
In this section, we relate our approach to existing transformation reutilization approaches, that
either adapt the transformations, or adapt the MMs.

Adaptation of Transformations. The adaptation of transformations to evolved MMs has been
presented in [LBNK09, MEM10, GD10]. While Méndez et al. [MEM10] provide a classification
of typical evolution scenarios and their impact on transformations, the authors of [LBNK09]

Proc. MPM 2011 10 / 13

ECEASST

and [GD10] propose solutions for typical evolution scenarios (e.g., extract superclass). Both
approaches assume the availability of a difference model, comprising the changes that occurred
between two versions of a MM, which is used to semi-automatically derive potential adaptation
rules for the model transformation. In contrast to our approach, their focus is on evolution-
specific scenarios, e.g., renaming, add/delete of attributes or references, but they do not consider
reusing transformations for independent MMs.

Adaptation of MMs. Instead of adapting the transformations, another possibility is to adapt
the MMs, as done in [SMM+12], for reusing transformations. Although following the same
idea of adapting the specific MMs making them subtypes of the concept MMs, the adaptation
has to be done manually by providing aspects defined in Kermeta2. Therefore, the burden of
resolving heterogeneities is entirely left to the transformation reuser. Furthermore, the approach
of [SMM+12] fully depends on a transformation language’s capability to change the MM by
aspect-orientation, which is specific to Kermeta.

6 Critical Discussion and Future Work
In this paper we have presented an automatic approach to resolve common heterogeneities when
binding a concept MM to a specific MM for the purpose of reusing a generic transformation. On
critically reflecting the presented approach, six main points remain for future work.

Handling Heterogeneities between Classes. The classification of Fig. 3(a) presents hetero-
geneities that might occur between features, for which we presented adapters. With the exception
of naming differences, we did not deal with heterogeneities between classes. We omitted these
heterogeneities since they currently result in complex rewriting rules for the transformation logic.
For tackling these kinds of heterogeneities in the same way as heterogeneities between features,
a way has to be found to express a virtual view on classes in ATL. Finally, resolution of semantic
heterogeneities is totally left to the transformation designer.

Reusing Transformations for Specific Target MMs. Our approach focuses on adaptations
concerning MMs in the source domain. The application to target MMs is not supported, since it
is not possible to query the target model to provide virtual features. Thus, further mechanisms
have to be explored for adapting the transformations regarding the target domain.

Specialization of Constraints. The focus of this paper was to adapt transformations specified
for concept MMs such that they are also applicable to specific MMs. Nevertheless, not only the
transformations have to be adapted, but also constraints on the concept MMs have to be translated
for specific MMs. Imagine the case that there are stronger constraints on the source concept MM
than on the specific MM. Thus, only a subset of the instances of the specific MM may be a
valid input for the transformation. However, to exactly identify this subset, the constraints of the
concept MMs have to be translated to constraints operating on the specific MMs.

Missing Concepts in Specific MMs. Our approach assumes that a subtype relationship be-
tween the specific and generic MM may be established in order to assure that every concept used
in the generic transformation is also accessible by the specific transformation. Nevertheless, in
general, the problem may arise that the specific MM represents only a subset of the generic MM,
i.e., not all concepts of the generic MM may be bound to concepts of the specific MM. Conse-

2 http://www.kermeta.org

11 / 13 Volume 50 (2011)

Reusing Model Transformations across Heterogeneous Metamodels

quently, means for pruning the generic transformation specification would be needed, i.e., those
parts of the transformation specification that make use of unbound concepts should be excluded.

Meta-Metamodel Heterogeneities. In order to resolve heterogeneities between a specific
and a generic MM, our approach assumes that both correspond to a common meta-metamodel
(MMM), i.e., Ecore. Nevertheless, if a specific and a generic MM conform to different MMMs,
first this kind of heterogeneity has to be resolved. This may be achieved by transforming the
MMs to MMs conforming to a common pivot MMM, being comparable to resolving datamodel
heterogeneity in data engineering [ACT+08]. Afterwards the heterogeneities between the MMs
may be resolved by means of our approach again.

Case Studies. In order to evaluate the automation potential and applicability of our approach,
case studies are needed. In this respect, it has to be evaluated which kinds of heterogeneities
occur in real world examples and in which way they can be resolved by our approach, i.e., semi-
automatically by the proposed adapters or by means of custom OCL expressions contained in
the binding model. Additionally, a comparison of our approach to other transformation reuse
approaches has to be undertaken in order to determine the (dis)advantages of the approaches.
Finally, it has to be evaluated in which way a generic MM should be designed, i.e., how many
concepts may be included in generic MMs, in order to allow for a specification of meaningful
reusable transformations.

Acknowledgements: This work has been partially funded by the Austrian Science Fund (FWF)
under grant J3159-N23 and P21374-N13.

Bibliography

[ABM05] Y. An, A. Borgida, J. Mylopoulos. Inferring complex semantic mappings between
relational tables and ontologies from simple correspondences. In Proc. of OTM’05.
Pp. 1152–1169. 2005.

[ACT+08] P. Atzeni, P. Cappellari, R. Torlone, P. A. Bernstein, G. Gianforme. Model-
independent schema translation. VLDB Journal 17(6):1347–1370, 2008.

[CGL11] J. S. Cuadrado, E. Guerra, J. de Lara. Generic Model Transformations: Write
Once, Reuse Everywhere. In Proc. of ICMT’11. Pp. 62–77. 2011.

[GD10] J. Garcia, O. Dı́az. Adaptation of transformations to metamodel changes. In De-
sarrollo de Software Dirigido por Modelos. Pp. 1–9. 2010.

[JABK08] F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev. ATL: A Model Transformation Tool.
Science of Computer Programming 72(1-2):31–39, 2008.

[LBNK09] T. Levendovszky, D. Balasubramanian, A. Narayanan, G. Karsai. A Novel Ap-
proach to Semi-automated Evolution of DSML Model Transformation. In Proc. of
SLE’09. Pp. 23–41. 2009.

Proc. MPM 2011 12 / 13

ECEASST

[Len02] M. Lenzerini. Data integration: A theoretical perspective. In Proc. of PODS’02.
Pp. 233–246. 2002.

[LG10] J. de Lara, E. Guerra. Generic Meta-modelling with Concepts, Templates and
Mixin Layers. In Proc. of MoDELS’10. Pp. 16–30. 2010.

[LN07] F. Legler, F. Naumann. A Classification of Schema Mappings and Analysis of
Mapping Tools. In Proc. of BTW’07. Pp. 449–464. 2007.

[MEM10] D. Méndez, A. Etien, R. Muller, Alexis nad Casallas. Towards Transformation
Migration After Metmodel Evolution. In Proc. of Models and Evolution Workshop
@ MoDELS’10. 2010.

[MV02] P. J. Mosterman, H. Vangheluwe. Guest editorial: Special issue on computer auto-
mated multi-paradigm modeling. TOMACS Journal 12(4):249–255, 2002.

[SJ07] J. Steel, J.-M. Jézéquel. On model typing. SoSyM Journal 6(4):401–413, 2007.

[SMM+12] S. Sen, N. Moha, V. Mahé, O. Barais, B. Baudry, J.-M. Jézéquel. Reusable model
transformations. SoSyM Journal 11(1):111–125, 2012.

[TCJ10] M. Tisi, J. Cabot, F. Jouault. Improving Higher-Order Transformations Support in
ATL. In Proc. of ICMT’10. Pp. 215–229. 2010.

[Vis01] E. Visser. A survey of rewriting strategies in program transformation systems.
Electronic Notes in Theoretical Computer Science 57:109–143, 2001.

[WKK+10a] M. Wimmer, G. Kappel, A. Kusel, W. Retschitzegger, J. Schönböck,
W. Schwinger. Surviving the Heterogeneity Jungle with Composite Mapping Op-
erators. In Proc. of ICMT’10. Pp. 260–275. 2010.

[WKK+10b] M. Wimmer, G. Kappel, A. Kusel, W. Retschitzegger, J. Schönböck,
W. Schwinger. Towards an Expressivity Benchmark for Mappings based on a
Systematic Classification of Heterogeneities. In Proc. of MDI Workshop @ MoD-
ELS’10. 2010.

13 / 13 Volume 50 (2011)

	Introduction
	Generic Model Transformations in a Nutshell
	Metamodel Heterogeneities: Obstacles for Transformation Reuse
	Motivating Example
	Metamodel Heterogeneities at a Glance

	Automatic Generation of Adapters
	Automatic Resolution of Heterogeneities by Reasoning
	Heterogeneity Reasoning and Adapter Generation in Action
	Binding Package.ownedClasses Package.ownedElements
	Binding UMLClass.superClasses JavaClass.extends
	Binding UMLClass.ownedProperties Attribute.class
	Binding Property.primitiveType Attribute.simpleType.name
	Remaining Classification Differences
	Composition of Adapters

	Related Work
	Critical Discussion and Future Work

