
Electronic Communications of the EASST
Volume 47 (2012)

Proceedings of the
11th International Workshop on Graph Transformation and

Visual Modeling Techniques
(GT-VMT 2012)

Instance Generation from Type Graphs with Arbitrary Multiplicities

Gabriele Taentzer

15 pages

Guest Editors: Andrew Fish, Leen Lambers
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


Instance Generation from Type Graphs with Arbitrary
Multiplicities

Gabriele Taentzer

Philipps-Universität Marburg, Germany

Abstract: Meta modeling is a wide-spread technique to define visual languages,
with the UML being the most prominent one. Despite several advantages of meta
modeling such as ease of use, the meta modeling approach has a major disadvan-
tage: It does not offer a direct means for generating its language elements. This
disadvantage poses a severe limitation on certain applications. For example, when
developing model transformations, it is desirable to have enough valid instance mod-
els available for large-scale testing. Producing such a large set by hand is tedious.
In the related problem of compiler testing, a string grammar together with a simple
generation algorithm is typically used to produce words of the language automati-
cally. In this paper, we formalize a restricted form of meta-models by type graphs
with multiplicities and introduce instance-generating graph grammars for creating
instance graphs representing the abstract syntax structures of models. Thereby, a
further step is taken to overcome the main deficit of the meta-modeling approach.

Keywords: Meta modeling, graph transformation, model transformation

1 Introduction

Model-driven engineering (MDE) is a software engineering discipline that uses models as main
artifacts throughout the software development process, adopting (automatic) model transforma-
tions for software development steps, model optimization and code generation. Models are writ-
ten in domain-specific languages (DSLs), usually defined by meta-models. More concretely, a
meta model defines the abstract syntax of a modeling language. The way a meta model defines
a modeling language is a declarative one, i.e., it enumerates all the model elements with its at-
tributes and its inter-relations. Moreover, well-formedness rules, usually written in OCL, can
be used to specify invariants. The meta-modeling approach has several advantages, one of them
being that a visual meta model allows a quick grasp of the concepts being defined. Furthermore,
the meta-modeling approach is also beneficial when it comes to defining complex modeling lan-
guages, consisting of several sub-languages. Nevertheless, there is also a major disadvantage:
Whereas constructing words of a language defined by a string grammar can easily be done by
applying grammar derivations, meta model instantiation is hard to operationalize, due to the
declarative form of a meta model.

In common applications of DSLs, this does not pose a problem because the process of instan-
tiation is performed by the software engineer when constructing models. However, there are a
number of emerging applications where firstly an approach is needed for generating a large set
of models automatically and secondly, the generation process must also be described explicitly.
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In other words, instead of the declarative meta model an equivalent operational description of
the language defined by the meta model is required.

Important applications of an operational definition approach for modeling languages include
automated testing of model transformations [Küs06, MBT06]. Model-driven architecture favors
a widespread usage of model transformations. The quality of model transformations is thus cru-
cial for their successful and widespread usage. For automated testing of model transformations,
the generation of instance models is required. However, not all elements of the input language are
usually interesting test cases. Further work has to be done to restrict the test case generation to
representative cases only. These restrictions could be formulated by additional OCL constraints
to be taken into account for instance generation. Furthermore, result models have to be checked
wrt. test assertions. At least, result models have to be elements of the result language.

Another kind of applications are editor generations for DSLs. Automatically generated editors
for domain-specific languages being defined by meta-models only offer simple editor operations
only. An operational language description may help also to automatically generate advanced
editor operations: First of all, the application of simple operations does not always yield models
of the specified DSL. Grammar rules shall be used to deduce quick fixes for indicated syntax
errors. Moreover, there are certainly larger editing steps where several closely related model
elements are edited together. Grammar rules show which model elements are closely related in
the sense that editing them all or none of them form yields consistent models again. Even further,
larger editing operations such as refactorings can be defined by composing several previously
defined editing operations to new ones.

Graph grammars [Roz97] provide a constructive, well-studied approach to language defini-
tion with a formal foundation that allows to prove important properties. First approaches have
emerged to generate graph grammars from restricted forms of meta-models. In [HM10] and
[HM11], generalized hyperedge replacement grammars are constructed from a restricted form
of class diagrams to generate instances. In [EKT09], we construct graph grammars over type
graphs with inheritance for instance generation. Moreover, basic OCL constraints can be trans-
lated to graph constraints and further to application conditions of rules [WTEK08]. In this paper,
a new form of instance generation graph grammar is presented, allowing meta-models to have
arbitrary multiplicities. However, other restrictions, especially concerning supported kinds of
well-formedness rules, still hold.

This work of translating the declarative specification of the language into an operational one
can be seen as a foundational technique within model engineering because it will allow the
adoption of techniques well-known for modeling languages and thereby closes an important
conceptual gap. To achieve this aim, the instance generating graph grammar derived from a type
graph formalizing a restricted form of meta-models has to generate all possible instances of the
type graph and should not generate any graph that is not an instance of the type. In terms of
graph grammar derivations, one has to ensure that every graph being created by a derivation of
the graph grammar, is a valid instance of the type graph and furthermore that for every instance of
the type graph there exists a derivation in the graph grammar. This completeness of the instance
generating graph grammar is important for their applications.

This paper is organized as follows: Type graphs with multiplicities are recalled in Section 2
and function as formalization of a restricted form of meta-models. Graph transformation con-
cepts based on type graph with inheritance are recalled in Section 3. Thereafter, we are ready to
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present instance generating graph grammars for the generalized case of arbitrary multiplicities
in Section 4. Finally, we conclude with a short consideration of related work, summary, and
outlook.

2 Type graphs with multiplicities and their languages

In this section, we recall type graphs with inheritance as introduced in [BELT04] and extend them
by multiplicities as in [TR05]. This setting is well suited to formally define a restricted form of
meta-models with arbitrary multiplicities, but without attributes, special forms of associations,
and any further kinds of constraints. Compared to the work in [EKT09], type graphs are allowed
to have arbitrary multiplicities (a major extension) and loop edges (a minor extension).

Definition 1 (type graph with inheritance) A type graph with inheritance is a triple TGI =
(TG, I,Abs) consisting of a graph TG = (T GV ,T GE ,srcT G, tgtT G) (with a set T GV of vertices, a
set T GE of edges, source and target functions srcT G, tgtT G : T GE→ T GV ), an acyclic inheritance
relation I ⊆ T GV × T GV , and a set Abs ⊆ T GV , called abstract nodes. For each x ∈ T GV ,
the inheritance clan is defined by clanI(x) = {y ∈ T GV | (y,x) ∈ I∗}, where I∗ is the reflexive-
transitive closure of I.

A graph can be typed over a type graph with inheritance by a pair of functions, from nodes to
vertex types and from edges to edge types, respectively. This pair of functions does not constitute
a graph morphism, but will be called clan morphism; it uniquely characterizes the type morphism
into the flattened type graph. Between clan-typed graphs we use type-refining morphisms (see
also Def. 5 in [TR05]) where a vertex with type t can be mapped to a vertex with a type in the
clan of t.

Definition 2 (clan morphism and typed graph) Let TGI = (TG, I,Abs) with TG = (T GV ,T GE ,
srcT G, tgtT G) be a type graph with inheritance. A clan morphism type : G→ TGI from a graph
G = (GV ,GE ,srcG, tgtG) to TGI is a pair type = (typeV : GV → T GV , typeE : GE → T GE) such
that, for all e ∈ GE ,

• typeV ◦ srcG(e) ∈ clanI(srcTG ◦ typeE(e)) and

• typeV ◦ tgtG(e) ∈ clanI(tgtTG ◦ typeE(e)).

(G, type) is called a typed graph or even clan-typed graph. Given two typed graphs (G, typeG)
and (H, typeH), a graph morphism f : G→ H is a type-refining morphism if for all v ∈ GV :
typeHV ( fN(v)) ∈ clan(typeGV (v)) and typeHE( fE(n)) = typeGE . f is called type-preserving
if typeHV ( fN(v)) = typeGV (v) holds. In the following, we call a type-refining morphism just
morphism.

Definition 3 (multiplicities) A multiplicity is a pair [i, j] ∈ N× (N∪{∗}) with i≤ j∧ j > 0 or
j = ∗. The set of multiplicities is denoted Mult. The special value ∗ indicates that the maximum
number of nodes or edges is not constrained. For an arbitrary finite set X and [i, j] ∈ Mult,
we write |X | ∈ [i, j] if i ≤ |X | and either j = ∗ or |X | ≤ j. The minimum i is also denoted by
min([i, j]), while the maximum j is also denoted by max([i, j]).
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Now we define an induced graph language over a type graph with multiplicities TGImult . As
usual, we use multiplicities to decorate the edges of type graphs. The multiplicities express the
number of incoming, respectively outgoing edges for each target, respectively source instance.

Definition 4 (Type graph with inheritance and multiplicities) A type graph with multiplicities is
a tuple TGImult = (TGI,msrc,mtgt) consisting of a type graph with inheritance TGI and additional
functions msrc,mtgt : TGIE →Mult, called edge multiplicity functions.

Example 1 In Figure 1, a type graph for simple activity models is shown. The minimal activity
model consists of a start and an end activity with a transition in between. That’s why it has
at least 3 model elements. I.e., model elements are activities and transitions. There are three
kinds of transitions: transitions running between simple transitions, transitions coming out from
decision activities, and transitions running into merge activities. This means that decisions split
the control flow, i.e. have one incoming and two outgoing transitions while merge activities
merge two control flows.

Figure 1: A type graph for simple well-structured activity models

Definition 5 (TGImult-induced graph language) Given a type graph TGImult with multiplicities,
the induced graph language is defined by:
L(TGImult) = {(G = (GV ,GE ,srcG, tgtG), typeG : G→ TGI) |
∀e ∈ TGIE ∧∀v ∈ type−1

G (t) with t ∈ clanI(src(e)) : |type−1
G (e)∩ src−1

G (v)| ∈ mtgt(e) and
∀e ∈ TGIE ∧∀v ∈ type−1

G (t) with t ∈ clan(tgt(e)) : |type−1
G (e)∩ tgt−1

G (v)| ∈ msrc(e)}, where
typeG is a clan morphism.

To check if all vertex and edge types of a type graph with inheritance and multiplicities
can be instantiated, we adapt reasoning methods for UML class diagrams adapting a reason-
ing method originally formulated for entity-relationship-diagrams [CCM04, BCCG05]. This
reasoning method deduces a linear in-equation system.
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Definition 6 (Finitely satisfiable type graph with inheritance and multiplicities) A type graph
TGImult with multiplicities is called finitely satisfiable if the following condition is satisfied:
Let I be an in-equation system with TGI′V ∪TGI′E as variable set containing an integer variable
for each element in TGIV ∪TGIE correspondingly named. ∀e ∈ TGIE with msrc(e) = [k, l] and
mtgt(e) = [m,n]:

• m× src(e)′ ≤ e′ ≤ n× src(e)′ is in I

• k× tgt(e)′ ≤ e′ ≤ l× tgt(e)′ is in I

I has to be solvable such that all variables in TGI′V ∪TGI′E are positive.

Example 2 (Finite satisfiability)
The type graph shown in Figure 1 is finitely satisfi-
able since the in-equation system on the right is solv-
able by positive integers. Actually, a possible solution is
AM′ = 1,ME ′ = has′ = 3,A′ = 6,SimpleTr′ = src′Simple =
tgt ′Simple = 2,DecTr′ = src′Dec = tgt ′Dec = 2,MergeTr′ =
src′Merge = tgt ′Merge = 2 (Note that ActivityModel is abbre-
viated by AM, ModelElement by ME, and Activity by A.)

ME ′ = has′ ≥ 3AM′

SimpleTr′ = src′Simple ≤ A′

SimpleTr′ = tgt ′Simple ≤ A′

DecTr′ = src′Dec ≤ 2A′

DecTr′ = tgt ′Dec ≤ A′

MergeTr′ = src′Merge ≤ A′

MergeTr′ = tgt ′Merge ≤ 2A′

3 Graph transformation based on type graphs with inheritance

In this section we present the formal background for instance generating graph grammars (IGGG)
based on the formal theory of typed graph transformations with inheritance (see [BELT04]).

The main ingredients of graph grammars are graph rules which will be defined in Def. 8.
For controlling a rule application, simple negative application conditions and atomic application
conditions are defined which are needed in Section 4.

Definition 7 (application condition) A simple negative application condition is of the form
NAC(x), where x : L→ X is an injective morphism. A morphism m : L→ G satisfies NAC(x)
if there does not exist an injective morphism p : X → G with p ◦ x = m. An atomic application
condition is of the form P(x,∧i∈Ixi) where x : L→ X and xi : X → Ci with i ∈ I are injective
morphisms. A morphism m : L→G satisfies P(x,∧i∈Ixi) if for all injective morphisms p : X→G
with p◦ x = m there does exist an i ∈ I and an injective morphism qi : Ci→ G with qi ◦ xi = p.

Remarks. Note that NAC(x) is equal to P(x,∧i∈Ixi)) with I = /0, since there does not exist any
i ∈ I to reach qi ◦ xi = p. Hence, there does not exist a p with p◦ x = m which is exactly the sat-
isfaction condition for NAC(x). Nevertheless, we introduce both kinds of application conditions,
since they allow a clearer definition of instance generating rules. In examples, morphisms x and
xi are often not shown totally, but can always be made total. A more general kind of application
conditions, called nested application condition, is presented in [HP09] but not needed here.

Definition 8 (rule) A rule typed over a type graph TGI = (TG, I,Abs) with inheritance is given

by p = (L l←− K r−→ R,Ap), where L,K,R are clan-typed graphs, l and r are type-preserving
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injective graph morphisms, type−1
R (Abs)⊆ r(KV ), and Ap is a set of application conditions of the

form NAC(x) or P(x,∧i∈Ixi).

Definition 9 (rule matching and application) Given a rule p and a clan-typed graph (G, typeG),
then m is a match of p in G if

• m is an injective match of the rule p = (L l←− K r−→ R,Ap) in the graph G;

• tK(x1) = tK(x2) for tK = typeG ◦m◦ l and x1,x2 ∈ KV with r(x1) = r(x2);

• m satisfies all simple negative application conditions and all atomic applications in Ap.

Given a match m, a direct derivation (G, typeG)
p,m
=⇒ (H, typeH)

exists if there is a span of graph morphisms G←−D−→H and
a co-match m∗ : R→H of p in H that give rise to a derivation
in the double-pushout (DPO) approach of graph transformation
as defined in [CMR96, EEPT06] where pushouts are used to
model the gluing of graphs. (See the DPO on the right.)

L

m
��

(PO1)

K

k
��

loo r //

(PO2)

R

m′

��
G D

goo h // H

Given a rule set R, (G, typeG)
∗⇒R (H, typeH) is a finite sequence of an arbitrary number of

direct derivations by rules of R. A derivation (G, typeG)
∗⇒R (H, typeH) terminates, if 6 ∃r ∈ R :

(H, typeH)⇒r (H ′, typeH ′).

Example rules are shown in the next section where the instance generating graph grammar for
the meta model in Figure 1 is presented.

4 Instance generating graph grammars

Having formalized a restricted form of meta models by type graphs with inheritance and multi-
plicities, we are now ready to define a language by an instance generating graph grammar. Based
on a given type graph with multiplicities, we mainly formalize the set of rules needed for instance
generation. The rules are given in Figures 2 to 4. They are applied in three layers:

1. Starting from the empty graph, an arbitrary number of vertices is created. This layer does
not terminate, i.e., all its rules remain applicable after their (recurring) applications. Thus,
rule application has to be stopped by user interaction or specification of application time
or number. In any case, the result is a discrete graph.

2. Next, edges are inserted as long as the specified lower bounds are not all reached. There are
three kinds of rules in this layer: If there are two vertices which shall be connected (since
lower bounds are not yet reached) and can be connected (since upper bounds are not yet
reached), they are just connected by a new edge. If a vertex still has to be connected, but
there is no suitable “free” vertex available, a new vertex is created with the new edge. Since
all given rules are intended to be matched injectively, there are separate rules to insert loop
edges. This process of rule application terminates, if the specified multiplicities guarantee
finite satisfiability. (Compare Lemma 1). Otherwise, it may happen that new vertices are
created again and again to satisfy the lower bounds without terminating.
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3. Finally, additional edges may be inserted as long as upper bounds are not reached. This
applies to loop edges as well.

As the main result of this paper, we present the equivalence of instance sets generated by an
instance generating graph grammar on the one hand, and induced by a type graph with multiplic-
ities on the other hand.

Definition 10 (instance generating graph grammar and language) Given a type graph TGImult
with multiplicities, an instance generating graph grammar is denoted by IGGG = (TGI, /0,R),
where R = R1 ∪R2 ∪R3 is the union of the following sets of rules. The rules are depicted in
Figures 2 - 4 and are formalized in the obvious way according to Def. 8.

• R1 = {createVertex(A’) | ∀A′ ∈ TGIV ∧A′ 6∈ Abs} with rule createVertex as in Fig. 2

• R2 = R21∪R22 with
R21 = {insertEdge(A,a,B) | ∀A,B∈ TGIV ,a∈ TGIE : (msrc(a) = [m,n]∧mtgt(a) = [k, l])}∪
{insertLoopEdge(A,a) | ∀A ∈ TGIV ,a ∈ TGIE : (msrc(a) = [m,n]∧mtgt(a) = [k, l])}
R22 = {insertEdgeWithVertex(A,a,B,B’) | ∀A,B,B′ ∈ TGIV ,a ∈ TGIE : with
msrc(a) = [m,n]∧mtgt(a) = [k, l]∧ k > 0∧n 6= ”∗ ”∧B′ ∈ clan(B)∧B′ 6∈ Abs}
with rules insertEdge, insertEdgeWithVertex, and insertLoopEdge as in Fig. 3

• R3 = {insertAdditionalEdge(A,a,B) | ∀A,B ∈ TGIV ,a ∈ TGIE with
msrc(a) = [m,n]∧mtgt(a) = [k, l]} with rules insertAdditionalEdge as in Fig. 4

If bounds k or m are equal to 0 or bounds l or n are equal to ”*”, the corresponding negated appli-
cation conditions are equal to true in rules insertEdge, insertAdditionalEdge, and insertLoopEdge.
Atomic application conditions of the form P(x : L→ X ,x1 : X → C1) with X consisting of one
vertex being mapped to a vertex with infinite many adjacent edges in Ci is semantically equal to
a negative application condition containing a vertex of the same type (see below).

R is layered, i.e. there is a function rl : R→ N with rl(r) = i for all r ∈ Ri for i = {1,2,3}.
Function rl is called rule layer function.
The graph language generated by IGGG consists of typed graphs (G, typeG) such that L(IGGG)=

{(G, typeG) | /0 ∗⇒R1 (H, typeH)
∗⇒R2 (K, typeK)

∗⇒R3 (G, typeG))}. (K, typeK) is in normal form,
i.e., there does not exist a rule r ∈ R2 applicable to (K, typeK).

Layered graph grammars are presented in [EEL+05]. The order of rule applications described
above can also be considered as a special graph program [HP01]: R1; as long as possible R2; R3

Note that:

• It is obvious that all graphs in L(IGGG) are clan-typed over TGImult .

• R1 contains rules createVertex(A’) for all concrete types in T GIV .
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• If the type graph contains edge loops, A may become equal to B. E.g. given an edge
loop a on A, there are also rules insertEdge(A,a,A), insertEdgeWithNode(A,a,A,A’), and
insertAdditionalEdge(A,a,A).

• It is straight forward to see that instance generating graph grammars as defined in [EKT09]
for special multiplicities are covered by instance generating graph grammar as defined here
for arbitrary multiplicities.

Figure 2: Instance generation: creation of nodes in layer 1

Figure 3: Instance generation: creation of required edges in layer 2

Example 3 (instance generation) In Figures 5 to 7, example rules for the instance generation
of simple activity models are shown. They are built strictly according to the general algorithm.
Create vertex rules are generated for all concrete types as indicated in Figure 5. Layer 2 and 3
rules have to be generated for 7 edges. In Figures 6 and 7 we consider the insertion rules needed
for the src-edge between DecTr and Activity. Note that the layer 2 rules in Figure 6 does not
contain insertion rules in case that new DecTr instances have to be created.

Example 4 (A non-terminating IGGG) In this example, we want to discuss what is happening
if we take a type graph that is not finitely satisfiable. Considering the sample type graph in the
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Figure 4: Instance generation: creation of optional edges in layer 3

Figure 5: Example rules of layer 1

Figure 6: Example rules of layer 2

9



Figure 7: Example rules of layer 3

upper row of Figure 8. Its in-equation system consists the following equation: A′ = a = 2A′

not being solvable by finite numbers. Figure 8 also shows rules of Layers 1 and 2. Those of
Layer 3 are omitted since Layer 2 is not terminating and therefore, rules of Layer 3 will never
be applied. In the lower row of Figure 8, a sample derivation is depicted also using the rule
insertLoopEdge(A,a) not being depicted in figure 8. Since only one edge may go out but two
have to come in to each vertex, we have to continue creating new vertices which leads to non-
termination of Layer 2.

Figure 8: Example of a non-terminating IGGG

In the previous example, we have seen that Layer 2 can become non-terminating if the input
type graph is not finitely satisfiable. However, in the following lemma we can show that Layer 2
is terminating if the input type graph is finitely satisfiable.

Lemma 1 (termination of rule layer 2) Given a type graph with inheritance and multiplic-
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ities TGImult that is finitely satisfiable and an instance generating graph grammar IGGG =
(TGI, /0,R), let L1(IGGG) = {(H, typeH) | /0 ∗⇒R1 (H, typeH)} constructed as in Def. 10. All
derivation sequences (H, typeH)

∗⇒R2 (G, typeG) with (H, typeH) ∈ L1(IGGG) terminate.

Proof. We show that if there is a derivation (H, typeH)
∗⇒R2 (G, typeG) with (H, typeH)∈L1(IGGG)

not terminating, then TGImult is not finitely satisfiable. Such a derivation is non-terminating, if
after any derivation step there is still a match for some rule of layer 2. Considering the rules in
layer 2, it is obvious that rules insertEdgeWithVertex() are the only ones that insert new matches.
The others just consume matches. W.l.o.g. there is rule insertEdgeWithVertex(A,a,B,B’) that is
applied infinitely often. This means that the number of instances of type B’ grows over all limits.
Thus, T GImult is not finitely satisfiable.

As main result, the following theorem states that the instance sets generated by an IGGG and
those induced by a type graph with multiplicities (being finitely satisfiable) are equal.

Theorem 1 (equality of languages) Given a type graph TGImult with inheritance and multi-
plicities and an instance generating graph grammar IGGG = (TGI, /0,R) for TGImult , we have
L(IGGG) = L(TGImult).

Proof. Let Ri = {r | rl(r) = i} for i = {1,2,3}.

1. L(IGGG) ⊆ L(TGImult): Given any derivation /0 ∗⇒R1 (H, typeH)
∗⇒R2 (K, typeK)

∗⇒R3

(G, typeG), we have to show that (G, typeG) ∈ L(TGImult). Let /0 ∗⇒R1 (H, typeH) con-
sist of n steps, i.e. (H, typeH) has n nodes.

What can be said after (H, typeH)
∗⇒R2 (K, typeK)?

Due to Lemma 1, we know that this derivation sequence does always terminate. Let graph
(K, typeK) be the result graph to which none of the rules of layer 2 is applicable. We have
to show that (K, typeK) ∈ L(TGImult):

• No insertEdgeWithVertex(A,a,B,B’) is applicable: Either the lower bounds are reached
for all edges and thus, (K, typeK) ∈ L(TGImult) or there is a vertex of type B′ for
which the upper bound has not been reached. Then, there is still a pair of A and
B-typed vertices not connected by an a-typed edge and thus, there is a match of
insertEdge(A,a,B) which contradicts our assumption that no rule of layer 2 is appli-
cable.

• No insertEdge(A,a,B) is applicable: Either the lower bounds are reached for all edges
and thus, (K, typeK) ∈ L(TGImult) or there is a vertex of type A or type B for which
the upper bound has been reached. This situation would lead to a match of rule
insertEdgeWithVertex(A,a,B,B’) or rule insertEdgeWithVertex(B,a,A,A’) for a concrete
type B′ ∈ clan(B) or A′ ∈ clan(A) which contradicts our assumption that no rule of
layer 2 is applicable.

• No insertLoopEdge(A,a) is applicable: Either the lower bounds are reached for all
edges and thus, (K, typeK) ∈ L(TGImult) or there is a vertex of type A for which one
of the upper bounds has been reached. This situation would lead to a match of rule
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insertEdgeWithVertex(A,a,A,A’) for a concrete type A′ ∈ clan(A) which contradicts
our assumption that no rule of layer 2 is applicable.

Applications of rules in R3 always lead to graphs in L(TGImult), since they just add edges
as long as upper bounds have not reached.

2. L(TGImult) ⊆ L(IGGG): Given a graph (G, typeG) ∈ L(TGImult), we have to construct a
derivation sequence /0 ∗⇒ (G, typeG) over IGGG. Since TGImult is finitely satisfiable, for
all (A,a,B) there are i(A) vertices of type A, i(a) edges of type a, and i(B) vertices of type
B in GV such that all multiplicities are satisfied.

Since R1 contains a creation rule for every vertex type, the vertices in GV are created

in |GV | steps by applying rules of R1 to graph /0, i.e. we construct a derivation /0
|GV |⇒ R1

(H, typeH) with H = (HV , /0, /0, /0), HV = GV , and typeH = (typeGV , /0).

Since all nodes needed have already been created in layer 1, rules of set R21 are used only
to create all required edges in layer 2. Let a be an edge in TGIE with src(a) = A and
tgt(a) = B:

• A 6= B: Since m× i(A) ≤ i(a) ≤ n× i(A) and k× i(B) ≤ i(a) ≤ l× i(B), rule insert-
Edge(A,a,B) is applied as long as i(a)≤ m× i(A) or i(a)≤ k× i(B). When they are
not applicable anymore, both lower bounds, k and m, have been reached.

• A = B: Since m× i(A) ≤ i(a) ≤ n× i(A) and k× i(A) ≤ i(a) ≤ l× i(A), rules in-
sertEdge(A,a,A) and insertLoopEdge(A,a) are applied as long as i(a) ≤ m× i(A) or
i(a)≤ k× i(A). When it is not applicable anymore, both lower bounds, k and m, have
been reached.

Thus, if no rule of R21 is applicable anymore, we have reached graph (K, typeK)∈L(TGImult)
with KV = GV and KE ⊆ GE .

Additional edges are created by the application of rules in R3. Since i(a) ≤ l× i(B) and
i(a) ≤ n× i(A), the upper bounds, l and n, are not reached and the rules in R3 can be
applied as long as all edges in GE have been created. Thus, the resulting graph (G, typeG)
is in L(IGGG).

5 Related Work

There is work on the relation of different kinds of grammars to meta-models. In all approaches,
meta-models come without additional well-formedness rules:

One closely related approach is the one by Alanen and Porres [AP03]: They describe two
algorithms, one to derive a context-free string grammar from a meta model and another one for
deriving a meta model from a context-free string grammar. The aim of their work is to bridge the
gap between artifacts defined by a context-free string grammar and software models for which
the syntax is specified by a meta model. Their algorithm for grammar derivation can only deal
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with composite associations between meta classes, restricting it to tree-like meta models which
is a severe limitation for practical usage. Furthermore, the algorithm does not support ordinary
associations with arbitrary multiplicities. This limitation is not surprising given the properties of
context-free string grammars. It represents one reason for the approach to use graph grammars
instead of context-free grammars.

The approach by Hoffmann and Minas [HM10, HM11] translates a restricted form of class di-
agrams into contextual star grammars being a kind of hyperedge replacement grammars extended
by contextual rules including path expressions and variable parts. Hence the instance generation
process uses non-terminals during instance construction, similarly to context-free string gram-
mars, and constructs instances along spanning trees. In contrast, our instance generation is purely
graph-oriented. It restricts rule application by using rules with application conditions and lay-
ering their application. While Hoffmann and Minas focus on parsing of meta model instances,
the approach in this paper shall be used to generate test cases for model transformations and to
provide users of graphical editors with advanced editing operations deduced from our grammar
rules. Especially for the second application case, rules without non-terminals are better suited.

Instance generation for meta-models has also been considered in further approaches not using
grammars: A related problem is the automated snapshot generation for class diagrams for vali-
dation and testing purposes, tackled by Gogolla et al. [GBR05]. In their approach, properties that
the snapshot has to fulfill are specified in OCL. Formal methods such as Alloy [Jac02, ABGR07]
can also be used for instance generation: After translating a class diagram to Alloy one can use
the instance generation within Alloy to generate an instance or to show that no instances exist.
This instance generation relies on the use of SAT solvers and can also enumerate all possible
instances. While these approaches are pretty promising for automatic test case generation, they
seem to fit less for the automatic deduction of advanced editing operations, since incremental
structure modifications are needed in this case. Instead, grammar rules seem to be well suited to
deduce such incremental modifications.

6 Conclusion

In this paper, we have presented how a restricted form of meta-models can be formalized by type
graphs with inheritance and arbitrary multiplicities. This kind of type graphs can be translated
to instance generating graph grammars. We have shown that the languages defined by each of
these concepts are equal if the type graph has multiplicities that are finitely satisfiable, i.e., that
can be satisfied by a finite instance. This work is a direct extension of the translation shown in
[EKT09]. The main new contribution of this paper is the extension from restricted multiplicities
such as 0..1, 1, 1..*, and 0..* to arbitrary multiplicities. Thus, another step is taken to close
the conceptual gap in modeling language definition by allowing the adoption of grammar-based
definition techniques also to languages defined by meta models.

Further extensions have to be made in future to cover all essential concepts of meta-modeling
by the translation to instance generating graph grammars. A major step is to include well-
formedness rules formulated in OCL into this translation. In [EKT09] we sketch already how a
restricted form of OCL constraints can be translated into graph constraints and how they can be
taken into account during instance generation. In future, the existing restrictions on meta-models
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have to be erased step-by-step to close the conceptual gap between meta-models and grammars
finally.

Future work is also needed to elaborate on possible applications of our technique: The instance
generation shall be applied to further and especially larger type graphs than shown in the running
example, proving that this approach can scale. For testing model transformations, techniques are
needed that allow the generation of selected instances that are representative test cases. For
editor generation, it needs to be explored how the graph grammar generated from a meta model
can provide a basis to automatically deduce advanced visual editing rules.
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