
Electronic Communications of the EASST
Volume 51 (2012)

Proceedings of the
5th International Workshop on Petri Nets,

Graph Transformation and other Concurrency Formalisms
(PNGT 2012)

Optimization in Graph Transformation Systems with Time
Using Petri Net Based Techniques

Szilvia Varró-Gyapay

12 pages

Guest Editors: Julia Padberg, Kathrin Hoffmann
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Optimization in Graph Transformation Systems with Time
Using Petri Net Based Techniques

Szilvia Varró-Gyapay

gyapay@mit.bme.hu
Budapest University of Technology and Economics

Department of Measurement and Information Systems

Abstract: Extra–functional properties of IT systems have to be analyzed and sub-
sequently optimized carefully during the design phase in order to assure a proper
quality of service and decrease operational costs. Several verification and validation
methods are known to check the correctness of the system services, while optimiza-
tion may serve to reach boundaries thus minimizing costs or duration of operating
the system. However, the combination of the best practices of the two fields accord-
ing to the purpose of the analysis is a challenging question. In a previous paper, we
showed how such a problem can be formalized and solved when the evolution of
the system is captured by graph transformation systems (GTS) with cost parameters
attached to each graph transformation rule denoting the cost of firing the rule.

This technique is adapted in the current paper to deliver a time–optimal trajectory in
a GTS with time. While the cost of a GT rule sequence always equals to the sum of
the cost of the involved GT rules, the concurrent application of GT rules may reduce
the minimal duration of a GT rule sequence, which is a major conceptual difference
concerning optimization.

Keywords: graph transformation with time, Petri nets, optimization

1 Introduction

The analysis of the qualitative and quantitative requirements of an IT system identifies the errors
in the model and improves the efficiency of the system in order to assure a proper quality of
service and decrease the operational costs and time. Qualitative requirements can be for instance
the guarantee of safety of a system, while quantitative requirements are the optimality and the
reliability of the system. Combined optimization and validation, verification problems can be
typically expressed as reachability problems with quantitative or qualitative measurements called
optimal trajectory problem.

The current paper proposes a method to deliver a trajectory with minimal duration in graph
transformation systems (GTSs) with time according to a reachability criteria. At first, (i) the GTS
is transformed into a cardinality P/T net where places are to count the elements of an edge or
node type and transitions simulates the effect of a rule application in the number of the elements
of a certain type abstracting from the structure of the graph. Then (ii) an optimal solution is
delivered for the cardinality P/T net, and (ii) this solution is used as a hint to perform a guided
exploration at the level of GTS.

1 / 12 Volume 51 (2012)

mailto:gyapay@mit.bme.hu

Optimization in Graph Transformation Systems with Time Using Petri Nets

Related work. Related works can be categorized into two groups: that aim at the optimization
of the modeled system (usually in a quite specialized case or systems with specific structure)
in the field of GTSs, e.g. [FL76, T0̈9] or Petri nets, e.g. [TL04, LH11], and that aim at the
analysis of the GTS, e.g. the reachability analysis of timed GTSs based on the time automata
approach [HSE10] or the (guided) exploration of the search space, e.g. [HHRV11, Ren03]. The
current approach is novel w.r.t. previous works that it combines the GTSs with time based
modeling of the optimization problems, and the optimization of the transformed P/T net by
solving integer linear programming problems.

Previous contributions. In [GSV04] GTSs with time were modeled and optimized in the
SPIN model checker. The advantage of the proposed method is that the SPIN model checker
retrieves directly the optimal trajectory by searching the state space. However, the drawback of
the approach is that all the elements of the graph that can be reached during the evolution of the
graph transformation system have to be known a priori.

In [VV06] an optimal sequence of graph transformation rules in GTSs with cost between two
graphs was delivered: (i) at first, the GTS was abstracted into a cardinality Petri net with cost
parameters, and (ii) at second, an optimal trajectory of the Petri net abstraction was delivered.
(iii) Then the corresponding GT rule sequences were checked in the GTS with cost: if there were
no appropriate solution, the next optimal trajectory of the Petri net was developed and checked
in the GTS level again, and so on.

Since the possible concurrent firing of rules may reduce the minimal duration of a GT rule se-
quence in GTSs with time this approach cannot be adapted directly to the timed case. Therefore,
the underlying optimization problem of the abstraction P/T net is modified such that it models
the concurrent firing of rules (transitions).

The novelty of the current approach compared with the previous ones is that it handles time
in the GTS such that also the creation of new graph elements is allowed. On the other hand, this
concept shows a promising way how to extend the calculation of an optimal path for other GTS
based approaches. The paper proposes a solution to compute time–optimal trajectories in GTSs
with time, where the evolution of the system is captured by (i) graph transformation rules, and
(ii) timestamps of the graph elements. This approach is illustrated in the paper in a special case
of GTS with time.

2 Basic Definitions

2.1 Graph Transformations with Time

In [GHV02] we introduced graph transformation with time as typed graph transformation with
time attribute. The time attribute is a logical clock (typically) with non-negative integer values
that can be attached to nodes. The time attribute has a distinguished role to define how the time
progresses in discrete steps in a consistent way.

Graph transformation (GT) provides a rule-based manipulation of graph models. A graph
transformation system GT S = (R,T G) consists of a type graph T G and a finite set of graph
transformation rules typed over T G. Formally, a graph G = (N,E,src, trg) is a 4-tuple with a set
N of nodes, a set E of edges, a source and a target function src, trg : E→ N. A type graph T G is
an ordinary graph. An instance graph G is typed over T G by a typing morphism type : G→ T G.

Proc. PNGT 2012 2 / 12

ECEASST

A graph transformation (GT) rule typed over a type graph T G is given by r = (L l←−K r−→R)
where L (left-hand side or LHS), K (context) and R (right-hand side or RHS) graphs are typed
over T G and graph morphisms l,r are injective. The negative application conditions (NAC) of a
GT rule is a (potentially empty) set of pairs (N,n) with N being a graph also typed over T G and
n : L→ N an injective graph morphism. In addition, a rule may have several NACs.

The application of a rule r = (L l←− K r−→ R) to a host graph G alters the model graph by
replacing the pattern defined by L with the pattern of R. This is performed by (i) finding a match
of the L pattern in model G; (ii) checking the negative application conditions N, i.e. the rule may
be applied only if there is no match of N in L prohibiting the presence of certain elements; (iii)
removing a part of the model G that can be mapped to the L pattern but not the R pattern yielding
an intermediate graph D; (iv) adding new elements to the intermediate graph D which exist in R
but not in L yielding the derived graph H.

A graph transformation sequence (GT sequence) is a sequence of rule applications: G0
r1=⇒

G1
r2=⇒ G2

.
=⇒ ... We say that a graph G is reachable from G0 if there is a transformation

sequence from G0 to G.
Typed graph transformation with time. To incorporate time into typed graph transforma-

tion, time data type is introduced as domain for time-valued attributes. In [GHV02] we followed
the approach of time environment–relationship (TER) nets to define the semantics of graph trans-
formation with time. TER nets are high–level Petri nets where tokens are environments such that
time is a distinguished environment that assigns values to variables [GMMP91].

A type graph with time T G is a type graph with attribute time. An instance graph with time
over T G for the data type T = 〈Dtime,+,0,≥〉 is an instance graph < G, type : G→ T G > over
T G such that the data type sort time is interpreted by Dtime, that is, Dtime = {x ∈ GN |type(x) =
time}. Ordinary nodes are connected to the time attribute nodes by chronos edges representing
the time attribute declaration, i.e. chronos∈ T GE : src(chronos)= T GN \{T}, trg(chronos)= T .

Graph transformation system with time. A graph transformation system with time con-
sists of a type graph such that the above defined time attribute is included in it, and the rules
manipulate the time attributes in the graphs such that

• Condition 1. Local monotonicity: for all vertices x ∈ L and y ∈ R, the timestamp of x is
smaller or equal to the timestamp of y, and

• Condition 2. Uniform timestamps: for all vertices x,y ∈ R the timestamp of x equals the
timestamp of y.

These conditions ensure a behaviour of time such that (i) an operation or transaction specified
by a rule cannot take negative time, i.e., it cannot decrease the timestamps of the nodes it is
applied to, and (ii) each rule application is atomic, that is, all effects specified in the RHS are
observed at the same time, called the firing time of the rule.

Duration of a transformation sequence. In analogy with TER nets [GMMP91], for each
transformation sequence s using only rules that satisfy the above two conditions, there exists an
equivalent sequence s′ such that s′ is time-ordered, that is, timestamps are monotonically non-
decreasing as the sequence advances. The duration of a transformation sequence p is the firing
time of the last rule in a corresponding time–ordered path denoted by d(p).

3 / 12 Volume 51 (2012)

Optimization in Graph Transformation Systems with Time Using Petri Nets

Example 1 An example GTS with time is illustrated by a storage testing and reconfiguration
line. The testing of an untested storage needs a non–reserved test cell. After a storage is tested,
it is ready to ship to the customers. Both untested and tested storages can be reconfigured into
another untested or tested storages with the other type. The model elements are shown in the
type graph in Fig. 1 on the left as a UML class diagram, while the rules are depicted in Fig. 2.

An instance graph is shown in Fig. 1 on the right described as a UML object diagram: there
is an untested storage with type1 that is under test (connected by a test1 edge to a reserved test
cell), a tested storage with type1, and an untested storage with type2.

Figure 1: Type and instance graph

In Fig. 2 rules manipulating a storage with type1 are presented. The name and the time of
the rule are written over and below the blue rule arrow, respectively. The timestamp of an edge
is written after the type of the edge separated by a /. Since the current example does not allow
multiple edges with the same type between two nodes, the identifiers of the edges are omitted.

The time of a rule equals the maximum of the timestamps in the LHS plus the duration of the
rule, and all graph elements in the RHS get this time as its timestamp. It is easy to check that
conditions Local monotonicity and Uniform timestamp hold for all rules.

For space consideration only the testing of a storage is described in details. A storage can be
tested if (i) it is not tested yet, (ii) its test has not started yet, i.e. there is no test cell connected to
it, and (iii) there exists a free test cell. These conditions are described by the negative application
conditions NAC1-3, respectively. If there exists such a storage s1 and test cell t1 rule start test 1
is applied: a test1 edge is drawn from s1 to t1 representing the start of the test, and t1 gets an
edge reserved denoting its allocation for s1. The duration of the rule is 1 time unit.

The test of a storage is carried out by applying rule test 1: the rule searches for a storage that
has a test1 edge to a reserved test cell. After the test is carried out, a self–loop edge tested1 is
created for the storage denoting its state and the other edges are deleted, i.e. the test cell becomes
again free. The duration of the test is 21 time unit.

The rules for a storage with type2 are similar such that the durations are 1,23,16,13, and
1 for the rules start test2, test 2, reco 2, reco 2 tested, and ship 2, respectively. Note that the
example can be modeled in several ways using attributes, or edges to denote the type of a storage.
However, the current version provides the easy construction of the reachability statement.

Proc. PNGT 2012 4 / 12

ECEASST

Figure 2: GT rules

2.2 Place/Transition Nets

Now we give a short introduction into the theory of Place/Transition nets based on [Mur89].
A Place/Transition net (or shortly P/T net) is a 5-tuple PN = (P,T,E,w,M0) where P is a set

of places, T is a set of transitions, E ⊆ (P×T)∪ (T ×P) is the set of arcs , M0 : P→ N is the
initial marking mapping places to nonnegative integers, while w : E→ N+ maps arcs to positive
integers. Furthermore •t = {p | (p, t) ∈ E} denotes the input places, while t•= {p | (t, p) ∈ E}
denotes the output places of transition t. Finally, •p= {t | (t, p)∈E} are the incoming transitions
while p•= {t | (p, t) ∈ E} are the outgoing transitions of place p.

A transition t is enabled if each of its input places contains at least as many tokens as is
specified by the weight function, formally, ∀p ∈ •t : M(p) ≥ w(p, t). The firing of an enabled
transition t removes a w(p, t) amount of tokens from the input places (p), and w(t, p) tokens are
produced for the output places, i.e. ∀p ∈ P : M′(p) = M(p)−w(p, t)+w(t, p).

The incidence matrix W of the net describes the net token flow (of the P/T net) when firing a
transition. Mathematically, W is a |P| × |T |–dimensional matrix of integers N such that Wi j =
w(ti, p j)−w(p j, ti), where 1≤ i≤ |P|,1≤ j ≤ |T |.

A transition firing sequence (or shortly firing sequence) s = 〈ti1 , ti2 , . . . , tik〉 is a sequence of
transition firings between states M0 and Mk such that 〈M0, ti1 ,M1, ti2 , . . . , tik ,Mk〉 where for all
1 ≤ j ≤ k ti j is enabled in M j−1 and M j is yielded by the firing of ti j in M j−1. The transition
occurrence vector or Parikh–vector σ of a trajectory s = ti1 , . . . , tik counts the occurrence number
of the individual transitions in the firing sequence, i.e. σ(t j) = |{il|il = j, l = 1..k}|.

5 / 12 Volume 51 (2012)

Optimization in Graph Transformation Systems with Time Using Petri Nets

A marking M is reachable from a state M0 (denoted by M0[s > M) if there is a transition firing
sequence s from M0 to M. Then the so–called state equation holds: M = M0 +W ·σ , where
σ is the transition occurrence vector of s. A marking Mpartial is partially reachable from M0 if
there is a transition firing sequence s from M0 to a marking M such that Mpartial ≤M. Then the
following inequality holds: Mpartial ≤M0 +W ·σ , where σ is the transition occurrence vector
of s.

The duration parameter of a transition in the abstraction P/T net is defined as in [Ram74], as
follows. A Petri net with duration parameters is a PNd = 〈PN,d〉, where the duration function
d : T → N assigns duration to the firing of the individual transitions, such that each firing of a
transition in a trajectory s =< ti1 , . . . , tik >, tir ∈ T has a beginning and an end time. The duration
of the firing sequence can be interpreted as the end time of all the fired transitions in the sequence.
Once a transition is enabled and selected to fire, the tokens are removed at the beginning time of
the firing from the input places and the duration of the transition starts to be counted down. After
the duration time elapsed, the required tokens are put into the output places. This way, conflicting
transitions cannot disable each other by stealing tokens during the firing of a transition.

Now we provide a detailed description how to carry out optimization of GTS with time using
a state space traversal strategy guided by optimal solutions of the P/T net abstraction of the GTS.

3 Optimization of GTS with Time by Guided State Space Traversal

3.1 Optimal Trajectory Problem for GTS

Combined reachability and optimization problems can be defined as follows: (i) let decide,
whether a particular state of the system is reachable from the initial state using the available
resources, and (ii) if the state is reachable, then an optimal trajectory has to be computed. Fre-
quently, in engineering problems only a subset of nodes and edges is relevant from practical
point of view. Therefore, in case of graph transformation systems partial reachability means that
we should reach a graph G that covers the desired (partial) graph Gpartial , i.e. there is a subgraph
of graph G that is isomorphic to Gpartial (denoted by G ⊇ Gpartial). We also say that Gpartial is
partially reachable from G0.

Then the optimal trajectory problem can be described as follows. Given a graph transformation
system GT S together with an initial instance graph G0, and a graph Gpartial , find a trajectory
(path) tr from graph G0 to graph G (G0

p
=⇒G) such that G⊇Gpartial , and it is optimal, i.e. ∀tr′ :

G0
tr′
=⇒G′,G′ ⊇Gpartial : d(tr)≤ d(tr′). We denote this problem as OT = ((GT S,G0),Gpartial).

3.2 P/T net Abstraction

Let an optimal trajectory problem of GTS with time OT = ((GT S,G0),Gpartial) be given where
(i) time is discrete, i.e. the time data type is defined by the natural numbers, (ii) each graph
element has a chronos value, (iii) and the time of the rule application is defined as the maximum
of the timestamps in the LHS plus a constant, denoted as the duration of the rule application
d(r). Note that a GTS satisfying these criteria conforms to the time–conditions of Section 2.1.

The essence of the abstraction technique is to derive a cardinality P/T net with duration pa-

Proc. PNGT 2012 6 / 12

ECEASST

rameters which simulates the original GTS by abstracting from the structure of instance graphs
and only counting the number of elements (nodes or edges) of a certain type by placing tokens
to a corresponding place. These tokens are circulated by transitions derived from each GT rule
which simulate the effect of the rule on the number of elements of certain types by adding and
removing tokens from corresponding places.

Timestamp. The timestamp of a graph element x in an instance graph G is denoted as time(x).
Cardinality. Let card(G,x) denote the cardinality (i.e. the number of graph objects) of type

x ∈ T G in graph G. Formally, card(G,x) = |{n | n ∈ N∪E ∧ type(n) = x}|.
Mapping. Then the mapping F () of a graph transformation system with time GT St =

(Rule,T G),G0,Gpartial into a cardinality P/T net with duration PNd := 〈(P,T,E,w,M0),d〉 is
defined as follows. Note, that in the definition a node or edge of the graph are ordinary nodes
and edges (not time attribute nodes or chronos edges).

• Types into places. For each node and edge y ∈ NT G∪ET G in the type graph T G, a corre-
sponding place py = F (y) is defined in the cardinality P/T net.

• Instances into tokens. For each node and edge x∈NG∪EG in an instance graph G with type
y = type(x), a token is generated in the place F (y). A corresponding marking mG of the
instance graph G is an assignment of natural numbers to places: mG(py) = |{x|type(x) =
y∧ x ∈ G}|.

• Rules into transitions. For each rule r∈Rule, r =(L l←−K r−→R), time(r)= max({time(x)|x∈
L})+ d(r),d(r) ∈ N, in the graph transformation system GT S, a transition tr = F (r) is
generated in the cardinality P/T graph such that

Left-hand side: If there is a graph object x of type y = type(x) in L, then an incoming arc
(py, tr) is generated in the net where py = F (y). This way the required number of tokens
in the preset of transition tr is equal to the number of graph objects in L of the type of
the corresponding place. Formally, ∀x,y : x ∈ L∧ y = type(x)∧F (y) = py =⇒ (py, tr) ∈
E ∧w(py, tr) = card(L,y).

Right-hand side: If there is a graph object x of type y = type(x) in R, then an outgoing
arc (tr, py) is generated in the net where py = F (y). In other words, as many tokens are
produced to place py by firing the transition as the number of graph objects of the same
type y in the right–hand side of the rule. Formally, if ∀x,y : x ∈ R∧ y = type(x)∧F (y) =
py =⇒ (tr, py) ∈ E ∧w(tr, py) = card(R,y).

Duration: The duration of the transition is d(F (r)) = d(r).

Example 2 Let us revisit our ongoing example. In Fig. 3, a part of its cardinality P/T net is
shown: the places of the P/T net and the abstraction transition of rule test 1 (see Fig. 2). The
tokens in the places represent the instance graph in Fig. 1 on the right.

The LHS of the rule contains two nodes with types St t1 and Test cell, and two edges with
types test1 and reserved. Thus the corresponding transition has four incoming arcs from the
corresponding places. Since the RHS consists of two nodes with types St t1, and Test cell, and
one edge with type tested1, the transition has three outgoing arcs to the corresponding places.
The duration of the transition is equal to 21.

7 / 12 Volume 51 (2012)

Optimization in Graph Transformation Systems with Time Using Petri Nets

Figure 3: The cardinality P/T net of rule start test 1

Simulation. The mapping F () is a proper abstraction of the GTS with time in the sense that
the derived P/T net simulates the original GTS as shown in [VV06]. In other terms, whenever
a rewriting step is executed in the GTS on an instance graph, then the corresponding transition
can always be fired in the corresponding marking in the P/T net, furthermore, the result marking
is an abstraction of the result graph. In this respect, for all firing sequence in the GTS there is a
firing sequence in the cardinality P/T net but not the other way around. For instance, if a GT rule
cannot be applied in the GT level because of violating some NACs, the corresponding transition
in the P/T net may fire because no check of NACs is encoded into the transition.

The P/T net construction ensures that whenever a GT rule is applied in time instance l, the
corresponding transition in the P/T net can be also fired in time instance l. Moreover, the du-
ration of the two sequences are equal according to the equal duration of the GT rules and their
abstraction transition.

As the complexity of the derived abstraction is lower than the complexity of the original GTS,
the solution of the corresponding optimal trajectory problem in the P/T net can be used as a hint
when exploring the state space of the original GTS.

3.3 Deriving an ILP Problem for the Optimal Trajectory Problem in the P/T Net

Since the abstraction P/T net simulates the underlying GTS, for each path (trajectory) p starting
from G0 and leading to an instance graph G which covers Gpartial , there is a transition firing
sequence s in the P/T net such that Mpartial is partially reachable from M0 by s. In addition, each
component of the transition occurrence vector σ of s is equal to the number of corresponding
GT rule applications in trajectory p. Thus such a transition occurrence vector σ has to satisfy
the state inequality Mpartial ≤ M0 +W ·σ , where W is the incidence matrix of the P/T net. In
other words, the search for an appropriate GT sequence can be carried out by finding a transition
occurrence vector with minimal time which is followed by the check of the existence of an
executable GT trajectory that is compatible with the transition occurrence vector.

Such a minimal transition occurrence vector can be derived by formulating an integer lin-
ear programming (ILP) problem from the state inequalities adding an objective function that
minimizes the duration of a corresponding trajectory. (For an introduction into ILP problems
see [Win94].) However, the core problem to establish such an ILP problem is the expression of
a linear objective function that minimizes the firing time of the last transition in a time–ordered

Proc. PNGT 2012 8 / 12

ECEASST

sequence. In order to deliver an appropriate solution, the state inequalities are divided into state
inequalities that describes the change of the net in each time instance.

Counting tokens per time instances. Let token[i][l] denote the number of tokens at place pi

in time instance l, and let σ [j][l] denote the number of transitions t j that start to fire concurrently
in time instance l. Then the token number at a place pi changes in time instance l as follows:
(i) some transitions starting their firing in time instance l remove tokens, while (ii) transitions
that end their firing in time instance l produce tokens to this place. Mathematically, token[i][l] =
token[i][l− 1]−∑

j
σ [j][l− 1] ·w(pi, t j)+∑

j
σ [j][l− d(t j)] ·w(t j, pi). A transition t j may fire in

time instance l if and only if there are enough tokens in its input places pi, i.e. token[i][l] ≥
∑
j

σ [j][l] ·w(pi, t j). Note that if a transition ends its firing in time instance l, the tokens are

produced into its output places only in time instance l +1.
Linear objective function. A linear objective function that minimizes the duration of a firing

sequence can be defined by the introduction of a sink transition tlast , that becomes enabled if
Mpartial is reached. Formally, •tlast = {pi|0 < Mpartial(pi)},w(pi, tlast) = Mpartial(pi). A Boolean
variable σ ′[l] is defined for the sink transition such that it is equal to 1 for a time instance l if and
only if the sink transition fires in l. Since the sink transition fires exactly ones in the trajectory,
maxTime

∑
l=0

σ ′[l] = 1 holds. Furthermore, the sink transition may fire in time instance l if there are

enough tokens at its input places, i.e. Mpartial[i] ·σ ′[l]≤ token[i][l]∀pi ∈ •tlast .
Since the sink transition fires at last, all other transitions are forbidden to fire after the sink

transition. Adding a big enough number K to the problem, all σ [j][l] components are re-
stricted to 0 after the firing of the sink transition in time instance k by the following inequal-

ities:
|T |
∑
j=1

maxTime
∑

r=l
σ [j][r] ≤ K · (1−

l
∑

r=0
σ ′[r]). Then a linear objective function is formulated as

min
maxTime

∑
l=0

(σ ′[l] · l) that yields k if and only if the sink transition fires in time instance k.

Time horizon. However, such an ILP problem has to be finite, i.e. the time instances have
to be constrained to a time horizon. Since the duration of an optimal trajectory (if exists) is
less than the sum of the durations of the included transitions, a time horizon can be estimated by
solving an ILP problem that minimizes the sum of the durations of the transitions in the transition
occurrence vector satisfying the state inequalities. However, it may happen, that there will be no
solution within this time horizon because it is not applicable to the GTS with time. In this case a
new, greater solution has to be generated to provide a new time horizon, and so on.

4 Guiding Exploration of the GT state space

A solution vector encodes not only the number of the fired transitions in this case but also the
firing time of the transitions. This way, if there is a candidate solution vector, the strategy of the
search for an optimal GT sequence is to try to apply the GT rules to the instance graph in the
same time instance in which the corresponding transition fires. Then the traversal of a branch of
the transition graph is suspended, i.e. the discovery of the unpromising paths is postponed,

9 / 12 Volume 51 (2012)

Optimization in Graph Transformation Systems with Time Using Petri Nets

• if a GT rule cannot be applied in the given time instance as many times as it is counted in
the solution occurrence transition vector, or

• the graph yielded by applying the last rule (according to the solution transition vector)
does not cover the target graph pattern. It may occur, for instance, if the rules create edges
between nodes, and the target graph pattern contains edges connected to the same node:
then it may happen, that the required rules are applicable to the model graph in the required
order but the created edges are not connected.

If all the GT rules can be applied according to the solution transition occurrence vector and
the resulted graph covers the required partial graph, then an optimal trajectory is found. If there
are no branches to continue the state space traversal, the next best solution to the ILP problem is
generated and is taken into account in the search strategy during the exploration of the previously
unpromising paths.

Note that the simulation property of the P/T net abstraction and the strategy of the state space
traversal ensures that (i) the duration of a GT sequence during the state space traversal cannot
exceed the duration of the solution occurrence transition vector, and (ii) the target graph will not
be covered with less duration before applying all the rules corresponding to the candidate transi-
tion occurrence vector. Otherwise there should have been another solution transition occurrence
vector with less duration determining this path.

Example 3 Let us revisit our storage example. Let an instance graph G0 be given consisting of
two storages with type St t1, one storage with type St t2, and two Test cells in Fig. 4 such that the
timestamp of all nodes is equal to 0. The target graph to be covered consists of one node with
type Shipped1 and two nodes with Shipped2.

At first, maxTime is calculated as described in Section 3.3. The objective value of the optimal
solution is 48 time units. Within this time horizon, the following optimal algebraic solution is de-
livered at first: start test t1/0, start test 2/0, start test 2/1, start test t1/3, test 1/1, test 2/4,
ship 2/28,reco 1 tested/22, ship 2/33, test 1/22, ship 1/43, t last/44. The duration of this
firing sequence is 44 defined by the firing time of the sink transition.

Now let us start to construct a corresponding GT sequence. Since the optimal transition oc-
currence vector defines a time–ordered transition sequence, the search strategy is to try to apply
the GT rules in the same time instance. At time 0 two rules have to be applied: start test t1
and start test t2 both with duration 1. Since these rules make both test cells reserved, the rule
start test t2 cannot be applied at time 1. This pseudo solution is delivered because the NACs of
the rule that prohibit the application of the rule in this case are not encoded into the P/T net.
Therefore the state space traversal is stopped, and the next best solution is generated.

The next best solutions with durations 44 time units fail to retrieve a valid GT sequence
because of the same problem. However, the next best solution with duration 45 time units
is already fireable thus an optimal solution is found: start test t1/0, start test 2/0, test 1/1,
start test t1/22, test 2/1, ship 2/24, reco 1 tested/22, ship 2/33, test 1/23, ship 1/44,
t last/45. A corresponding GT sequence is depicted in Fig. 4 (where the application of the last
two rules ship 1 and ship 2 are not depicted). The match of the LHS of the rules are drawn with
green, and due to some space consideration independent rules are applied in one step.

The ILP problem of the example was solved by using the CPLEX opimizer [cpl] while the

Proc. PNGT 2012 10 / 12

ECEASST

cardinality P/T net and the GT sequence was generated by VIATRA2 [via].

Figure 4: An optimal GT sequence

5 Conclusion and Future Work

In the current paper, we proposed a simultaneous optimization and verification for systems mod-
eled as GTSs with time using P/T net based abstraction and optimization. In this way, we are
able to find an optimal time-ordered transformation sequence leading to a desired system config-
uration in the original GTS with time.

Efficiency of the approach. Both the computation time of the approach and the number of
backtracks to generate the next best ILP solution are subject to further investigation. In case
of a large model, the computation time can be reduced by solving a reduced ILP problem that
counts the tokens at the P/T net places not in each time instances, but only in e.g. each 10th time
instances. Although this change needs less ILP computation time, the search for a corresponding
GT sequence may results in more paths to be traversed that is subject to a further investigation.
Corresponding benchmarking examples can be found at http://home.mit.bme.hu/∼gyapay/.

Further extension. In the current paper, the rules of the current GTS with time were restricted
to have a special structure. Since TER nets can model several other attributes in Petri nets, the
optimization of general attributed graphs together with attribute conditions is targeted in the
future.

Bibliography

[cpl] IBM ILOG CPLEX Optimizer. http://www-01.ibm.com/software/integration/
optimization/cplex-optimizer/.

11 / 12 Volume 51 (2012)

http://home.mit.bme.hu/~gyapay/

Optimization in Graph Transformation Systems with Time Using Petri Nets

[FL76] E. B. Fernández, T. Lang. Scheduling as a graph transformation. IBM J. Res. Dev.
20(6):551–559, Nov. 1976.

[GHV02] S. Gyapay, R. Heckel, D. Varró. Graph Transformation with Time: Causality and
Logical Clocks. In Proc. ICGT 2002: 1st International Conference on Graph Trans-
formation. LNCS, pp. 120–134. Springer-Verlag, 2002.

[GMMP91] C. Ghezzi, D. Mandrioli, S. Morasca, M. Pezzè. A Unified High-Level Petri Net
Formalism for Time-Critical Systems. IEEE Transactions on Software Engineering
17(2):160–172, February 1991.

[GSV04] S. Gyapay, A. Schmidt, D. Varró. Joint Optimization and Reachability Analysis in
Graph Transformation Systems with Time. ENTCS 109:137–147, 2004.

[HHRV11] Á. Hegedüs, Á. Horváth, I. Ráth, D. Varró. A model-driven framework for guided
design space exploration. In ASE. Pp. 173–182. 2011.

[HSE10] C. Heinzemann, J. Suck, T. Eckardt. Reachability Analysis on Timed Graph Trans-
formation Systems. In Proceedings of the Fourth International Workshop on Graph-
Based Tools (GraBaTs 2010). 2010.

[LH11] L. Li, C. N. Hadjicostis. Least-Cost Transition Firing Sequence Estimation in La-
beled Petri Nets With Unobservable Transitions. IEEE T. Automation Science and
Engineering 8(2):394–403, 2011.

[Mur89] T. Murata. Petri Nets: Properties, Analysis and Applications. In Proc. IEEE. Vol-
ume 77(4), pp. 541–580. 1989.

[Ram74] C. Ramchandani. Analysis of Asynchronous Concurrent Systems by Timed Petri
Nets. Technical report, 1974.

[Ren03] A. Rensink. The GROOVE Simulator: A Tool for State Space Generation. In AG-
TIVE. Pp. 479–485. 2003.

[T0̈9] H. Tönnies. An evolutionary graph transformation system as a modelling frame-
work for evolutionary algorithms. In Proc. of the 32nd Annual German Conference
on Advances in Artificial Intelligence. Pp. 201–208. Springer-Verlag, 2009.

[TL04] A. Tarek, N. Lopez-Benitez. Optimal Legal Firing Sequence of Petri Nets Using
Linear Programming. Optimization and Engineering 5(1):25–43, 2004.

[via] VIATRA2 Model Transformation Framework, An Eclipse GMT Subproject.
http://www.eclipse.org/gmt/VIATRA2/.

[VV06] S. Varró-Gyapay, D. Varró. Optimization in Graph Transformation Systems Using
Petri Net Based Techniques. ECEASST 2, 2006. Selected papers of PNGT 2006.

[Win94] W. L. Winston. Operations Research — Applications and Algorithms. Duxbury
Press, Belmont, California, USA, 3rd edition, 1994.

Proc. PNGT 2012 12 / 12

	Introduction
	Basic Definitions
	Graph Transformations with Time
	Place/Transition Nets

	Optimization of GTS with Time by Guided State Space Traversal
	Optimal Trajectory Problem for GTS
	P/T net Abstraction
	Deriving an ILP Problem for the Optimal Trajectory Problem in the P/T Net

	Guiding Exploration of the GT state space
	Conclusion and Future Work

