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Abstract: Graph transformation is used in various different research areas and has
been implemented in several tool environments. However, the layout of graph trans-
formation sequences is often perceived as not optimal and remains to be a difficult
task. This is partly due to the slightly different requirements for layouting graph
transformation sequences compared to standard graph sequences. In this paper, we
clearly define these special requirements and present a layout algorithm which ful-
fills them. This layout algorithm allows the user to keep track of changes during
transformation steps by introducing a concept of node aging and protection of se-
nior node positions in the layout. Furthermore, this layout algorithm introduces a
concept of layout patterns. We extended the well-known spring embedder layout
algorithm by these new concepts and implemented the new algorithm in AGG, an
environment for Attributed Graph Grammars. The layout algorithm has been tested
with various graph grammars. A brief outlook describes how this layout algorithm
can also be used for different kinds of graph sequences, e.g. sequences of succes-
sively developing class diagrams.

Keywords: graphs, graph layout, graph transformation

1 Introduction

The motivation for this work arose in two different areas. We started with the problem to pre-
serve the mental map [1] of sucessively developing class diagrams. Available IDEs like Eclipse
with an UML plugin by Omondo usually layout each class diagram separately which makes it
hard to realize the areas of the graph which have changed, vanished or were newly introduced.
Our approach here is to consider sequences of class diagrams not sequences of single diagrams,
i.e. to consider the evolution of one initial diagram over time. Such an evolution can be nat-
urally described by a graph transformation sequence. The next problem arose to layout graph
transformation sequences adequately. A problem which also has not been sufficiently handled
by the available tools. Usually graph transformation sequences can be considered as incomplete
graph sequences in the sense that new graphs can be added as long as rules are applicable. Thus,
special layout problems arise also here. Since graph transformation is a research area by its own
with a wide range of applications, we focus on layouting of graph transformation sequences in
this paper and present an implementation of a new layout algorithm in AGG [2] (an environment
for Attributed Graph Grammars).
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The common requirements for layouting a graph sequence include the highest single layout
quality and the lowest difference between two successive layouts. We extended this set of re-
quirements by taking also the layout of transformation rule into account and by the option for
future extensions of graph sequences without ruining the layout. Existing layout algorithms ful-
fill the common requirements, but not the additional requirements for layouting graph transfor-
mation sequences. Therefore, we extended an existing layout algorithm, the well-known spring
embedder [6], by two new concepts: First, the concept of node aging during the sequence with
the protection of senior nodes, and second, the concept of layout patterns have been incorporated.
The persistence of node positions throughout a sequence is most helpful to preserve the mental
map. Especially the concept of aging was the reason to name our algorithm an evolutionary
layout algorithm. The second concept presents layout patterns as a visible representation of a
transformation rule.

The paper is organized as follows: In Section 2, we give a short overview on an integrated
development environment for graph transformation system, called AGG, and review the main
graph drawing concepts as far as needed to present our new layout algorithm. The evolutionary
layout algorithm itself is explained in Section 3. The implementation of this algorithm as well as
its evaluation along two sample graph grammars are presented in Section 4. The conclusion and
outlook follow in Section 5.

2 Background

First, we give a short overview on the graph transformation environment AGG which function as
platform for the implementation of our new layout algorithm. Thereafter, we focus on the nec-
essary background for presenting the new layout algorithm, including the offline graph drawing
problem, layout quality metrics and the original spring-embedder layout.

2.1 Graph Transformation Environments

Several graph transformation environments, like Progres [2], AGG [3], Fujaba [4], Groove [5],
have been developed with diverse functionality offered. Although these environments differ in
the kinds of graphs and their manipulation, they all have to present graphs resulting from trans-
formations. Therefore they meet similar problems in layouting graph transformation sequences.
We have used AGG as a case study on requirements for a layout on graph transformation se-
quences and integrated our resulting layout algorithm into this tool.

AGG [3] is an integrated development environment for algebraic graph transformation sys-
tems. It consists of several visual editors to develop graphs and rules, an interpreter, and a set of
validation tools for graph transformation systems. The editor provides a visual layout of AGG
graphs similar to UML object diagrams. For a first impression of AGG see the screen shot in
Fig. 1. The visual interpreter supports transformation of graphs in two different modes: stepwise
and as long as possible. AGG supports the algebraic approach to graph transformation [7]. Its
graphs may be typed and attributed by Java objects. Note that in AGG, the positions of nodes
and edges do not store any syntactic or semantic information, i.e., the layout of a graph is just a
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Figure 1: AGG - Attributed Graph Grammar Environment

matter of presentation for the sake of readability. But the layout is of considerable importance for
a user, although it does not bear any relevant information in the first place. Due to the fact that
the problem of automatically computing a reasonable layout of graph transformation sequences
is hard, it has been solved in AGG in a quite simple way up to now.

2.2 Offline Graph Drawing Problem

The offline graph drawing problem [8] describes the following trade-off for a given graph se-
quence G0...Gn and their corresponding layouts L0...Ln:

• The quality ρLi of every single layout Li should be as optimal as possible.
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• The mental distance δLi,Li+1 from one layout Li to its successor layout Li+1 should be small.

• The resulting quality Q of the whole sequence results in the sum of every ρLi minus every
δLi,Li+1 ,

QL0..Ln =
n

∑
i=0

ρLi −
n

∑
i=1

δLi−1,Li (1)

Approaches to measure ρ (the single graph layout quality) and δ (the mental distance between
two graphs) have been described in several articles beforehand [9, 10, 11, 12, 13]. We present
and discuss a specific definition for ρ and δ in our example in Section 4.

The offline graph drawing problem has been solved for complete sequences of graphs by
foresighted graph layout [14]. Foresighted graph layout offers a number of different approaches
as e.g. to use a super graph which includes every graph of the sequence as subgraph. Thus the
layout of every subgraph is part of the super graph layout. The position of a single node is very
steady this way and the chance to find a compromise between the requirements for single layouts
is rather good. But this compromise layout works only as long as no new graphs are added to the
sequence. This is the reason, why this solution does not fit well for incomplete graph sequences.

2.3 Spring Embedder Layout

The spring embedder layout[6] is a force-driven layout which is based on an energy model.
Every node in this energy model contains attractive forces fa and repulsive forces fr. Therefore,
the edges are modeled as springs which have a preferred length, but which may be stretched or
compressed to serve the node‘s attracting or repulsive forces. Attracting forces occur between
incident nodes, while nodes which are not connected by edges, are separated by repulsive forces.
The attracting forces fa are described by

fa(d) =
d2

k
(2)

and the repulsive forces fr are described by

fr(d) =−k2

d
(3)

where d describes the current distance of two nodes and k denotes the minimal space around
a node which should be empty. The algorithm computes the layout in an iterative way. In each
iteration step, the sum of all attracting and all repulsive forces is computed for each node. Then,
each node gets a new position such that the overall energy is reduced. The aim is a system
which is as balanced as possible, i.e. each node has as little energy as possible. The next idea
is to give nodes a higher flexibility to move around in first iterations and to restrict this general
flexibility with each further iteration until the nodes reach a stage where they can barely move.
This process can be compared with a cooling down process, thus the function to describe this
process is called the cooling function. That means nodes is given a temperature which defines a
maximum velocity at each iteration step.
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3 Evolutionary Layout of a Graph Transformations Sequence

This section includes the problem definition, our new layout algorithm and its implementation.

3.1 Problem definition

The requirements for layouting instance graphs can be described by the offline graph drawing
problem as discussed in the previous section. We extend this problem description by additional
requirements for incomplete graph sequences: For a given graph sequence G0...Gn with their
corresponding layouts L0..Ln:

1. The quality ρLi of every single layout Li should be as optimal as possible.

2. The mental distance δLi,Li+1 from one layout Li to its successor layout Li+1 should be small.

3. The graph sequence may have future extensions, without losing the layout‘s quality.

4. The changes between two graphs should be easily recognizable in the layout of two sub-
sequent graphs, e.g. the layout of the corresponding transformation rule should be taken
into account.

The original graph drawing problem covers only the first and the second topic.

3.2 Evolutionary Layout Algorithm

None of the existing graph layout algorithms we have considered beforehand, fulfilled all the
requirements given above. This is not to say that they are doomed to produce a non-optimal lay-
out, but it depends on the specific data how good the layout turns out to be. Especially changes
by transformation rules can or cannot be recognizable in the layout, dependent on if they are
part of the algorithm specification. We wanted to improve the situation by introducing these re-
quirements to a layout algorithm and decided to adapt an existing algorithm. A spring-embedder
layout [6] is easily extensible, since its energy model suits very well for integration new require-
ments. Even if the requirements are rivals (best single layout vs. least mental distance between
two layouts), each requirement can get a certain amount of impact on the whole layout. A further
requirement concerns the specification of graphs based on rules. To support the user‘s recogni-
tion of changes by a transformation rule in the instance view, we relate each transformation rule
to a specific layout and call this combination a layout pattern.

Iterative Layout Computation The first graph of a sequence is taken as an initial graph and its
layout is not to be altered by other layouts. Usually, the layout of graph transformation sequences
does not distinguish between different node types, thus attracting forces fa are the same for all
nodes and repulsive forces fr exist as soon as two nodes are placed nearby. Thus, attracting and
repulsive forces are computed as in the spring embedder layout.
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The original spring embedder layout algorithm uses the metaphor of a temperature to express
the position flexibility of each node and a cooling function to reduce this temperature in each
iteration of the algorithm. This asymptotic cooling function of the temperature t is described by

t(i) = t(i−1)− t(i−1)
i+1

(4)

for the iterations with i > 0, and by an initial temperature t(0) = 100 for the initial layout. An
alternative asymptotic function could also be used to describe the cooling process.

Protection of senior nodes The mental difference between two layouts can be reduced, if the
same node has similar positions in both layouts. To fulfill this requirement, we introduced the
concept of aging where a node gets older if it is included in the next graph. The older a node is,
the less it should be moved. If possible, a younger node is moved instead. This can be realized
by extending the cooling function by a specific temperature tN(i) for each node N in iteration
step i by integrating its age aN :

tN(i) = tN(i−1)− tN(i−1)
i−aN +1

(5)

This way, the older nodes have less movement flexibility. Since the nodes contained in the
initially layouted graph, are the eldest ones, they hardly do not have any move flexibility.

Shock-aging The move flexibility of a single node depends highly on its age, but even more
on the adjacent nodes with their attractive forces to their neighbors. If one node is taken away, its
former neighbors have abruptly much more move flexibility. This can cause dramatic changes in
the layout of this graph area. On the one hand, these changes draw attention which is good. On
the other hand, it can ruin the viewer’s mental map. Thus an extension was integrated not to stop,
but to slow down the general development of occupying the space left behind by deleted nodes.
This process can be realized by giving adjacent nodes some extra age, by so-called shock-aging.
Of course, this can only be useful in later layouts, not in the first layout after the initial layout.
The actual effect would come later, but this is acceptable, since also the mental map has to be
built up in the first layouts.

Layout patterns Besides the general limitation by the temperature, special layout patterns can
limit the flexibility of individual nodes. A layout pattern is defined as a smaller graph GLP with
its layout LLP. If GLP can be recognized as a pattern in a larger graph G, then layout L of G is
influenced by LLP. For example, GLP may be defined by a pair of parent and child nodes and LLP

can be defined by placing a child node always below its parent node. This layout pattern forces
a graph to grow downward, and the typical appearance of a tree evolves over time.
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3.3 Implementation

To integrate the new layout algorithm into AGG, the first adjustment concerns the graph structure
model in AGG which originally contained very simple layout information only. For the new
layout algorithm, this layout data has been enriched by the following items: node age, preferred
edge length, edge-binding force (resulting from the node forces), and a kind of bounding box
around each node to indicate where other nodes may not be placed.

To set transformation rules into relation with the layout of graph transformation sequences,
a general analysis has to take place to determine new nodes, deleted nodes and constant nodes.
The analysis results are used to define the age of nodes: the age of constant nodes is raised, while
new nodes are given an age of 1. Deleted nodes are treated differently, because they change the
layout quality metric and have an effect on the layout of their neighbors (shock-aging).

The implemented quality metrics are described in detail by an example in Section 4 which was
generated by AGG after integrating the new layout algorithm. Other details of the integration
need a deeper knowledge about the internals of AGG and thus, are not part of this paper, but they
are presented in [15].

4 Examples

In this section, we evaluate the new layout algorithm by two examples. A number of quality
metrics for layout are implemented in AGG and discussed for one of the examples presented.

Example: Tree Generation The first example presents the evolution of a tree (see two graphs
of the corresponding sequence in Fig. 2). The layout pattern for this graph grammar forces every
child node being placed below its parent node. Furthermore, child nodes have a similar distance
to each other which is caused by the spring embedder layout. This effect is not described by a
pattern itself, but fits very well into the common picture of a tree with a half-radial layout.

Example: Model Transformation The second example presents the layout of a standard
model transformation problem [16] which occurs in several variants. The source language con-
sists of simple class diagrams, a sample diagram (in abstract syntax format) is presented in the
main view of Fig. 1. The target language consists of schemes for database tables, one sample
schema is presented in Fig. 5. A reference structure is established as helper structure for the
model transformation which relates classes with tables and attributes with columns. On top of
Fig. 1 a transformation rule is presented which creates a table for each top level class. Other
transformation rules insert a column for each attribute and finally foreign keys (FKey) for asso-
ciations.

The graph transformation sequence presented consists of 26 graphs and besides the first one
(Fig. 1), we decided to present explicitly the second and third as well as the last one (Figs. 3 - 5).
If the start layout is easy to understand and the following layout differences are small, then a user
may keep track even if the graph (and its layout) gets more and more complicated. To discuss
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Figure 2: Tree Generation: Graphs 17 and 23

this in more detail, please take a look at Table 1.

A B C D E F G H I J K
age #n #e nov neov exing edi f nmov δsingle δmental δresult
0 10 10 45 0 27 9 N/A 0.2 + 20 + 0.3 = 20.5 N/A N/A
1 12 12 0 0 1 142 0 12 + 24 + 12 = 48 11.8 36.2
2 14 15 0 3 2 82 13 14 + 7.2 + 5 = 26.2 6.4 19.8
3 14 16 0 3 2 83 8 14 + 7.5 + 5.3 = 26.8 5.8 21
4 16 18 0 2 2 81 11 16 + 11.3 + 6 = 33.3 5.2 28.1
5 19 24 0 10 6 109 80 19 + 3.9 + 3.4 = 26.3 8.7 17.6
6 22 30 0 8 6 103 75 22 + 5.8 + 4.3 = 32.1 6.8 25.3
7 24 33 0 12 16 92 100 24 + 4.4 + 1.9 = 30.3 6.9 23.4
8 25 35 0 11 15 104 185 25 + 5 + 2.2 = 32.2 10.4 21.8
9 25 36 0 11 16 101 55 25 + 5.1 + 2.1 = 32.2 5 27.2
10 24 35 0 11 15 84 77 24 + 4.9 + 2.2 = 32.1 5.6 26.5
11 23 33 0 6 15 86 76 23 + 8 + 2 = 33 6 27
12 22 31 0 15 7 84 127 22 + 3.3 + 3.9 = 29.2 8.5 20.7
13 21 27 0 5 7 52 99 21 + 8 + 3.4 = 32.4 6.6 25.8
14 20 25 0 5 6 85 116 20 + 7.5 + 3.6 = 31.1 9.2 21.9
15 19 23 0 4 4 54 115 19 + 8.4 + 4.6 = 32 8.3 23.7
16 18 21 0 1 0 28 63 18 + 19.5 + 21 = 58.5 4.8 53.7
17 17 21 0 0 0 23 44 17 + 38 + 21 = 76 3.6 72.4
18 16 19 0 3 0 36 64 16 + 11.7 + 19 = 46.7 5.9 40.8
19 15 18 0 0 0 15 104 15 + 33 + 18 = 66 7.7 58.3
20 14 17 0 1 0 45 116 14 + 15.5 + 17 = 46.5 10.9 35.6
21 13 16 0 0 0 23 115 13 + 29 + 16 = 58 10.2 47.8
22 12 15 0 2 0 29 124 12 + 9 + 15 = 36 12.2 23.8
23 11 15 0 0 0 14 183 11 + 26 + 15 = 52 17.5 34.5
24 10 14 0 0 0 12 45 10 + 24 + 14 = 48 5.3 42.7
25 9 13 0 0 0 11 86 9 + 22 + 13 = 44 10.3 33.7
26 8 12 0 0 0 12 49 8 + 20 + 12 = 40 7.1 32.9

Table 1: Quality Metrics for Example 2

Columns A, B, and C describe some statistical data. Column A holds the graph position in the
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Figure 3: CD2DB-Example: Graph 2

Figure 4: CD2DB-Example: Graph 3

sequence which can be described as graph age. Columns B and C hold the number of nodes and
edges, respectively. Undesired effects for a single layout are described in columns D, E, F and for
the mental distance in columns G, H, the conclusions follow in columns I, J, K. The semantics
of table entries is described in more detail below. These metrics are weighted according to the
graph drawing problem:

1. Weighting of single layout quality δsingle:
A node overlapping (D) is worse than a node-edge-overlapping (E) which is itself worse
than a edge crossing (F). In an ideal layout, overlapping nodes would not occur, but they
cannot always be prevented, given a large number of edges with strong coupling. Every
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Figure 5: CD2DB-Example: Graph 26

overlapping must be seen in relation to the number of elements:

δsingle =
B

D+1
+

(B+C)
E +1

+
C

F +1
(6)

2. Weighting of mental distance δmental:
Normally, movements of nodes (H) and edges (G), both values given in pixels, are unde-
sirable for a stable mental map. Again, a movement of elements must be seen in relation
to its number:

δmental =
H
B

+
G
C

(7)

3. Resulting layout quality δresult :
To summarize these effects, we give the quality of a single layout in column I, in col-
umn J the mental distance to the previous layout and in column K the resulting quality as
described by (1) are shown.

It turns out that node-overlappings do not occur after the first transformation step, a small
number of node-edge overlappings do occur, and so do a larger number of edge crossings. But
this is only the situation for the first 15 layouts, the next 11 layouts contain no node-overlappings,
no edge-crossings and very few node-edge overlappings. It is recognizable that the general single
layout quality ρ does not differ much in these first 15 layouts. This is caused by a balance of a
bonus for placing more nodes without overlapping and a malus for getting more edge-crossings
with more edges involved. But the increase of edge-crossings is also due to the stronger coupling
in these graphs and cannot always be avoided.

First, we can summarize that the disturbance is comparatively small given the number of edges
and their coupling. Second, the layout algorithm is able to turn back to a better layout in the end,
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given a small number of nodes. Many layout algorithms tend to stick to bad layouts, once a
bad layout has been reached. This is not the case for the evolutionary layout presented. The
evolutionary layout can come back to better layout, as shown e.g. in Fig. 5.

5 Conclusion

In this paper, we discussed the difficulties for layouting incomplete graph transformation se-
quences. We stated the requirements for a good layout of graph transformation sequences and
tested several existing layout algorithms according these requirements. Although a number of
solutions exist already to handle complete (e.g. non-evolving) graph sequences, all of them
would have to be adapted for incomplete sequences, if possible. We have chosen to adapt the
spring-embedder layout algorithm, because it suits best to serve the different requirements, even
if they are contrary to each other. This is already the case if we want to get the best layout for a
single graph on the one hand, and a minimal distance to the previous layout on the other hand.
Our adapted algorithm can also include layout pattern to optimize future sequence expansion.

The basic idea of the new layout algorithm was to consider a graph sequence not as a series of
independent graphs, but as an evolution of one graph. In this context, every node has the concept
of aging, restricting the flexibility of node positions. Older nodes which exist already for several
graph generations, should move less than younger nodes. One effect of this aging concept is
the support of a mental map, since the viewer’s mind gets used to the former graph and can
easily recognize longer living parts in later successors. The conflict between the requirements,
i.e. to keep a position for an older node and to have an optimal layout for the actual graph,
has been expressed by an adapted spring-embedder layout. This layout algorithm implements
a compromise between the best single layout for a graph and the least mental distance of a
graph to its predecessor. This compromise gets more fuzzy, if additional requirements arise
given by layout patterns. On the one hand, the concept of layout patterns is important to make
transformation rules more recognizable in the layout. On the other hand, if a layout pattern
becomes too complex, e.g. more than the one-node to two-nodes-plus-edge relation given in our
example in Section 4, it may behave contrary to the user’s mental map. For this reason, the usage
of layout patterns is optional in our prototype implementation.

We sketched how the new layout algorithm has been integrated into AGG and discussed the
value of this layout algorithm by two examples. Our algorithm produces readable layouts and can
be used for a graph transformation sequence as well as for incomplete sequences of class models
[17] or other graph-like diagrams which are converted to the AGG graph format. Although
we motivated that existing layout algorithms are not well suited to layout incomplete graph
sequences, because they do not fulfill all the requirements, it would be interesting to compare
the practical results produced by different layouters for graph sequences in future work. Future
work concerns improved layout patterns for class diagram sequences. Furthermore, we also like
to consider developer dependency graphs [18] and to layout them adequately.
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