
Electronic Communications of the EASST
Volume 54 (2012)

Proceedings of the
7th International Workshop on Graph Based Tools

(GraBaTs 2012)

Gray Box Coverage Criteria for Testing Graph Pattern Matching

Martin Wieber, Andy Schürr

12 pages

Guest Editors: Christian Krause, Bernhard Westfechtel
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Gray Box Coverage Criteria for Testing Graph Pattern Matching

Martin Wieber1, Andy Schürr2

1 martin.wieber@es.tu-darmstadt.de, 2 andy.schuerr@es.tu-darmstadt.de
Technische Universität Darmstadt,

Real-Time Systems Lab,
D-64283 Merckstraße 25, Darmstadt, Germany

Abstract: Model transformations (MT) are a core building block of Model-Driven
Engineering. The quality of MT specifications and implementations is vital to
their success. The well-researched formal underpinning of graph transformation
(GT) theory allows for proving quality-relevant properties and enables stringent
implementations. Yet, in practice, MT implementations often depend on verifica-
tion/validation techniques based on dynamic testing. This work presents a new gray
box coverage approach for systematic testing of GT-based MT implementations and
pattern specifications. The approach uses GT specifics and enforces systematic test-
ing by examining variable binding and unbinding steps, thereby not making further
assumptions about the underlying pattern matching algorithm. A family of cover-
age criteria is defined as temporal logic (LTL) formulae, and the effectiveness of
concrete criteria in limiting the testing effort is examined by an example.

Keywords: gray box testing, adequacy criterion, coverage, graph pattern matching

1 Introduction

Model transformations (MT) are a core concept of Model-Driven Engineering (MDE), and like
any other software, MT programs should be examined thoroughly w.r.t. quality and correctness.
MTs are usually written in specialized languages, often rule-based, following a declarative ap-
proach (cf. [CH06]). Languages and tools (code generators, interpreters) are still frequently
under construction, the number of users is limited, and esp. tools are commonly considered im-
mature to some extent. Formal underpinnings like graph transformation theory [EEPT06] temper
the negative effects of this situation, but application of formal methods to concrete realizations
is often tedious and infeasible in practice due to the imposed effort and inherent complexity.

Testing seems to be a promising solution to both the problem of ensuring the quality of MT
specifications as well as of assessing the quality of MT implementations. In contrast to general-
purpose programming languages, for which implementation-based (white or gray-box) testing
techniques exist, there is no such well-established equivalent for typical MT languages. A fact
that is partly founded on the challenges inherent to model transformation testing [BGF+10]. In
the rest of the paper, we restrict ourselves to the important class of graph pattern based MT lan-
guages. For this class of MT languages we introduce a novel concept of coverage which provides
an adequacy criterion that is independent of the source code of a pattern matching (PM) imple-
mentation but still utilizes knowledge of the PM process. It limits the testing effort by defining
min. level of coverage that a test suite should satisfy to be considered sufficient (construction of

1 / 12 Volume 54 (2012)

mailto:martin.wieber@es.tu-darmstadt.de
mailto:andy.schuerr@es.tu-darmstadt.de

Gray Box Coverage for Testing Graph PM

Element

0..*

departs
0..1

1 hasOut 0..*

0..* enters 0..1

1
hasIn

0..*

0..*
contains

1 System Port

Outport

Inport Line

Block

(a) Simple metamodel (Simulink)

hasIn

enters

hasOut

departs

I1: Inport B: Block O: Outport

S: System

I2: Inport

L: Line

hasIn
contains

(b) Graph pattern (abstract syntax)

Figure 1: Metamodel and graph pattern

tests – in form of concrete input models – is beyond the scope of this work). Several applica-
tion scenarios are conceivable: (1) testing a concrete PM implementation based on the pattern
(black-box) (2) testing an immediately executable MT specification (white-box) (3) rough figure
of merit for existing test suite’s completeness. For the sake of clarity, compare a graph transfor-
mation (GT) tool to the Java compiler: MT specification plus metamodel correspond to source
code plus Java types. Testing a Java method requires test inputs that exercise the method’s code
sufficiently (w.r.t. statement coverage etc.). The same is true for good graph pattern tests exer-
cising a PM implementation, except that other and new coverage notions are required.

The remainder of the paper is organized as follows: Section 2 introduces terminology and
concepts based on an example. Section 3 describes the PM process (esp. its operational seman-
tics) and necessary testing infrastructure. Section 4 presents our novel coverage notion and core
contribution. Section 5 reports on first results drawn from an application of the concepts to the
given example based on a prototype framework implementation and manually derived test suites.
Section 6 provides related work, and in Section 7 we draw conclusions and outline future work.

2 Terminology and Running Example

Metamodels and Models A metamodel (MM) reflects the core concepts of the modeled do-
main. It features a graph-like structure and defines the (abstract) syntax of corresponding (in-
stance) models (M). The MM comprises classes as its nodes and associations as its edges, the
former define valid types of the models, the latter define the structuring/relations among them.

Figure 1a shows an exemplary metamodel. It represents a minimalist description of Simulink
(a tool often used in engineering). A System contains Blocks and Lines, Blocks comprise Outports
and Inports. Blocks can further be interconnected via Lines originating and ending at Ports.

Model- and Graph Transformations A MT takes models, conforming to one input MM, and
transforms them to models, conforming to another MM. Here, we do not distinguish between
the in-place modification of models and the translation of models from one language to another.
The specifics of the considered MT are defined by graph transformation theory (c.f. [EEPT06]),
where models are represented by typed graphs and transformations are formalized by graph
rewriting rules. Several tools implementing a GT approach are available, although the formal-
izations/implementations can differ (cf. [Tae04, JBK10, LV02] for examples).

Proc. GraBaTs 2012 2 / 12

ECEASST

Graph Patterns The aforementioned tools all specify a MT via declarative, rule-based de-
scriptions of graph rewriting step. They all use some sort of graph pattern (GP) notion, which
is referred to as the left-hand side (LHS) of a GT rule. During the processing of one rule, the
transformation engine tries to find a match for the LHS graph in the model (or host graph), where
a match is a sub-graph of the host graph that is isomorphic to the LHS. This process is commonly
implemented based on some elaborated search algorithm, instead of relying on a trivial “generate
and test”-approach. The former usually combines depth-first-search and backtracking, one ex-
ception being RETE-like pattern matching algorithms which compute (sub)matches in parallel,
sacrificing memory consumption for run-time performance [BÖR+08]. In the following we will
restrict ourselves to depth-first-search algorithms (for more details see below).

Figure 1b depicts an exemplary GP. This GP comprises six variables: S, I1, I2, B, O, L of
the respective types State, Inport and so forth. The specially outlined node S is initially bound,
meaning that is initially set to some fixed node. During PM, the engine tries to assign objects (of
compatible types; links constrain the number of valid variable bindings further) to the remaining
variables. The process of assigning a concrete value to one of the variables is called binding
operation/step. To reassign a new value to the variable, this binding step needs to be reverted
first, resulting in an unbound (intermediate) state. We refer to this as unbinding step.

Pattern Matching The goal of PM is to find a match of the LHS of the GP in the host graph. As
mentioned before, PM is usually done stepwise by a form of local search: a partial match (defined
by a set of bound variables) is extended incrementally by binding additional variables, starting
with a set of initially bound variables (in our example: {S}). If all variables can eventually
be bound without violating constraints, a match will be found. If, during the process, the next
to-be-assigned variable can not be bound, already bound variables get unbound and reassigned,
when possible. This procedure is repeated until either a complete match can be determined or
all possible permutations have been checked and discarded. In case a match has been found, it
is replaced by a copy of the right-hand side (RHS) of the GT rule (rewrite step). This modifying
step is out of scope and neglected here, since the focus lies solely on testing the PM.

In addition to structural and type constraints, and depending on the underlying graph model,
the pattern might further be constrained by attribute conditions. Another common extension to
basic GP is the concept of negative application conditions (NAC). NACs are specially marked
elements of a pattern that, if their identification is possible, prevent a match from being valid.
Other possible extensions to GP include optional elements (nodes or edges that can optionally be
included in a match) and set-nodes (results in matches of variable and unknown size; comparable
to the *-operator in regular expressions). In the remainder, only basic patterns are considered;
NACs, optional elements, and set-nodes are omitted and left for future work.

3 Operational Semantics and Tracing

In this chapter we derive an abstract description of the run-time behavior of typical pattern match-
ers. This forms a (MT) language-neutral basis for the definition our coverage concepts in the
following sections.

3 / 12 Volume 54 (2012)

Gray Box Coverage for Testing Graph PM

3.1 Operational Semantics of Pattern Matching

The process of determining a valid match for a given pattern in an input graph is crucial for
the entire model transformation. Our experience in developing code-generator-based pattern
matching engines shows that implementing/optimizing this task is complex and error-prone.

As already mentioned, a pattern is usually searched for iteratively by partial match extension
and relying on backtracking. The overall process can be visualized in form of a decision tree
as in Figure 2, where each decision/branching corresponds to an atomic operation like “extend
partial match by navigating along link l binding previously free variable X”, “check existence of
link l between two bound nodes X , Y ” or “ensure variable X and variable Y are not bound to the
same node”. The PM process is essentially characterized by such a sequence of operations (of
types extend and check), and one (not necessarily unique) concrete ordering of such operations is
called a search plan (SP). The derivation of all possible, viable SPs for a given pattern, in order
to determine the optimal one, is often computationally infeasible, and optimality also depends
partially on the model (cf. [VDWS12] for details on this issue).

Failed check operations eventually lead to backtracking steps and indirectly result either in
variable reassignments or incomplete matches. The pattern matching process thus is character-
ized solely by a sequence of binding and unbinding steps, whereby, by definition, the unbinding
steps can only occur in inverse order of the corresponding binding steps.

The motivation for this abstraction lies in the possibility to describe the PM process in as
much detail as possible without depending on a concrete implementation (e.g. in the sense of
source-code). When using a compiled, generator-based approach, where code is derived from the
pattern specification, one might design test suites based on that code using classical techniques.
Unfortunately, even small changes to the pattern or a non-deterministic code-generator would
result in different code, deprecating existing tests. The situation even worsens when using an
interpreter-based approaches. Testing the PM process based on the source-code of an interpreter
seems futile, because the exercised fraction of code can not be expected to change much with
different SPs or models as the authors of [HLG+12] indicate.

3.1.1 Generated Search Plans

We generated several code variants with our customized CodeGen2 fork (from Fujaba), result-
ing in equivalent but different SPs. We considered two SPs, termed SP1 and SP2, for further
investigation. Figure 2 depicts them. In the figure, each node represents a state, characterized
by a mapping of the n (n = 6) variables of the pattern (S, I1, . . .) to the domain {0,1}n, where
a value of 0 indicates that the resp. variable is not bound, and a value of 1 indicates the oppo-
site. Transitions are labeled with the operations that are either used to structurally extend the
partial match or to check pattern constraints. We use grey highlighting to indicate no change in
the binding vector. From our previous work [VDWS12], we borrow the notions of adornments
and masks to express the application conditions of the operations, distinguish check from extend
operations, and indicate navigation direction. Basically speaking, the adornments define which
variables should be bound ‘B’ or unbound ‘F’; masks define an ordering of all variables and
indicate which variables are non-restricted ‘∗’ for applicability.

Proc. GraBaTs 2012 4 / 12

ECEASST

100000 100100

110100 111100

101110

111100 111101 111111 111111

111110 111110 111111 111111101100

SP1

SP2

contains(S,B) BF, B**F**

hasIn(I1,B) FB, *F*B**

hasIn(I2,B), FB, **FB**

hasIn(I2,B) FB, **FB**

isomorphicBinding(I1,I2) BB, *BB***

enters(I1,L) BF, *B***F

hasOut(B,O) BF, ***BF*

departs(O,L) BB, ****BB

hasOut(B,O) BF, ***BF*

hasIn(I1,B) FB, *F*B**

isomorphicBinding(I1,I2) BB, *BB****

enters(I1,L) BF, *B***F departs(O,L) BB, ****BB b
(S

),
b

(I
1

),
b

(I
2

),
b

(B
),

b
(O

),
b

(L
)

Le
g

e
nd

:
· e

xt
en

d
O

p
er

at
io

n
(.

)
<a

d
o

rn
m

.>
, <

m
as

k>
· c

h
ec

kO
p

er
a

ti
o

n
(.

)
<a

d
o

rn
m

.>
, <

m
a

sk
>

·

Figure 2: Search plans (see Equation 1 for the definition of function b)

3.2 Tracing the Pattern Matching Process

Observability is one prerequisite for testability, as Binder states in [Bin00]. So, when examining
the dynamic behavior of the pattern matcher, one needs information on the engine during the
algorithm’s running. One can imagine that (almost) any pattern matching implementation can
be easily extended or instrumented to output traces of states comprising the binding status of
the pattern’s variables. Consequently, we restrict ourselves to the information obtained through
simple (offline) tracing, where status information is collected/stored during run-time. In our
case, we instrumented the PM code manually, but adapting our generator templates is considered
to be a straight forward task and left for future work.

4 Coverage Metrics

We continue by defining the gray box coverage metrics and motivate their usefulness to PM
testing. As far as our experience goes, implementation bugs are likely to manifest in incorrect
backtracking behavior during the search (e.g. premature, too late, etc.). On the other hand,
bugs that only manifest in “unusual” situations are more likely to be overlooked in comparison
to others. Consequently, for thorough testing, one needs to ensure that the test suite exercises
the search plan in a systematic and sufficient manner. Our coverage metrics define minimal
requirements so that when met, the test suite can be reasonably considered sufficient w.r.t. the
examined patterns. Consequently, the metrics serve the same purpose as (code) coverage in
traditional testing, namely “[. . .] to mitigate unavoidable blind spots [. . .]” [Bin00] during test
suite design, and to help the tester in performing the task of path sensitization1. If one tries to test
the general functioning and fitness of a PM engine, regardless of any concrete MT, one needs to
provide metamodels plus patterns (together they form the test cases) that are “complex enough”
to cover all supported language features – a task that is out of scope here. This suggests, that the
presented method is MT specific.

Coverage Items The basic idea of our testing approach is to stimulate the PM engine in such a
way that certain combinations of variable binding and unbinding steps actually do occur. This is
achieved either by extending a partial match or by performing a backtracking step. One single

1 “Process of determining [. . .] variable values that will cause a particular path to be taken”. ([Bin00], p. 399)

5 / 12 Volume 54 (2012)

Gray Box Coverage for Testing Graph PM

sequence of such steps represents a coverage item. If a trace log indicates that a test run led to
the occurrence of the demanded sequence, we say that the test covers the sequence and thus the
coverage item. To be able to precisely control the testing effort, we developed different metrics
and ensured them to form a hierarchy, where more elaborated metrics subsume more basic ones,
so that coverage of the subsuming criterion implies coverage of the subsumed one.

In the following, Linear-time Temporal Logic2 (LTL) is used to define the cov. items. Some
basic definitions are required first (x refers to one variable, X to the set of variables defined by the
pattern, X := (X ,<) is a strict totally ordered set, and X ′ := X \{initially bound variables}.
Additionally, for this example X = ({S, I1, I2,B,O,L} ,order of appearance)):

b : X →{0,1} , b(x) :=

{
0, if variable x is unbound
1, if variable x is bound

(1)

m ∈ {−1, ?,+1} , m ,

−1, matching failed
?, match still incomplete
+1, match found

(2)

Equation 1 defines a function that assigns binding information to variables, and in Equation 2 m
is introduced, which represents knowledge about the outcome of the PM run. Figures 2 and 3 use
these concepts. Both definitions are used to formulate temporal predicates, whereby the pattern,
SP, and traces are kept implicitly fixed. In this regard, actual values depend on an implicit notion
of time/state (corresponding indices/arguments are omitted here, as in [HR04]). For example, to
state that a run should result in a complete match, one would define a predicate Φ+

ω such as the
one in Equation 3 using LTL-operators. It states that eventually (F(.)) variable m should remain
‘+1’ “forever” or globally (G(.)). Until this happens ((.)U(.)) variable m should have the value
‘?’, indicating an incomplete match. Equation 4 considers the opposite outcome.

Φ
+
ω := (m =?)U(G(m =+1)) (3)

Φ
−
ω := (m =?)U(G(m =−1)) (4)

4.1 PMC0

We now define the simplest of our coverage criteria, called PMC0, whereby PMC stands for
pattern matching coverage. It comprises the two conditions PMC+

0 and PMC−0 which need to be
fulfilled separately. Informally, the first states that for every variable x there has to be (at least)
one test case that eventually binds x to some node in the model (of compatible type) and results
in a complete match (positive test). The second one states the same but excludes a complete
match in the end (negative test). More formally, the following proposition has to hold:

PMC0(T) := (PMC+
0 (T)∧PMC−0 (T)) (5)

whereby T denotes a set of captured traces, and one single trace (= sequence of trace entries,
whereby an entry is a bit vector, cf. columns in Figure 3) is referred to as t. We also define a
2 For a general introduction see, e.g., [HR04].

Proc. GraBaTs 2012 6 / 12

ECEASST

S0 … Si … S∞
S 1 1 1
I1 0 # #
I2 0 # #
B 0 1 #
O 0 # #
L 0 # #
m 0 0 ±1

(a) PMC0 for B

S0 … Si … Sj … Sk … S∞
S 1 1 1 1 1
I1 0 # # # #
I2 0 # # # #
B 0 1 0 1 #
O 0 # # # #
L 0 # # # #
m 0 0 0 0 ±1

(b) PMC1 resp. PMC1,1 for B

Figure 3: Coverage metrics examples (“#” symbolizes “don’t care”)

theoretical extended trace t∞ being an infinite sequence that repeats the last item of t in positive
direction along the time axis.
The aforementioned proposition holds iff the following is true:

(∀x ∈X ′ ∃t ∈T : PMC+
0 (t,x))∧(∀x ∈X ′ ∃t ∈T : PMC−0 (t,x)) (6)(

PMC±0 (t,x)
)
⇔
(
Φ
±
0 (x) holds for the extended trace t∞

)
(7)

Φ
±
0 (x) :=

initial configuration and global constraints︷ ︸︸ ︷
Φα(x)∧F(b(x) = 1)∧

final steady state︷︸︸︷
Φ
±
ω (8)

Φα(x) := (b(x) = 0)∧(m =?) (9)

Equation 8 and Equation 9 state that x has to be initially unbound and has to become eventually
bound. At the end, a steady state has to be reached where either a match has been found or not.

Figure 3a visualizes the concept for the case where x is set to B. A minimal test suite meeting
the requirements of PMC0 is presented later on in Section 5. Note that the initial, one intermedi-
ate, and the final state are restricted w.r.t. variable states. Any number of arbitrary intermediate
states (indicated by the dots in the resp. fig.) are allowed to occur. Also note, that no distinct
matching order, as predetermined by a concrete SP, is required for the definitions. Note further
that one can expect the variables to be bound in the final state, at least in the case where there is
a complete match. Nevertheless, the presented formulation is open to adaption (potential exten-
sions could supports optional nodes etc.). Summarized, PMC0 only ensures a very rudimentary
coverage, since it does not necessarily imply or require any form of complex branching during
the PM process, but introduces the concepts and forms the basis for refinements.

4.2 PMC1

The first extension is PMC1. It subsumes PMC0 and extends PMC0 in that distinct variables x
need to consecutively take on the bound, the unbound, and the bound state again, before reaching
the steady state with either a match (PMC+

1) or no match (PMC−1) as outcome (intermediate
states are permitted as well). This ensures a more thorough testing due to additionally required
binding and unbinding steps and is likely to require larger (element count) and more complex
test models. When met, it guarantees that for each variable at least two (not necessarily distinct)
options were evaluated within one captured test run. Figure 3b underlines the concept. For
formalization, we can reuse Eqs. 5, 6, 7, and 9 directly (by changing index 0 to 1). Equation 10

7 / 12 Volume 54 (2012)

Gray Box Coverage for Testing Graph PM

is the adapted version of Equation 8. Compared to the latter case, there are additional nested
statements requiring variable x to be bound first (outermost F in the disjunction), afterwards
unbound (intermediate F), and ultimately bound thereafter (innermost F).

Φ
±
1 := Φ

±
0 ∧
(

G(b(x) = 0)∨F
(
(b(x) = 1)∧F

(
(b(x) = 0)∧F

(
G(b(x) = 1)

))))
(10)

Figure 3b and the previous remarks suggest that one could also demand more than one “cy-
cle” of unbind/bind operations for a variable. This motivates the generalization of PMC1, or
PMC1,1 from now on (the second index stands for one cycle), to the case of PMC1,n requiring
n, {n ∈ N | n≥ 1}, of such cycles. A higher value of n will likely lead to increased test model
sizes, but this does not necessarily imply coverage of subsuming metrics as explained later.

Right now, there is ongoing work spent on the extension of the concept to PMC2,n (pairs of
variables), PMC3,n (triples of variables) and so forth by considering variable tuples instead of
single variables. This would help in testing the interplay of binding/unbinding steps for different
variables. Further details are omitted here, due to space limitations.

5 Application

Now we come to the discussion of preliminary results obtained during evaluation of our protoype
coverage framework. We modeled the pattern of Figure 1b in our eMoflon [ALPS11] tool suite
and generated two Java realizations featuring a distinct SP from it (cf. Figure 2). Tracing com-
mands were added manually to the code, and the tracing information was collected and analyzed
by a prototypic tool.

Basic Test Suites We used the setup to evaluate whether it is possible to construct input data
that leads to complete coverage for certain metrics, given the previously fixed SPs. With prior
knowledge of an actual SP, it turned out to require not much of an effort to find small test models
meeting the requirements. Figure 4 depicts test suites for PMC0 and PMC1,1 respectively. The
results indicate that one can effectively limit oneself to a pair of input models to ensure coverage
of one (or several, in case of subsumption) metric for all relevant pattern variables at the same
time, although this seems not very favorable when thinking of maintainability and traceability.
Nevertheless, metamodels with additional constraints might restrict input models (e.g. by upper
multiplicity bounds) so that one can not achieve the required coverage level with a minimum of
two models. Chained patterns (as in programmed GT) would complicate things considerably.

The results also support the working assumption that our stronger metric leads to more com-
plex test data in comparison to the basic one. Additionally, it should be noted that there exists
a distinction between relevant input complexity and input complexity without influence on the
search process. For example, when relying only on the metamodel to construct input models,
one could construct very diverse looking models with (superficial) complexity (e.g. high element
count), which is all but relevant to thorough testing the pattern. Think, for example, of “early
decisions” during the PM process, which might skip further examination of the alleged complex
parts. If the search plan changes, previously “irrelevant” complexity could turn out beneficial,
though, and the test data might lead to sufficient coverage. Our coverage notion enables us to
construct tests with relevant complexity systematically, without relying on chance.

Proc. GraBaTs 2012 8 / 12

ECEASST

s1 :System

b1 :Block

i1 :Inport

i2 :Inport

o1 :Outport

l1 :Line

s1 :System

b1 :Block

i11 :Inport

i12 :Inport

o11 :Outport

l11 :Line

b2 :Block

i21 :Inport

i22 :Inport

o21 :Outport

l21 :Line

s1 :System

b2 :Block

i21 :Inport

i22 :Inport

o21 :Outport

l21 :Line

l22 :Line

b1 :Block

s1 :System

b2 :Block

i21 :Inport

i22 :Inport

o21 :Outport

l21 :Line

l22 :Line

b1 :Block

o22 :Outport

s2 :System

i11 :Inport

(a) PMC0 (incl. dashed for pos. test)

(b) Statement coverage (include i11 for SP2)
(c) PMC1,1 (neg. test bottom, pos. top)

Figure 4: Test models for different coverage criteria

Comparison with Code Coverage Deriving imperative code from a MT specification gener-
ally enables us to compare our coverage concept to well-accepted code coverage approaches.
We used Cobertura3, which supports basic block coverage and branch coverage, to measure
code-based coverage figures for the example.

Results shows that even the test data for PMC0 already lead to complete statement coverage of
the code. We presume that this is always the case, but this claim needs to be supported by further
investigation (ongoing work). Also, there is no such thing as a canonical implementation, and it
would be interesting to compare code coverage measures for functionally equivalent (even down
to the search plan) code representations which are sufficiently different.

We also investigated whether code statement coverage implies coverage in our sense. Think
of the situation, where one tries to test the code sections that process a complete match. One
needs an input model comprising a complete match as test case, which shall be the only test
in an initial test suite. We could extend the model to cover as many additional statements as
possible, but due to the code fraction that processes incomplete matches as ultimate result, it is
not possible to cover all statements with only just one test. A second, rather small model without
complete matches is required. In general, this model can be expected to be rather small so that it
does not ensure PMC0 coverage (cf. negative test). For the running example, Figure 4b depicts
a test suite that achieves statement coverage but fails in achieving PMC0 coverage. For our
concrete example, statement coverage is implied by PMC0 coverage, so here even our weakest
coverage criterion subsumes statement coverage (unnecessary/dead code is neglected). This is
obviously not a prove, though, and more experiments are required to investigate the interplay
with code-based criteria.

3 http://cobertura.sourceforge.net/

9 / 12 Volume 54 (2012)

http://cobertura.sourceforge.net/

Gray Box Coverage for Testing Graph PM

6 Related Work

Several groups published results related to MT testing. A wide range of articles examine test data
generation, but this only partially relates to test adequacy evaluation. By far the most coverage
related work involves specification-based black box testing. A good example is [FBMT09] by
Fleurey et al., where they motivate their decision for a black box approach with its independence
from the underlying transformation language. They introduce the notions of class, attribute and
association coverage. Bauer et al. extend these concepts in [BKE11] by introducing feature
and transformation contract coverage. Their overall goal is to assess and optimize the test suite
quality for model transformation chains. Both works do not anticipate pattern definition and/or
implementation related bugs directly.

In [GV11], Gogolla et al. present a testing approach based on OCL constraints on source and
target metamodel called Tracts (MT contracts). They describe how their USE tool can check
contract adherence on the outcome and how corresponding test models can be derived. Cabot
et al. describe a similar approach in [CCGL10] where they use OCL in conjunction with their
UMLtoCSP tool whereby focusing on the analysis of MT properties rather than on testing. Both
works do not examine test data adequacy aspects and esp. no coverage notion.

Darabos et al. take a different view on testing in [DPV08]. They present a fault model, which
condenses their knowledge of typical programmer faults during implementation of PM engines.
They use a hardware verification technique called Boolean difference method to derive test data
which is sensitive to such faults. In some sense, the faults captured by their model could be
interpreted as coverage items. A drawback of this approach is that it depends on the quality of
the fault model. Unconsidered faults are likely to be overlooked.

Hildebrandt et al. use TGG rules to derive pairs of input models and expected output models
for testing a TGG implementation in [HLG+12]. Although this represents an elegant approach
to test oracle construction, the approach can only be applied if a TGG specification exists. Un-
fortunately, TGGs are not (yet) as expressive as most MT languages. The authors also evaluate
code coverage of their interpreter-based MT engine with different derived test suites, and state
that it remains virtually unchanged.

In [KA07], Küster et al. report on what they call a white box approach to validation. In addition
to the input metamodel they use the “design and implementation of the model transformation” by
building on so-called meta model templates plus constraints. A basic fault model is provided and
the interplay of rules is examined. Other white box approaches are presented by Ciancone et al.
in [CFM10], where unit testing of MT specified in QVT Operational is applied, and in [MP09]
by McQuillan et al., where standard code coverage metrics are used for ATL specifications. Such
white box approaches have the draw-back of being language specific. They also require more
insight in the machine-runnable implementation, which contravenes the declarative paradigm.

Steel et al. describe the test driven development of the Tefkat engine in [SL04]. Geiger et al.
derive JUnit tests from pattern specifications in [GZ05] which are used to test transformation
code conformance. A different approach is presented by Baldan et al. [BKS04] where GT spec-
ifications are used to model the behavior of code generators, and tests are derived from those
specifications. All those works focus on testing code generators rather than on testing MTs, the
former task being more comparable to compiler testing than to program testing.

There also exist quite some work on the combination of temporal logic and GT, mostly with

Proc. GraBaTs 2012 10 / 12

ECEASST

a focus on analyzing transformation properties. The work of Baresi et al. [BRRS08] is one
example where LTL is used, but there exist several other texts on that topic.

7 Conclusion

Testing model transformations is vital for their future success in practice. Coverage concepts are
an important aspect of a full-fledged testing process, but there is no silver bullet to this problem
as the number of approaches show.

We introduced a new coverage concept for gray box testing of GT and esp. graph pattern
matching, which is an error-prone sub-task. Our coverage criteria are based on the operational
semantics defined by search plans (and traces), and we motivate its usefulness with first experi-
mental results and a comparison of its properties and performance to that of statement coverage.

Future work comprises a comparison with more elaborated code-based coverage criteria (like
branch or path coverage), and an extension of the approach to treat optional, set and negative
nodes in patterns. On the implementation side remains the task of developing an integrated test-
ing framework including the new coverage concept plus other functionality like test generation
and oracle functions. On theory side, other/additional temporal constraints are conceivable.

Bibliography

[ALPS11] A. Anjorin, M. Lauder, S. Patzina, A. Schürr. eMoflon: Leveraging EMF and Pro-
fessional CASE Tools. In INFORMATIK 2011. LNI 192, p. 281. GI, 2011.

[BGF+10] B. Baudry, S. Ghosh, F. Fleurey, R. France, Y. Le Traon, J.-M. Mottu. Barriers to
Systematic Model Transformation Testing. Commun. ACM 53(6):139–143, 2010.

[Bin00] R. Binder. Testing Object-Oriented Systems: Models, Patterns, and Tools. The
Addison-Wesley Object Technology Series. Addison-Wesley, 2000.

[BKE11] E. Bauer, J. Küster, G. Engels. Test Suite Quality for Model Transformation Chains.
In Objects, Models, Components, Patterns. LNCS 6705, pp. 3–19. Springer, 2011.

[BKS04] P. Baldan, B. König, I. Stürmer. Generating Test Cases for Code Generators by
Unfolding Graph Transformation Systems. In Proc ICGT ’04. LNCS 3256, pp. 194–
209. Springer, 2004.

[BÖR+08] G. Bergmann, A. Ökrös, I. Ráth, D. Varró, G. Varró. Incremental Pattern Match-
ing in the Viatra Model Transformation System. In Proc GRaMoT ’08. Pp. 25–32.
ACM, 2008.

[BRRS08] L. Baresi, V. Rafe, A. T. Rahmani, P. Spoletini. An Efficient Solution for Model
Checking Graph Transformation Systems. ENTCS 213(1):3–21, 2008. Elsevier.

[CCGL10] J. Cabot, R. Claris, E. Guerra, J. de Lara. A UML/OCL framework for the analysis
of graph transformation rules. SoSyM 9:335–357, 2010. Springer.

11 / 12 Volume 54 (2012)

Gray Box Coverage for Testing Graph PM

[CFM10] A. Ciancone, A. Filieri, R. Mirandola. MANTra: Towards Model Transformation
Testing. In Proc QUATIC ’10. Pp. 97–105. 2010. IEEE.

[CH06] K. Czarnecki, S. Helsen. Feature-based survey of model transformation approaches.
IBM Syst. J. 45(3):621–645, 2006.

[DPV08] A. Darabos, A. Pataricza, D. Varró. Towards Testing the Implementation of Graph
Transformations. ENTCS 211:75–85, 2008. Elsevier.

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer. Fundamentals of Algebraic Graph
Transformation. Springer, 2006.

[FBMT09] F. Fleurey, B. Baudry, P.-A. Muller, Y. Traon. Qualifying input test data for model
transformations. SoSyM 8:185–203, 2009.

[GV11] M. Gogolla, A. Vallecillo. Tractable Model Transformation Testing. In Proc
ECMFA ’11. LNCS 6698, pp. 221–235. Springer, 2011.

[GZ05] L. Geiger, A. Zündorf. Story Driven Testing - SDT. In Proc SCESM ’05. Pp. 1–6.
ACM, 2005.

[HLG+12] S. Hildebrandt, L. Lambers, H. Giese, D. Petrick, I. Richter. Automatic Con-
formance Testing of Optimized Triple Graph Grammar Implementations. In Proc
AGTIVE ’11. LNCS 7233. Springer, 2012. To appear.

[HR04] M. Huth, M. Ryan. Logic in Computer Science: Modelling and Reasoning about
Systems. Cambridge University Press, 2004.

[JBK10] E. Jakumeit, S. Buchwald, M. Kroll. GrGen.NET. Int. J. on STTT 12:263–271,
2010. Springer.

[KA07] J. Küster, M. Abd-El-Razik. Validation of Model Transformations - First Ex-
periences Using a White Box Approach. In Models in Software Engineering.
LNCS 4364, pp. 193–204. Springer, 2007.

[LV02] J. de Lara, H. Vangheluwe. AToM3: A Tool for Multi-formalism and Meta-
modelling. In Proc FASE ’02. LNCS 2306, pp. 174–188. Springer, 2002.

[MP09] J. McQuillan, J. Power. White-Box Coverage Criteria for Model Transformations.
In (prel.) Proc MtATL ’09. Pp. 63–77. 2009. AtlanMod INRIA & EMN.

[SL04] J. Steel, M. Lawley. Model-Based Test Driven Development of the Tefkat Model-
Transformation Engine. In Proc ISSRE ’04. Pp. 151–160. 2004. IEEE.

[Tae04] G. Taentzer. AGG: A Graph Transformation Environment for Modeling and Valida-
tion of Software. In Proc AGTIVE ’04. LNCS 3062, pp. 446–453. Springer, 2004.

[VDWS12] G. Varró, F. Deckwerth, M. Wieber, A. Schürr. An Algorithm for Generating Model-
Sensitive Search Plans for EMF Models. In Proc ICMT ’12. LNCS 7307, pp. 224–
239. Springer, 2012.

Proc. GraBaTs 2012 12 / 12

	Introduction
	Terminology and Running Example
	Operational Semantics and Tracing
	Operational Semantics of Pattern Matching
	Generated Search Plans

	Tracing the Pattern Matching Process

	Coverage Metrics
	PMC0
	PMC1

	Application
	Related Work
	Conclusion

