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Multi-core and/or Symbolic Model Checking
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Abstract: We review our progress in high-performance model checking. Our
multi-core model checker is based on a scalable hash-table design and parallel ran-
dom-walk traversal. Our symbolic model checker is based on Multiway Decision Di-
agrams and the saturation strategy. The LTSmin tool is based on the PINS architec-
ture, decoupling model checking algorithms from the input specification language.
Consequently, users can stay in their own specification language and postpone the
choice between parallel or symbolic model checking. We support widely different
specification languages including those of SPIN (Promela), mCRL2 and UPPAAL
(timed automata). So far, multi-core and symbolic algorithms had very little in com-
mon, forcing the user in the end to make a wise trade-off between memory or speed.
Recently, however, we designed a novel multi-core BDD package called Sylvan.
This forms an excellent basis for scalable parallel symbolic model checking.

Keywords: multi-core model checking, symbolic model checking, scalability, hash-
table, Binary Decision Diagrams, parallel algorithms

1 Introduction

In order to cope with the exuberant time and memory consumption of model checking, we have
extensively experimented with two so far incompatible strategies. First, sets of state vectors
can be represented very concisely as Multiway Decision Diagrams, leading to symbolic model
checking of systems with astronomic state spaces. Second, explicit state model checkers get
orders of magnitude faster by exploiting contemporary multi-core hardware, given scalable data
structures and parallel algorithms. Traditionally, the two approaches are largely incompatible.
Based on the problem at hand, users had to choose among symbolic and explicit model checkers,
each with their own specification language.

In this invited contribution, we review our progress in high-performance model checking. We
discuss a scalable hash-table design, enhanced with various scalable state compression tech-
niques. Used by parallel random traversal, this design forms the key factor of a scalable model
checker that can handle 1010 states in 10 minutes on a 48-core machine with 128 GB memory.

Simultaneously, we re-engineered several model checking algorithms and enhancements, such
as LTL model checking with partial-order reduction, and symbolic model checking of µ-calculus
properties. Our tool LTSmin offers all these features as language-independent building blocks,
via the on-the-fly interface PINS. Besides a partitioned next-state function, this provides a mini-
mal amount of structural model information.
∗ Supported by the NWO project MaDriD, grant nr. 612.001.101
† Corresponding author, vdpol@cs.utwente.nl
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We implemented PINS language modules for Promela, mCRL2 and UPPAAL, so users can
benefit from multi-core or symbolic verification of models in their preferred specification lan-
guage. Still, the multi-core and symbolic algorithms are incompatible. In the end, one must
choose between parallel or symbolic algorithms for each application.

Recently, we implemented a multi-core scalable BDD package, Sylvan. Its main data struc-
tures extend our scalable hash-table design. It has a parallel implementation of the BDD opera-
tion for relational product. As a consequence, we provide an excellent starting point for a truly
scalable multi-core symbolic model checker; we already observed a speedup of 32 on 48 cores.

2 Exposing Transition Locality for State Space Exploration

Reachability analysis is the core algorithm shared by all model checkers. Given a set of states
S, an initial state s0, a transition relation R and a goal/error state t, the question is whether t is
reachable, i.e. whether s0R∗t. Usually R is given only implicitly, by a next-state function that
computes the successors of a given state.

We mainly consider the verification of asynchronous concurrent systems, consisting of a num-
ber of components, whose transitions are interleaved non-deterministically. In this case, a state
consists of a vector of N values, representing the variables of all components, so S= S1×·· ·×SN .
The transition relation can be partitioned disjunctively, so R =

⋃M
i=1 Ri. To cope with the memory

and time demands of model checking, many algorithms exploit the transition locality in asyn-
chronous systems: Typically Ri depends only on a small part of the state vector, by reading or
modifying the corresponding variables. This is encoded in an M×N dependency matrix DM×N ,
where D[i, j] represents that transition group i depends on state variable j.

For full flexibility, we want to decouple high-performance model checking algorithms from
particular specification languages. In order to exploit transition locality, the interface should ex-
pose some model structure. Therefore, we proposed the PINS interface as the basic architecture
for our LTSmin tool [BPW10, LPW11a], Figure 1. Every language module should provide:

• The length of the state vector S1×·· ·×SN ,

• A couple of next-state functions Ri : S→P(S),

• The dependency matrix DM×N (a syntactic overapproximation is sufficient).

LTSmin provides language modules to support process algebra with data (mCRL2 [GKS+11]),
state based languages (Promela [Hol97, BL12] and DVE, used for benchmarking), and UP-
PAAL’s timed automata [BDL+11, DLL+12]. It provides analysis tools based on distributed
reachability (run on a cluster of workstations with a network connection), multi-core reachability
(multiple processors with shared memory), and symbolic reachability tools (based on Multiway
Decision Diagrams). It also has backend tools for model checking LTL and µ-calculus proper-
ties, or generating the complete state space, minimizing it modulo some equivalence, and storing
it in a compressed file.

Due to this flexible setup, several optimization layers are provided as PINS2PINS wrappers,
serving all combinations of languages and analyses. We just mention transition caching, state
variable reordering, transition regrouping, and partial-order reduction [GW94, Pat11].
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Figure 1: The PINS architecture of the LTSmin toolset

3 Multi-core Reachability and Liveness: Speedup and Compression

The essential data structure in explicit reachability algorithms is a hash-table containing the set
of visited states. Before exploring newly generated states, they must be checked against this set.
This avoids redundant re-exploration, or even non-termination in case of graphs with cycles.

We have adapted basic reachability analysis to multi-core computers, consisting of a number of
processors and a large shared memory. To lower the latency penalty for accessing main memory,
processors are usually equipped with hardware caches. Our basic parallel reachability scheme
is to store the visited set in a single shared hash-table. Each worker maintains its private set of
states to be explored. As a standard load balancing mechanism, when some worker runs out of
work it steals some states from the set of another worker. So a scalable multi-core hash-table
implementation is essential for parallel reachability. This is non-trivial, because hash-tables
generate random memory accesses, leading to a lot of hardware cache misses. Also, to prevent
concurrent reading and writing to the same address, some form of protection is asked for.

Based on the observation that for reachability analysis the set of visited states grows mono-
tonically, we carefully crafted [LPW10] a lockless scalable hash-table with only one operation:
find or put(s):bool. It guarantees that s will be in the table, and indicates whether it is
new. Its efficiency is based on a number of design decisions:

• Store the hash values in a bucket array, separate from the state vectors. This avoids com-
paring long state vectors, except when their hash values collide.

• On hash collisions, use the next or previous locations within the hash bucket array (open
addressing with bilinear probing), in order to stay on the same hardware cache line as long
as possible.

• Use the primitive compare and swap to modify hash-buckets atomically, and reserve
one bit to indicate that the accompanying state vector slot is being written.

Based on this scalable hash-table design, multi-core reachability analysis runs with near-optimal
linear speedup for a wide range of benchmark models in various specification languages.
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This can be extended to liveness analysis, by using parallel Nested Depth-First Search. Basi-
cally, each worker runs an independent NDFS procedure to detect accepting cycles in a Büchi
automaton, coding for counter examples to an LTL property. Parallel search provides a consid-
erable (even superlinear) speedup when accepting cycles exist (bug hunting). Intricate schemes
for sharing information between workers deliver speedups also in the absence of accepting cy-
cles [LLP+11, EPY11, ELPP12]. We observed a maximum speedup of 43 on 48 cores, and an av-
erage speedup of 17 among all 63 benchmarks of >1M states from the BEEM database [Pel07].

Having addressed time requirements, we next focused on the memory consumption of the set
of visited states. Due to transition locality in asynchronous models, successive state vectors have
a lot of similarity. This allows for impressive data compression. The key idea is to split state
vectors in equal halves: v = v1v2. Instead of storing all vectors v explicitly, we store them as
pairs of integers (k1,k2), where k j is an index in the table of values of v j. Note that if v1 and v2
assume K different values, then the universe of v is bounded by K2. Conversely, in the optimal
case, a state space of N vectors of length L can be stored as 2N integers (pairs of indices) and
2 tables of

√
N values of length 1

2 L. This trick can be repeated recursively to store the table of
subvectors v j, etc. We call the resulting technique tree compression [BLPW09, LPW11b].

We often observe a memory consumption close to the optimum. With incremental tree inser-
tion, the required additional computations do not even slow down the multi-core performance.
The reason is that compression also reduces the traffic over the main memory bus, increasing the
arithmetic intensity of our application. So state compression comes for free indeed [LPW11b].

We implemented additional techniques to further reduce the memory footprint of the com-
pressed tree, in particular a multi-core implementation [VL11] of Cleary Tables [Cle84]. Here,
part of the hashed key is not even stored at all, but can be deduced from the actual location of the
hash bucket at the expense of a small number of administration bits per bucket.

4 Symbolic Model Checking for Explicit State Languages

Even more state compression can be achieved with decision diagrams [Bry92]. In Multiway
Decision Diagrams, a state vector is stored as a path in a Directed Acyclic Graph (DAG). A node
in the diagram represents a set of vectors; an outgoing edge labeled vi to t represents the set of
vectors that start with vi and have a suffix in t. Conciseness follows from the fact that different
paths can share nodes: the number of paths can be exponentially larger than the number of nodes.

Interestingly, set-operations on MDDs (intersection, union) can be performed in polynomial
time. As a consequence, large sets of states can be manipulated very efficiently. In particu-
lar, the relational product of a symbolic relation R(v,v′) applied to a set of state vectors S(v)
can be computed in polynomial time in the MDD representation of R and S. Symbolic model
checking [BCM+90] is implemented by repeated application of the relational product.

The efficiency of symbolic model checking depends on the order of variables in the state
vector, and on the exploration strategy. We implemented a static variable reordering heuristic,
and several existing strategies to compute the fixed point of R1∪·· ·∪RM:

• Breadth-First: compute (R1∪R2∪·· ·∪RM)∗ in a straightforward way;

• Chaining: compute (R1;R2; · · · ;RM)∗, where R1;R2 denotes relation composition R=
2 ◦R=

1 ;

• Saturation: compute ((((R∗1);R2)
∗;R3)

∗; · · · ;RM)∗.
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As shown by Ciardo [CLM07], saturation tends to minimize the peak memory of symbolic
reachability, keeping the intermediate MDDs small. LTSmin implements the saturation strat-
egy for the PINS interface [BP08, Sia12]. The individual relations Ri are learned on-the-fly.
This provides symbolic model checking for explicit state languages. For instance, we can now
symbolically explore a Promela model of 60 Dining Philosophers with 7.3× 1041 states in 0.3
seconds (actually, compilation and static variable reordering takes much longer).

5 Sylvan: Multi-core BDDs for Parallel Symbolic Model Checking

Recently, we built a multi-core BDD package, called Sylvan [vD12, DLP12]. We will discuss
the parallelization strategy in Sylvan, after first discussing its multi-core data structures.

The basic data structures in a BDD package are the Unique Table and the Computed Table.
The Unique Table is a hash-table storing each BDD node once, to ensure that the DAG remains
maximally shared. As a consequence, checking equality of two BDDs reduces to a simple pointer
comparison. The Computed Table is needed to implement the BDD operators in polynomial
time. Computing an operation O on BDDs B and C typically proceeds as follows:

O(if (p,B1,B2), if (p,C1,C2)) = . . . if (p,O(B1,C1),O(B2,C2)) . . .

In order to ensure that the intermediate results Ri := O(Bi,Ci) are computed only once, triplets
(Bi,Ci,Ri) are cached in the Computed Table when they are computed the first time, so they can
simply be looked up when needed a second time.

Sylvan stores BDD nodes in a single shared Unique Table, extending the lockless hash-table
design explained before. Since BDD nodes come and go, we implemented parallel garbage
collection based on reference counting. Really deleting elements would invalidate linear probing;
they are replaced by tombstones instead, to be reused by new insertions. All workers assist during
a parallel garbage collection phase. The parallel Computed Table is also globally shared. Here,
in case of collisions, new results simply overwrite older ones.

The parallelization strategy of Sylvan is fairly simple: to apply some operation on BDDs, each
worker traverses the BDDs independently. Intermediate results are stored in a shared Computed
Table, avoiding recomputation of the same result by multiple workers. We rely on random traver-
sal to ensure that workers traverse different parts of the BDDs, thus avoiding that all workers start
computing the same piece of work.

An alternative implementation relies on Wool [Fax08], a work-stealing load balancer for fine-
grained task parallelism. In Sylvan, a single task checks the Computed Table, spawns some
recursive subtasks, creates the result node in the Unique Table, and stores a new triplet in the
Computed Table. Using Wool gave a slight performance benefit over pure random traversal.

Our initial experiments showed a relative speedup of BFS-based symbolic reachability up to
32 on a 48-core machine (a speedup of 10 compared to single-threaded BuDDy). Some other
models show only a very limited speedup. There is still plenty of work to do: improve parallel
garbage collection, parallelize Multiway Decision Diagrams and experiment with saturation, as
it is the best known sequential exploration strategy in many cases.

We view Sylvan as an excellent basis for further research into a scalable BDD package, with
applications to symbolic model checking and beyond. This is a necessary condition to transfer
the successful BDD technology forward to contemporary multi-core hardware.
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