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Abstract: Markov automata constitute a compositional modeling formalism span-
ning as special cases the models of discrete and continuous time Markov chains,
as well as interactive Markov chains and probabilistic automata. This paper dis-
cusses the core algorithmic ingredients of a numerical model checking procedure
for Markov automata with respect to a PCTL or CSL like temporal logic. The main
challenge lies in the computation of time-bounded reachability probabilities, for
which we provide a stable approximation scheme.
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1 Introduction

Markov automata (MA) constitute a compositional behavioural model for continuous time
stochastic and nondeterministic systems [EHZ10a, EHZ10b, DH11]. Markov automata are – on
the one hand – rooted in interactive Markov chains (IMCs) [Her02]. IMCs have seen applications
in diverse areas [BCS10, HKR+10, CHL+09, EKN+12] where memoryless continuous delays
prevail. These practical cases have, however, revealed the need to pair the expressiveness of
IMC with instantaneous random switching. This observation has led to the conception of Markov
automata, which are – on the other hand – based on probabilistic automata (PA) [Seg95]. MA are
expressive enough to capture the complete semantics [EHZ10a] of generalised stochastic Petri
nets (GSPNs) [MCB84] and of stochastic activity networks (SANs) [MMS85]. Due to these
attractive semantic and compositionality features, there is a growing interest in software tool
support for modelling and analysis with MA. SCOOP [TKP+12], supports fully compositional
construction of MA models, and IMCA [Guc12] supports the evaluation of long-run reward
properties for MA.

In this paper, we discuss temporal logics and model checking algorithms for Markov automata.
We focus on branching time logics in the style of CTL. The model checking approach we follow
harvests advances in the area of PCTL model checking of probabilistic automata [BA95], and
of CSL model checking of interactive Markov chains [Neu10]. The approach however needs
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to intertwine the respective steps in a nontrivial manner. This is rooted in the fact that Markov
automata evolve in super dense time [LZ05, MP93]: the time domain is R≥0×N0.

We report on empirical results for a queueing system case study, obtained with a prototypi-
cal implementation of our technique. Albeit being a small example, that case requires the full
expressiveness of Markov automata, and hence could neither be faithfully modelled, nor model
checked prior to our work. The experiments demonstrate principal feasibility, and indicate room
for further improvement.

Organisation of the paper. After the preliminaries in Section 2, we introduce syntax and se-
mantics of the logic CSL in Section 3. Section 4 is devoted to the core model checking algorithm
for CSL. The key step, namely the computation of time interval bounded reachability, is treated
in Section 5, where an approximation scheme is developed using a digitisation technique. Algo-
rithmic aspects of this technique are discussed in Section 6. Experimental results are reported in
Section 7. Finally, Section 8 concludes the paper.

2 Preliminaries

This section provides the necessary notational background. A distribution µ over a discrete
set S is a function µ : S� [0,1] such that ∑s∈S µ(s) = 1. We may also use the set representation
of µ given by {(s,µ(s))|s ∈ S,µ(s) > 0}. If µ(s) = 1 for some s ∈ S (i.e. µ = {(s,1)}), µ is a
Dirac distribution, and is denoted µs. Let Dist(S) be the set of all distributions over set S.

2.1 Markov Automata

Definition 1 A Markov Automaton (MA) [EHZ10a] is a tuple M = (S,Act,−→,99K,ν),
where S is a finite set of states, Act is a set of actions, including τ , representing an inter-
nal invisible action. Furthermore, −→⊂ S× Act ×Dist(S) is a set of interactive transitions,
99K⊂ S×R≥0×S is a set of Markov transitions, and ν is the initial distribution. 1

A probabilistic automaton is an MA where 99K is empty. If in addition for each s, |{µ |
(s,a,µ) ∈ −→}| ∈ {0,1}, we are facing a discrete time Markov chain. An interactive Markov
chain (IMC) is an MA where all distributions occurring in −→ are Dirac. A continuous time
Markov chain is an MA where −→ is empty.

We partition states of MA into interactive, Markov and hybrid states, similar to [Her02]. Inter-
active (Markov) states have only interactive (Markov) outgoing transitions, while hybrid states
have transitions of both types. We use SI , SM and SH to denote the set of interactive, Markov and
hybrid states respectively. A state without any outgoing transition, is called a deadlock state. We
turn any such deadlock state into a Markov state by adding a self loop to it with an arbitrary rate.
We further assume that maximum progress [Her02] is imposed. This means that τ-transitions
take precedence over Markov transitions. As for IMC, we distinguish between closed and open
MA. An open MA can interact with the environment and in particular, can be composed with
other MA, e.g. via parallel composition. In contrast, a closed MA is not subject to any fur-

1 We assume that (s,α,µ1),(s,α,µ2) ∈−→ only if µ1 = µ2, where s ∈ S,α ∈ Act and µ1,µ2 ∈Dist(S). This restric-
tion can be relinquished at the price of more involved notations.
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Figure 1: An exemplary Markov automaton

ther communication and composition. In this paper, we assume that the models we are going
to analyse are closed, and impose the stronger urgency assumption [Her02] which means that
any action has precedence over Markov transitions, i.e. interactive transitions are assumed to
be taken immediately with probability 1. Consequently, in a closed MA, hybrid states can be
considered as interactive states.

For uniformity of notation, we use a distinguished action ⊥ /∈ Act to indicate Markov transi-
tions and extend the set of actions to Act⊥ = Act ∪̇ {⊥}. For s ∈ S, we define Act⊥(s) as the set
of enabled actions in state s. If s is a Markov state, Act⊥(s) = {⊥}, otherwise Act⊥(s) = {α |
(s,α,µ) ∈ −→}. The rate between state s and s′ is defined by rate(s,s′) = ∑(s,λ ,s′)∈99Kλ . Then
E(s) = ∑s′∈S rate(s,s′) denotes the sum of rates going out of state s. Using these concepts, we
define the branching probability matrix for both interactive and Markov states by

P(s,α,s′) =


µ(s′) s ∈ SI ∧ (s,α,µ) ∈−→
rate(s,s′)

E(s) s ∈ SM ∧α =⊥
0 otherwise

Example 1 Let M be the MA in Figure 1. s1 and s3 are Markov states, while s2 is an interactive
state. State s0 is a hybrid state, since it has both interactive and Markov transitions emanating.
The urgency assumption implies that we can ignore (s0,0.5,s2) ∈99K and consider s0 as an
interactive state. Recall that under this assumption, interactive transitions are instantaneously
fired after zero time delay. Conversely, the sojourn time in a Markov state s is exponentially
distributed with rate E(s). For example, the probability to leave s1 within δ time unit is 1−e−5δ

(E(s1) = 2 + 3 = 5). Branching probabilities determine the likelihood of entering particular
successor states. For s1, P(s1,⊥,s0) =

2
5 and P(s1,⊥,s3) =

3
5 . Therefore, the probabilities to go

to s0 and s3 after spending at most δ time units in s1 are 2
5(1−e−5δ ) and 3

5(1−e−5δ ) respectively.

2.2 Behavioural and Measurability Concepts

The behaviour of a model M when entering a state s ∈ S can be described by a time-stamped
step. It represents how long the model stays in state s prior to taking which action and thereby
entering which successor state. A time-stamped step m is thus a triple of a sojourn time, an
extended action and a state, i.e. m ∈ M = R≥0×Act⊥× S. We often denote a time-stamped
step (t,α,s) ∈ M by

t,α7−→ s. For example, when the model is in an interactive state s ∈ SI , it
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must immediately (in zero time) choose action α ∈ Act⊥(s) and go to state s′ according to the

distribution P(s,α, .). This boils down to taking the time-stamped step (0,α,s′) from s, or s
0,α7−−→

s′. On the other hand, if s ∈ SM, the model can stay for t > 0 time units and then choose the
next state s′ based on the distribution P(s,⊥, .) (i.e. (s,λ ,s′) ∈99K for some λ > 0). Then it

takes time-stamped step (t,⊥,s′) from s, or s
t,⊥7−−→ s′. By dropping the sojourn time from time-

stamped steps, we obtain time-abstract steps, defined as pairs of extended actions and states
(m ∈Mta = Act⊥×S).

A finite (possibly time-abstract) path π = s0 ◦m0 ◦ · · · ◦mn−1 is a concatenation of a state
and a finite sequence of (time-abstract or) time-stamped steps where s ∈ S and (mi ∈ Mta or)
mi ∈M, i = 0 · · ·n− 1. A (possibly time-abstract) infinite path is an initial state followed by an
infinite sequence of (time-abstract or) time-stamped steps. Given Markov automata M , the set
of finite and infinite paths in M are denoted by Paths∗ (M ) and Pathsω (M ) respectively. We
use subscript ta to refer to the set of time-abstract finite and infinite paths (i.e. Paths∗ta (M ) and
Pathsω

ta (M )). When it is clear from the context, M might be omitted from the notations.
Some further notations for paths are needed. Let π = s0

t0,α07−−→ s1 · · ·sn−1
tn−1,αn−17−−−−−→ sn be a

finite path. We use |π| = n as the length of π and last(π) = sn as the last state of π . Assume
k ≤ n is an index, then π[k] = sk is the k + 1-th state of π . The time spent on π up to state
π[k] is calculated by ∆(π,k) which is zero if k = 0, and otherwise ∑

k−1
i=0 ti. We use ∆(π) as

an abbreviation for ∆(π, |π|). For time-abstract paths, ∆ta is similarly defined, however it only
counts the number of time-abstract steps with action ⊥. The prefix of length k is extracted from
π by Pref(π,k) = s0

t0,α07−−→ s1 · · ·sk−1
tk−1,αk−17−−−−−→ sk.

Paths in MA are constructed by sequences of time-stamped steps originating from an initial
state. To define the σ -algebra over a finite paths, first we define it over time-stamped steps.
Let FS = 2S be σ -algebra over S and FAct⊥ = 2Act⊥ be σ -algebra over Act⊥. We define the σ -
algebra over time-stamped steps using the concept of Cartesian product of σ -algebra [AD00],
as FM = σ(B(R≥0)×FAct⊥ ×FS). It can be extended to the σ -algebra over finite paths using

the same technique. Let FPathsn = σ(FS×
n times︷ ︸︸ ︷

FM×·· ·×FM) be the σ -algebra over finite paths of
length n, then the σ -algebra over finite paths is defined as FPaths∗ = ∪∞

i=0FPathsn . The σ -algebra
over infinite paths is defined using a standard cylinder set construction. We define the cylinder
set of a given base Bn as Cyl(Bn) = {π ∈ Pathsω : Pref(π,n) = Bn}. Cyl(Bn) is measurable if
its base Bn is measurable, i.e. Bn ∈ FPathsn . We further define the σ -algebra over infinite paths,
FPathsω , as the smallest σ -algebra over measurable cylinders. And finally the σ -algebra over the
set of paths is the disjoint union of the σ -algebras over the finite paths and the infinite paths.

2.3 Resolving Nondeterminism

Nondeterminism in MA is resolved by schedulers. The most general scheduler class maps a
finite path to a distribution over the set of actions enabled in the last state of the path:

Definition 2 (Generic Scheduler) A generic scheduler over MA M = (S,Act,−→,99K,ν) is a
function, A : Paths∗×Act⊥� [0,1], where A(π, .) ∈ Dist(Act⊥(last(π))),π ∈ Paths∗. Scheduler
A is measurable if ∀α ∈ Act⊥,A(.,α) : Paths∗� [0,1] is measurable.
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For a finite path π , a scheduler specifies how to resolve nondeterminism in the last state of π . If
last(π) is a Markov state, there will be only one enabled action, namely ⊥, which will be chosen
by the scheduler with probability 1. Otherwise, it gives a distribution over the set of enabled
actions of last(π). Measurability of scheduler A means the preimage of each Borel measuable
set in A is a measuable set of paths, i.e. ∀α ∈ Act⊥,∀B ∈B([0,1]), {π|A(π,α) ∈ B} ∈ FPaths∗ ,
where B([0,1]) is Borel σ -algebra over interval [0,1]. We use term GM to refer to the set of all
generic measurable schedulers.

By substituting Paths∗ with Paths∗ta in Definition 2, we obtain the less general class of time-
abstract schedulers. Measurability issues do not arise for schedulers of this class [ZN10]. The
set of all time-abstract schedulers is denoted by TA. Time-abstract schedulers can be used to
evaluate properties that deal with the order of events without being explicit about their timing.
We will use them later for digitised models of MA.

2.4 Probability Measure

We now construct a probability measure over the set of finite and infinite paths by extending
the probability measure defined on IMC [Joh08]. First, we define a probability measure over
a measurable set of time-stamped steps, i.e. TSS ∈ FM. Then we extend it to a probability
measure on the probability space (Pathsn,FPathsn). Let A be a generic measurable scheduler on
M = (S,Act,−→,99K,s0), µA(π, .) : FM � [0,1],π ∈ Paths∗ is defined as follows:

µA(π,TSS) =


∑

(0,α,s)∈TSS
P(last(π),α,s)A(π,α) last(π) ∈ SI∫

Λ

E(last(π))e−E(last(π))t
∑

(t,⊥,s)∈T SS
P(last(π),⊥,s)dt last(π) ∈ SM

where Λ = {t|(t,⊥,s) ∈ TSS,s ∈ S} is the set of all time points defined in TSS. Relative to
the same definition for IMCs [Joh08], the only difference is that for interactive states in the
above, P(s,α, .) can be an arbitrary distribution, whereas in IMC, it is a Dirac distribution. We
now define the probability measure recursively on the probability space (Pathsn,FPathsn) given
A ∈ GM in M as:

Pr0
A,ν(S0) = ∑

s∈S0

ν(s), S0 ∈ FS

Prn
A,ν(Π◦TSS) =

∫
π∈Π

µA(π,TSS)dPrn−1
A,ν ({π}), Π ∈ FPathsn−1 ,TSS ∈ FM

The measure Prn
A,ν , corresponding to the probability of a set of paths with length n, is thus

recursively obtained by breaking them into prefixes of length n− 1 and the n-th time-stamped
step. This is included in the above integral by dPrn−1

A,ν ({π}) and µA(π,TSS), respectively. It can
be shown that this probability measure is unique and can be extended to the probability measure
Prω

A,ν on (Pathsω ,FPathsω ) [AD00].
Owing to the presence of immediate state changes, an MA might exhibit Zeno behaviour,

where infinitely many interactive transitions are taken in finite time. This is an unrealistic phe-
nomenon, characterised by paths π , where the time spent on π up to state π[n], ∆(π,n), does not
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diverge for diverging n. In other words, the time spent in the system may stop increasing, if the
system follows path π . We intend to exclude such unrealistic phenomena. This could safely be
achieved by disallowing cyclic structures in −→. We however take a more relaxed approach and
restrict our attention to models where the probability of Zeno behaviour is zero. We require that
∀A ∈ GM, ∀s ∈ S. Prω

A,νs
({π ∈ Pathsω | limn→∞ ∆(π,n) < ∞}) = 0. This condition implies that

starting from any interactive state, we must reach the set of Markov states with probability one.
In the remainder of this paper, we therefore restrict to such models.

3 Continuous Stochastic Logic for Markov Automata

This section introduces a logic suitable to express a broad range of performance and depend-
ability measures on Markov automata. Our basis are CTL (Computation Tree Logic [CES86]),
its extensions to discrete time Markov models, PCTL [HJ94, BA95], and to continuous time
Markov models, CSL [BHH+03, ZN10]. These logics work on state labelled Markov models.
Given MA M and a finite set of atomic propositions AP, a state labellings function L : S� 2AP

decorates each state with a set of atomic propositions which do hold in that state. Let I and Q
be the set of all nonempty nonnegative real intervals with real and rational bounds respectively.
Continuous Stochastic Logic (CSL) for Markov automata is defined as follows.

Definition 3 (CSL Syntax) Let a ∈ AP, p ∈ [0,1], I ∈ I an interval and E ∈ {<,≤,≥,>},
CSL state and path formula are described by

Φ ::= a | ¬Φ | Φ∧Φ | PEp(φ) and φ ::= X I
Φ | ΦU Φ | ΦU I

Φ

Given an infinite path π ∈ Pathsω , π satisfies X IΦ if the first transition of π occurs within
time interval I and leads to a state that satisfies Φ. Likewise, bounded until formula Φ U IΨ is
satisfied by π , if π visits states that satisfy formula Φ until at some time point within interval I, it
reaches a state that satisfies formula Ψ. In contrast to bounded until, an unbounded until formula
does not constrain the time at which π may visits the state satisfying Ψ. This corresponds to the
time interval of [0,∞). The formal semantics of CSL formulae is defined as follows.

Definition 4 (CSL Semantics) Let M = (S,Act,→,99K,AP,L,ν) be a state labelled MA, s∈ S,
a ∈ AP, p ∈ [0,1], I ∈I , E ∈ {<,≤,≥,>}, and π ∈ Pathsω . We define the satisfaction relation
� for state formulae: s � a iff a ∈ L(s), s � ¬Φ iff s 3 Φ, s � Φ∧Ψ iff s � Φ∧ s � Ψ, and
s �PEp(φ) iff ∀A ∈ GM. Prω

A,νs
({π ∈ Pathsω | π � φ})E p. For path formulae:

π �X I
Φ iff π[1] �Φ∧∆(π,1) ∈ I

π �Φ U I
Ψ iff ∃n ∈ N0.[∆(π,n),∆(π,n+1)]∩ I 6= /0∧π[n] �Ψ∧∀k = 0 · · ·n−1.π[k] �Φ

π �Φ U Ψ iff ∃n ∈ N0.π[n] �Ψ∧∀k = 0 · · ·n−1.π[k] �Φ

4 Algorithms for Model Checking

The core model checking approach is as usual. To decide which states of an MA satisfy
CSL formula Φ, all sub-formulae Ψ of Φ are recursively processed and for each of them
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the set Sat(Ψ) = {s ∈ S|s �Ψ} is determined. We have Sat(a) = {s ∈ S|a ∈ L(s)} for an
atomic proposition a ∈ AP, Sat(¬Ψ) = S \ Sat(Ψ) for negation formulae, and Sat(Ψ1 ∧Ψ2) =
Sat(Ψ1)∩ Sat(Ψ2) for the conjunction of formulae. The proper calculation of Sat(PEp(φ))
however needs deeper considerations. Sat(PEp(φ)) is naturally defined as {s ∈ S | ∀A ∈
GM. Prω

A,νs
({π ∈ Pathsω | π � φ})E p}. In a nutshell, determining this set requires the calcu-

lation of the maximum or minimum (depending on E) probability measures induced by all φ -
satisfying paths starting from state s, where the maximum or minimum are to be taken over all
measurable schedulers. Let pM

max(s,φ) and pM
min(s,φ) be those values respectively. We deal with

their calculation for the different types of path formulae φ separately. In the following, we only
consider the maximum cases. The minimum cases can be handled similarly.

4.1 Next Formula

The computation of pM
max(s,X

IΦ) is straightforward. First, the set Sat(Φ) is computed by
processing the structure of the formula. Then, if s ∈ SM, no nondeterminism exists and the com-
putation is done as the next formula in CTMC [BHH+03]. Otherwise, for s ∈ SI the computation
proceeds as in PA [BA95].

4.2 Unbounded Until Formula

The evaluation of a given unbounded until formula in an MA can be reduced to the computa-
tion of unbounded reachability in a smaller MA, which in turn can be reduced to reachability in
an untimed model. Assume MA M and a set of goal states G are given, we propose a way to
compute maximum and minimum probability of eventually reaching the states in G (pM

max(.,♦G)
and pM

min(.,♦G)). We utilise the same technique which is used for computing unbounded reach-
ability in CTMC [BHH+03]. This is because for unbounded reachability, the sojourn time in
Markov states is not important. In other words, it does not matter at which time point a transition
from a Markov state s to another state s′ occurs. It is enough to know what is the probability
of eventually reaching s′ from s which is

∫
∞

0 E(s)e−E(s)tP(s,⊥,s′)dt = P(s,⊥,s′). Therefore it
suffices to consider only time-abstract paths (Pathsω

ta) of a model abstracted from M by only
looking into discrete branching probabilities. The abstract model is an embedded Markov Deci-
sion Process (eMDP) which is defined as follows.

Definition 5 (Embedded MDP) Let M = (S,Act,−→,99K,ν) be an MA as before, emb(M )
is an embedded MDP induced by M and defined by emb(M ) = (S,Act⊥,T,ν), where T ⊂ S×
Act⊥×Dist(S) is the set of transition relations defined by T = {(s,⊥,P(s,⊥, .)) | s ∈ SM}∪−→.

The embedded MDP mimics all interactive transitions of its original MA. However each
Markov transition of the original MA is replaced with a transition which takes action ⊥ and
enters successor states according to the branching probability matrix. We reduce unbounded
reachability in MA M to unbounded reachability in its embedded MDP with respect to the set
of goal states G by pM

max(s,♦G) = pemb(M )
max (s,♦G), ∀s ∈ S.

Now we consider φ = Φ U Ψ is given and the set Sat(Φ) and Sat(Ψ) are computed. To
determine pM

max(s,Φ U Ψ) we reduce it to unbounded reachability in its embedded MDP by the
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following theorem.

Theorem 1 (Unbounded Until) Let M = (S,Act,−→,99K,ν) be an MA as before, and φ =
Φ U Ψ be a CSL formula G = Sat(Ψ) and emb(M ) as in Definition 5. Assume we construct
emb(M )¬Φ from emb(M ) by making all states in Sat(¬Φ) absorbing. Then ∀s∈ S. pM

max(s,Φ U

Ψ) = pemb(M )¬Φ

max (s,♦G).

A state is turned into absorbing by replacing all its emanating transition by a single self loop
taking action ⊥. Theorem 1 holds for minimum probabilities as well. The idea of absorbing
states has first been used for CTMCs [BHH+03] in the same manner: A path that has entered
an absorbing state cannot leave the state anymore. When path π reaches state s ∈ Sat(¬Φ),
π �ΦU Ψ will hold if s �Ψ, otherwise it will not hold. In other words, as soon as a path reaches
a state in Sat(¬Φ), regardless of which states will be visited in future, it can be decided whether
the path holds the property or not . As a result, all states in Sat(¬Φ) can be made absorbing
without altering the truth value of the formulae in the question. Finally, for computation of
unbounded reachability in MDP, one can use the method discussed in [BK08, Chapter 10].

4.3 Time Bounded Until Formula

The computation of time bounded until is more complicated and requires some innovation.
We first reduce it to the computation of time interval bounded reachability with respect to a set
of goal states. Let M be an MA and φ = ΦU IΨ with I ∈ I be a CSL formula. We assume
that Sat(Φ) and Sat(Ψ) have already been computed. Similar to unbounded until, all states
in Sat(Ψ) are considered as goal states and also all states in Sat(¬Φ) are made absorbing. In
this model, time interval bounded until analysis reduces to timed reachability analysis by the
following theorem.

Theorem 2 (Bounded Until) Let M = (S,Act,−→,99K,ν) be an MA as before, and φ =
Φ U I Ψ with I ∈I be a CSL formula and G = Sat(Ψ). We construct M¬Φ from M by making
all states in Sat(¬Φ) absorbing. Then ∀s ∈ S. pM

max(s,Φ U I Ψ) = pM¬Φ
max (s,♦IG).

The proof is a direct adaptation of the one in [Neu10, Theorem 6.7]. Theorem 2 says one can
compute bounded until using time interval bounded reachability analysis. So we are left with the
question how the latter can be computed. The following section discusses this issue.

5 Time Bounded Reachability in MA

In this section, we introduce an algorithm that computes an approximation of the time bounded
reachability probability in MA using a digitisation technique. We start with a fixed point char-
acterisation, and then we explain how that can be approximately computed using a digitisation
technique.
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5.1 Fixed Point Characterisation

Our goal is to come up with a fixed point characterisation for the maximum (minimum) prob-
ability to reach a set of goal states in an interval of time. For I ∈ I and t ∈ R≥0, we de-
fine I 	 t = {x− t | x ∈ I∧ x≥ t}. If I ∈ Q and t ∈ Q≥0, then I 	 t ∈ Q. Given MA M , a
time interval I ∈ I and a set of goal states G ⊆ S, the set of all paths that reach the goal
states within interval I is denoted by ♦IG. Let pM

max(s,♦IG) be the maximum probability of
reaching the goal states within interval I if starting in state s at time 0. The latter indeed is
the supremum of all probability measures of the induced paths over all possible GM sched-
ulers: pM

max(s,♦IG) = supA∈GM Prω
A,νs

(♦IG). The next definition provides a characterisation of
pM

max(s,♦IG) as a fixed point.

Definition 6 (Fixed Point Characterisation of MA) Let M be an MA, G ⊆ S be a set of goal
states and I ∈I with inf I = a and sup I = b. pM

max : S×I � [0,1] is the least fixed point of the
higher-order operator Ω : (S×I � [0,1])� (S×I � [0,1]), which for s ∈ SM is defined as:

Ω(F)(s, I) =

{∫ b
0 E(s)e−E(s)t

∑s′∈S P(s,⊥,s′)F(s′, I	 t)dt s /∈ G
e−E(s)a +

∫ a
0 E(s)e−E(s)t

∑s′∈S P(s,⊥,s′)F(s′, I	 t)dt s ∈ G

For s ∈ SI , Ω(F)(s, I) = 1 if s ∈G∧ inf I = 0, otherwise it is maxα∈Act⊥(s) ∑s′∈S P(s,α,s′)F(s′, I).

For Markov states, the definition of operator Ω in MA is the same as for IMC [Neu10]. How-
ever it is different for interactive states, because a transition from an interactive state in MA leads
to a distribution over the successor states, which in contrast to IMC is not necessarily Dirac.

The above characterisation provides an integral equation system which is in general not di-
rectly tractable [BHH+03]. To tackle the problem, we approximate this characterisation using a
time digitisation idea, originally developed for IMC [ZN10] to MA. Intuitively, we divide the
time interval into equally sized pieces, which we call digitisation steps. Provided the digitisation
steps are small enough, we can derive that with high probability in any digitisation step at most
one Markov transition firing happens. Assuming this turns the MA into a digitised model which
we call digitised Markov Automata.

5.2 Digitised Markov Automata

A digitised Markov automaton (dMA) is a specific variation of a semi-MDP [Put94], obtained
by summarising the behaviour of the Markov Automaton at equidistant time points.

Definition 7 A dMA is a tuple D = (S,Act,−→,99Kd ,ν), where S, Act,−→ are as Definition 1
and 99Kd⊂ S×Dist(S) is the set of digitised Markov transitions.

The concepts of closed and open models carry over to dMA. As we do not have the notion of
continuous time, paths in dMA can be seen as time-abstract paths in MA, implicitly still counting
digitisation steps, and thus discrete time. Also the most general scheduler classes for dMA are
time-abstract schedulers. The probability measure (Prω

A,ν , A ∈ TA) can be derived directly from
the one for Interactive Probabilistic Chain (IPC) [ZN10].
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5.3 A Reduction for Reachability Analysis using Digitisation

We now discuss a digitisation that turns an MA into a dMA. Afterwards, we show that reach-
ability analysis in an MA can be approximated by reachability analysis in its dMA, for which we
provide an error bound.

Definition 8 (Digitisation) Given MA M = (S,Act,−→,99K,ν) and a digitisation constant
δ > 0, Mδ = (S,Act,−→,99Kδ ,ν) is a dMA constructed from digitisation of M with respect to
digitisation constant δ and 99Kδ= {(s,µs)|s ∈ SM}, where

µ
s(s′) =

{
(1− e−E(s)δ )P(s,⊥,s′) s′ 6= s
(1− e−E(s)δ )P(s,⊥,s′)+ e−E(s)δ s′ = s

The digitisation in Definition 8 approximates the original model by assuming that at most one
Markov transition in M can occurs in each δ step. It is specified by distribution µs, which con-
tains the probability of having either one or no Markov transition in M from state s within the
digitisation step δ . Using the fixed point characterisation above, it is possible to relate reach-
ability analysis in an MA with reachability analysis in its dMA. This is strongly inspired by
the work of [Neu10], done for IMC and its digitised analogue IPC. The author introduces an
error bound for reducing time interval bounded reachability problem in an IMC to step interval
bounded reachability problem in its digitised (there called discretised) IPC. Because we rely on
literally the same technique, we claim that the same error bound holds for computation of time
bounded reachability in MA. This is because the fixed point characterisation of MA is identical
to that of IMC for what concerns Markov states (see [ZN10].) Therefore to find the error bound
starting from a Markov state, it is possible to reuse the same technique as [Neu10]. So we can
focus on proving an error bound for interactive states. Altogether, we extend the error bound for
time bounded reachability computation via digitisation from IMC to MA.

Theorem 3 Given MA M = (S,Act,−→,99K,ν), a set of goal states G ⊆ S, an interval I =
[0,b]∈Q with b > 0 and λ = maxs∈SM E(s). Assume digitisation step δ > 0 is selected such that
b = kbδ for some kb ∈ N. For all s ∈ S it holds

pMδ
max(s,♦[0,kb]G)≤ pM

max(s,♦IG)≤ pMδ
max(s,♦[0,kb]G)+ kb

(λδ )2

2

Theorem 3 can be extended to intervals with nonzero lower bound.

Theorem 4 Given M , G, λ as Theorem 3 and a time interval I ∈Q such that a = inf I and
b = sup I with 0 ≤ a < b. Assume digitisation step δ > 0 is selected such that b = kbδ and
a = kaδ for some kb,ka ∈ N. For all s ∈ S it holds

pMδ
max(s,♦(ka,kb]G)− ka

(λδ )2

2
≤ pM

max(s,♦IG)≤ pMδ
max(s,♦(ka,kb]G)+ kb

(λδ )2

2
+λδ

The full proof of Theorem 3 and 4 is long and basically follows the proof on IMCs. In both of
the theorems, interval I is restricted to have rational bounds due to decidability issues [ASS+00].
For more details, we refer to [Neu10, Theorem 6.3 and 6.4].
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Input : dMA D , the set of goal state G⊆ S, the number of steps k
Output: Maximum reachability probabilities within k steps (pD

max(.,♦[0,k]G))

begin
make all s ∈ G of D absorbing ;
foreach s ∈ G do pD

max(s,♦[0,0]G) := 1 ;
foreach s ∈ S\G do pD

max(s,♦[0,0]G) := 0;
for j := 0 to k−1 do

// i∗-phase for step j ;
foreach s ∈ SI do pD

max(s,♦[0, j]G) := sup
A∈TA

∑
s′∈SM

Prω
A,νs

(♦[0,0]{s′})pD
max(s

′,♦[0, j]G) ;

// m-phase for step j+1 ;
foreach s ∈ SM do pD

max(s,♦[0, j+1]G) = ∑s′∈S P(s,⊥,s′)pD
max(s

′,♦[0, j]G) ;
end
// i∗-phase for step k ;
foreach s ∈ SI do pD

max(s,♦[0,k]G) := sup
A∈TA

∑
s′∈SM

Prω
A,νs

(♦[0,0]{s′})pD
max(s

′,♦[0,k]G) ;

end
Algorithm 1: Computing maximum step bounded reachability

6 Interval Bounded Reachability in Digitised Markov Automata

The results of the preceding section allows us to approximate time-interval bounded reacha-
bility in MA by step-interval bounded reachability in dMA. In this section we discuss how to
compute step-interval bounded reachability in a given dMA.

Our goal is to compute maximum (or minimum) probability to reach a set of goal states within
a given step interval. Let D be a dMA, G ⊆ S be a set of goal state and [k1,k2] be a nonempty
step interval (i.e. k1 ≤ k2 ∈N0). We use ♦[k1,k2]G = {π ∈ Pathsω

ta|∃n ∈N0.π[n] ∈G∧∆ta(π,n) ∈
[k1,k2]} to denote the set of all infinite paths that reach goal states G within the step interval
[k1,k2]. We use pD

max(s,♦[k1,k2]G) to denote the maximum probability of reaching these goal
states within [k1,k2] step interval. Then we have pD

max(s,♦[k1,k2]G) = supA∈TA Prω
A,νs

(♦[k1,k2]G).
First we restrict ourselves to the case that the lower bound of the step interval is zero. Afterwards,
we extend it to the general case. The algorithm that will be proposed is a variation of the value
iteration algorithm for MDP, here adapted to dMA.

6.1 Step Bounded Reachability

We consider the case [0,k], k ∈ N0 and apply a modified value iteration algorithm to compute
reachability probabilities. The algorithm proceeds by backward unfolding of the dMA in an
iterative manner, starting from the goal states. The overall algorithm is depicted in Algorithm 1.
We initialise the algorithm by making all goal states absorbing: For these states, all outgoing
transitions are removed, and replaced by a digitised Markov self loop (a transition to a Dirac
distribution over the source state). The initial value of probability vector (pD

max(·, [0,0])) is set to
one for goal states and to zero otherwise.

In the main loop of the algorithm, each iteration consists of an m-phase and an i∗-phase. In an
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m-phase, reachability probabilities from Markov states are updated, while an i∗-phase updates
reachability probabilities from interactive states. The algorithm then proceeds by intertwining
m-phases and i∗-phases consecutively for k steps. After the j-th execution of the i∗-phase (and
thus after j− 1 executions of the m-phase), the elements of pD

max(., [0, j− 1]) are up to date.
Therefore, a final i∗-phase is needed. In the following we explain the functioning of the m-phase,
respectively the i∗-phase.

In an m-phase, we update the reachability probabilities starting from Markov states by taking
only one digitised Markov transition. This step is exactly the same as a standard value iteration
step for a DTMC. Thus in step j, the m-phase updates the reachability probability for the goal
states using the reachability probabilities calculated in step j−1.

In an i∗-phase, we maximise the reachability probabilities starting from interactive states to
Markov states by taking arbitrary many interactive transitions. The number of transitions does
not matter, because they take zero time. In the algorithm, the j-th iteration operates on the
previously computed reachability probabilities from all Markov states up to step j. The i∗-phase
then computes the probability to reach Markov states within interval [0,0] which implies that
only interactive transitions can be taken.

The key innovation of this approach is that the path from interactive states to goal states is
split in two: reaching Markov states from interactive states in zero time and reaching goal states
from Markov states in interval [0, j]. Due to the memoryless property, the result comes from the
product of the probability measure of these two sets of paths, but has to be maximised over all
possible schedulers, i.e. pD

max(s, [0, j]) = supA∈TA ∑s′∈SM Prω
A,νs

(♦[0,0]{s′})pD
max(s

′, [0, j]). Since
the elapse of time is not important in the computation of Prω

A,νs
(♦[0,0]{s′}), we can view the

problem as an unbounded reachability problem with rewards on Markov states (pD
max(s

′, [0, j])).
It can be shown that stationary schedulers are sufficient for computing minimum and maximum
objectives [BK08, Chapter 10] and these objectives can again be computed by using a value
iteration algorithm.

6.2 Step Interval Bounded Reachability

Here we generalise step bounded reachability discussed previously to step interval bounded
reachability. Assume we have D , G ⊆ S as before and step interval [k1,k2]. We break the
interval into two pieces, first from k2 down to k1 and second from k1 down to zero. Within the
first, we are interested in reaching one of the goal states, as a result we make the goal states
absorbing. Nevertheless, within the second, it does not matter that the model is in one of the
goal states, which consequently leads us to ignore goal states and reintroduce them as before.
Accordingly the algorithm proceeds as follows. In the first k2− k1 iterations, goal states are
made absorbing and reachability probabilities are computed within [0,k2 − k1] interval. The
result, pD

max(., [0,k2− k1]), will be used as the initial vector of the next k1 iterations. Goal states
are treated as normal states in the next k1 iterations. Therefore we undo the states that have been
made absorbing and set G = /0. However other calculations remain the same as the first k2− k1
iterations.
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Figure 2: Case study: a system with two queues, two servers, and additional checks

7 Experimental Results

As a case study, we consider a system with two queues as depicted in Figure 2. This system
can neither be modelled as a DTMC, nor as a CTMC, nor an IMC, nor a probabilistic automaton.
The model family closest to the expressiveness needed here is that of continuous-time Markov
decision processes. In the system, jobs arrive with rate λ and enter one of the queues according
to the very common join-the-shortest-queue queueing strategy. But this strategy is implicitly
nondeterministic if both queues are equally filled.

For each queue, jobs are processed by a dedicated server, serving jobs with rates µu and µd
respectively. Jobs leaving the lower server leave the system, while jobs once processed by the
upper server are subject to an additional check. Dependent on the (nondeterministic) outcome
thereof they are either sent again into the lower queue (action d), or (action u) may leave the
queue with probability p or reenter the upper queue with probability 1− p. In the analysis, we
let both queues to have equal capacity. We assume AP = {empty, f ull} where f ull identifies the
states where both queues are full and empty characterises the initial state, in which both queues
are indeed empty.

For our first experiment, we set the size of both queues to 3 and compute maximum and
minimum probability of reaching f ull from empty before t time unit, where t ranges from 0 to
10, i.e. pM

min(empty,♦[0,t] f ull), pM
max(empty,♦[0,t] f ull), t ∈ [0,10]. The digitisation step has been

set so as to guarantee that the error is at most 10−2. The result depicted in Figure 3 demonstrates
that regardless of the scheduler chosen, the chance of reaching f ull near the end of the interval
is relatively high.

For our second experiment, we increase the size of the queues while all other model parameters
remain unchanged. We compute maximum and minimum reachability in different intervals with
different precision parameters ε . As shown in Table 1, higher precision combined with larger

Figure 3: Minimum and maximum reachability for the system with λ = 5, µu = 10, µd = 4 and
p = 0.3, and both queues having capacity 3
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Table 1: Computation times for the queueing system with different queue sizes

size # of states ε interval min prob. time max prob. time

4 69
10−5 [0,1] 0.01023 13h 0.02317 13h
10−4 [0,2] 0.0585 5h 0.1412 5h
10−2 [5,10] 0.33 1h19min 0.67 1h15min

5 101
10−3 [0,1] 0.001 24min 0.004 27min
10−3 [5,10] 0.164 41h 0.513 44h

interval bounds requires smaller digitisation steps, thereby making the analysis time consuming.

8 Conclusions

The paper has discussed a model checking approach for CSL formulae over Markov automata,
with a focus on the most demanding feature, time bounded reachability. To arrive at a numeri-
cally stable approximation scheme, we intertwined a digitisation technique, which itself is a gen-
eralisation of [Neu10], with an embedded treatment of cascades of interactive transitions taking
place in zero time. The resulting algorithm enables a calculation with a predefined accuracy,
which can be chosen with respect to the upper bound of the intervals occurring in the formula
and the maximum exit rate of the MA to be checked. The effectiveness of the proposed method
has been demonstrated by some small case studies, that also demonstrate the expressiveness of
the MA approach.

We have restricted our treatment to models where the probability for an infinite cascade of
immediate steps is zero, thereby effectively excluding Zeno behaviour from the analysis. As
a future work, we hope to generalise the current algorithms to MA with a non-zero risk for
Zeno behaviour. Another worthwhile improvement concerns the error bound of the digitisation
technique. This may help the solution to scale better for larger intervals and models with higher
rates. Furthermore, we plan to integrate our algorithm into the IMCA tool [Guc12] that is being
developed for IMC and MA analysis and to interface with the SCOOP tool [TKP+12], that
supports compositional construction of MA models.
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