
Electronic Communications of the EASST
Volume 53 (2012)

Proceedings of the
12th International Workshop on

Automated Verification of Critical Systems
(AVoCS 2012)

Semi-automatic Proofs about Object Graphs in Separation Logic

Holger Gast

15 pages

Guest Editors: Gerald Lüttgen, Stephan Merz
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Semi-automatic Proofs about Object Graphs in Separation Logic

Holger Gast

Wilhelm-Schickard-Institut für Informatik
University of Tübingen

gast@informatik.uni-tuebingen.de

Abstract: Published correctness proofs of garbage collectors in separation logic to
date depend on extensive manual, interactive formula manipulations. This paper
shows that the approach of symbolic execution in separation logic, as first devel-
oped by Smallfoot, also encompasses reasoning about object graphs given by the
reachability of objects. This approach yields semi-automatic proofs of two central
garbage collection algorithms: Schorr-Waite graph marking and Cheney’s collec-
tor. Our framework is developed as a conservative extension of Isabelle/HOL. Our
verification environment re-uses the Simpl framework for classical Hoare logic.

Keywords: Separation logic, symbolic execution, garbage collectors

1 Introduction

Symbolic execution in separation logic [BCO05b, BCO05a], has now been adopted by many
authors as an effective approach to functional software verification. Several tools [JSP10, DJ08,
BPS09] aim at fully-automated verification using SMT-solvers for pure side-conditions. In the
area of interactive theorem proving, the studies [Chl11, AB07, McC09, Tue09] have shown that
with some user assistance, higher-order constructs are admissible in the pure part of the spec-
ification, and low-level programs with complex specifications can be verified. Here, symbolic
execution is guided by the user in proof scripts of the underlying prover.

In the important area of verifying garbage collectors, however, proofs remain cumbersome and
detailed. McCreight et al. [MSLL07, McC08] report that despite the use of specialized tactics
[McC09], proofs still involve a fair amount of low-level interactive manipulation of spatial for-
mulae [McC08, §6.3.3; p. 122; §6.4.3]. Varming and Birkedal [VB08] likewise employ detailed
proof scripts. In his recent refinement-based approach, Myreen [Myr10] reduces the proof size
by using a lightweight variant of separation logic and expressing the verification conditions in
set theory, with the disadvantage of losing the potential benefits of separation logic.

This paper proposes to overcome the outlined gap by implementing a framework in which
garbage collection algorithms can be verified by symbolic execution, in the mostly-automated
style of Tuerk [Tue09] and Chlipala [Chl11].

Symbolic execution in separation logic rests on the availability of suitable abstraction predi-
cates to specify the memory content, together with structural unfolding rules for reasoning about
these predicates according to the heap manipulations performed by the program. Programs that
work on linked lists, for instance, usually add and remove elements at the beginning of a list.
Given a predicate node p v yielding an HOL record value v for a list node and a predicate list p

xs q for the list between p and q with content xs, the required unfoldings are (∧̄ is a conjunction

1 / 15 Volume 53 (2012)

gast@informatik.uni-tuebingen.de

Semi-automatic Proofs about Object Graphs in Separation Logic

with a pure assertion inside a spatial assertion; ∃̄ is existential quantification in heap assertions;
denotes cons on Isabelle/HOL lists; (| |) is a record value):

p 6= q

list p xs q = (∃̄v xs’. node p v ? list (node-next v) xs’ q ∧̄ (xs = node-data v # xs’))

node p v =(∃̄d n. p+off-data7→d ? p+off-next7→n ∧̄ v=(|node-data=d, node-next=n|))

All such unfoldings keep assertions in the form of symbolic heaps ∃̄x1 . . .xn.Σ ∧̄Π [BCO05b],
where Σ is an iterated spatial conjunction of atomic predicates and Π is a conjunction of pure
side-conditions on addresses and the values extracted from memory in Σ.

Automatic unfolding (e.g. [BCO05b, §3.2,§4]; [BPS09, §6.1]) enables programs to shift mem-
ory content between different atomic predicates in the spatial part of the symbolic heap. The loop
invariant of the standard list reversal example, e.g., contains

list p xs NULL ? list q ys NULL

where the list at p contains the remaining input and the list at q is the current partial result. The
loop body sets the next field of node p to q, which leads to:

p+off-data 7→d ? p+off-next 7→q ? list q ys NULL ? list (node-next v) xs’ NULL

To re-establish the invariant, the node p is folded into the list at q, by applying the above unfolding
backwards to the target assertion; all side-conditions of unfolding rules are solved by equational
reasoning. The proof thus follows the program and shifts a node from the input to the output list.

This paper therefore provides a collection of predicates and unfolding rules that enable the
effective specification and verification of garbage collection algorithms. The algorithms are per-
ceived as working on object collections F ? R ? Q ? U , where F are the finished objects, R the
remaining objects and Q the objects currently being processed; the input objects U are unreach-
able from the given root set. The collector repeatedly extracts some object from Q, examines
it, possibly moves further objects from R to Q, and moves it to F . The central insight is that
the notion of reachability, which is necessarily at the core of the loop invariants (e.g. [MN05]),
can be hidden in the predicates’ definitions and need not be considered during verification. We
demonstrate the effectiveness of the approach by two examples, Schorr-Waite graph marking and
Cheney’s copying collector. The development is available from the author’s homepage [Gas12].

Contributions This paper makes two contributions: first, we mechanize in Isabelle/HOL a
theory that enables a semi-automatic verification of garbage collection algorithms by symbolic
execution in separation logic. While the definitions and meta-theory are higher-order, the predi-
cates themselves could also be axiomatized in first-order logic, thus being in principle applicable
in existing tools. Second, the construction of our verification environment pioneers the re-use
of a verification condition generator for a classical Hoare logic [Sch05]. We show that the gen-
erated proof obligations can be pre-processed to enable symbolic execution in separation logic.
The transfer of the technique to other verification tools (e.g. [NIC12]) is left as future work.

Structure of the Paper Section 2 briefly summarizes the basic definitions of separation logic
and a rewriting setup for reasoning about maps (partial functions). Section 3 contains the main
contribution, the meta-theory of object graphs suitable for symbolic execution. Section 4 de-
scribes the verification environment. Section 5 gives the application to the two benchmark ex-
amples. Section 6 discusses related work. Section 7 concludes.

Proc. AVoCS 2012 2 / 15

ECEASST

2 Basic Definitions

2.1 Heaps and Heap Assertions

We model the heap as a map (a partial function in Isabelle/HOL) addr ⇀ byte, where partiality
indicates allocatedness and addr is a 32-bit machine word [Daw09]. Typed access uses a shallow
representation of C types in HOL: for a type with abstract HOL values of type ’a, we define a
record constant of type ’a cty with three fields ty-rep, ty-val, and ty-size. The function ty-rep yields the
byte representation of the HOL value, whose length must match ty-size and must be representable
as a machine word. The function ty-val interprets the byte representation as a HOL value of type ’a

and must be the left inverse of ty-rep. The consistency conditions are expressed by predicate ty-ok.
We provide the usual primitive types and a command structdef that derives the necessary
definitions, theorems, and unfolding rules (§2.2) from a C struct definition.

Subsequently, all heap accesses are expressed by three constants: heap-get ct p h interprets the
content of heap h at p as a representation of a value of type ct. Conversely, heap-put ct p v h yields
an updated heap where the byte representation of v is stored at p. Finally, heap-acc-cond ct p h states
that in heap h a contiguous region of memory large enough for values of type ct is allocated at p.

Our definitions for heap assertions follow [Web04]. As usual in higher-order settings, heap
assertions are functions from heaps to bool, which we abbreviate as the type hassn. P h then states
that P holds on h. p 7→ct v denotes that p points to the memory representation of a HOL value v

of type ct. The definitions of P ? Q and emp are standard. To capture symbolic heaps [BCO05b],
we introduce a conjunction P ∧̄ Q of a spatial assertion P with a pure assertion Q, and existential
quantification ∃̄ x. P x, where P is a spatial assertion. Rewrite rules normalize symbolic heaps into
the form ∃̄ x1. . . xn. P1 ? . . . ? Pm ∧̄ Q1 ∧ . . . ∧ Qk.

2.2 Tactics for Heap Assertions

Several recent studies [McC09, Tue09, Chl11] have explored the combination of automatic sym-
bolic execution and interactive proofs for pure side-conditions. Our development follows the
general setup of [McC09] (and [LW09]), which also underlies [Chl11, §3]: the current state of
the execution is represented as an Isabelle goal [[P h; Q1; . . . ; Qm]] =⇒ R, where P is the spatial
part of the assertion about heap h and Q1. . . Qm are the currently valid side-conditions. Under
these hypotheses, R is to be proven.

If R is a symbolic heap, then the tactic heap attempts to cancel the components of R against
those of P, leaving behind any remainder to enable further user interaction (see [McC09, Chl11]).
During the process, it takes into account unfolding rules of the form (following [Gas10]):

Q1. . . Qm

p x1. . . xn = (∃̄ y1. . . ym. P’1 ? . . . ?P’k ∧̄ R)

If the pure pre-conditions Q1. . . Qm can be proven, then a component with predicate p is unfolded
into P’1 ? . . . ?P’k. The rules are applied both to the hypothesis P and the conclusion R (where
the existentially bound variables become unification variables, as usual). Symbolic execution
unfolds in P to expose the heap location accessed by the program. New unfolding rules can
proven as lemmas and declared to heap by the attribute sep_unfold.

3 / 15 Volume 53 (2012)

Semi-automatic Proofs about Object Graphs in Separation Logic

Heap assertions give rise to implicit inequalities and disjointness statements (e.g. [BCO05b,
Table 1]). We have implemented an extension to Isabelle’s rewriting engine (a simproc) that de-
rives such implicit assertions. For any predicate p, the user can declare (attribute heap_addrs)
a theorem of the following form, stating that the sets Xs are disjoint if p x1. . . xn holds on a heap h:

p x1. . . xn h =⇒ disjoint-list Xs h

A separate tactic heap_sc applies explicitly given theorems to derive information about the
x1. . . xn from a component p x1. . . xn h, and makes this information available as new hypotheses. It
is used, e.g., to make explicit the side-conditions of object collections and graphs (§3.1, §3.3).

2.3 Isabelle/HOL Maps

We introduce the following auxiliary all-quantifier over the content of maps:
∀ x 7→y ∈ f. P ≡ ∀ x y. f x = Some y −→ P x y

Apart from yielding a more direct expression of properties of maps, the new constant prevents Is-
abelle’s simplifier from using premises about maps as rewrite rules, and thus makes its behaviour
more predictable during verification. Furthermore, the rewrite rules (1) split the assertion about
the map content according to the construction of the map. The premises of the rules will be
solved by the implicit disjointness constraints derived from the current symbolic heap (§2.2).

∀x 7→y ∈ Map.empty. P x y (∀x 7→y∈[x7→y]. P x y) = P x y

x /∈ dom f

(∀x 7→y ∈ (f(x 7→y)). P x y) = (P x y ∧ (∀x 7→y∈f. P x y))
(1)

dom f ∩ dom g = {}

(∀x 7→y∈(f ++ g). P x y) = ((∀x 7→y∈ g. P x y) ∧ (∀x 7→y∈f. P x y))

These rules then lead to a direct reflection of the program’s heap manipulations at the abstract
level of sets of objects (§5.2): when the program accesses an object from a set, symbolic exe-
cution splits the set, hence the abstract map value (§3.1). The simplifier then splits the assertion
about the parts by (1); in particular, assertions about single objects will become available.

3 A Theory of Object Graphs

The specification of garbage collection algorithms focuses on the notion of reachability: given
a set of root locations, retain those objects, called the live objects, that are reachable by iter-
ated pointer dereferencing, and discard the remainder of the heap as free memory. The central
conjunct of the loop invariants (e.g. [MN05, HM05, Gas11]) consequently states that all unpro-
cessed live objects are reachable from the working queue (or stack) and will thus be processed in
due course. Reasoning about reachability for verification is, however, subtle and requires much
manual interaction.1

1 Mehta and Nipkow [MN05] give a human-readable Isar proof that exhibits the intricacy. Hawblitzel et al. [HP09,
§4.1.1.] substitute reachability with the weaker assertion that all reached objects have been handled correctly. Leino
[Lei10] uses a closure property instead of reachability in the specification; although the property is equivalent, the
equivalence is not verified mechanically.

Proc. AVoCS 2012 4 / 15

ECEASST

This section therefore develops a meta-theory for reasoning about object graphs given by
reachability through pointer dereferencing. In a first step, §3.1 defines sets of objects on the heap,
a restricted form of the higher-order spatial quantifier ∀̄x∈A.P [VB08, McC08, Myr10]. Based
on a suitable definition of reachability (§3.2), §3.3 defines a predicate for the graph of objects
reachable from a given root set and proves unfolding rules suitable for symbolic execution.

3.1 Collections of Objects

The theory of object graphs is formulated as an Isabelle locale [KWP99] and is thus re-usable
for different types of objects. A locale is a theory parameterized over constants and types, about
which assumptions can be stated. The locale object-graph has two parameters: obj p r is the atomic
spatial predicate for a single object at address p storing abstract value r. The function succs r will
retrieve from the value r the contained object pointers. The type ’rep of the HOL values is also a
parameter (indicated by the apostrophe in Isabelle).

obj :: ”addr ⇒ ’rep ⇒ hassn”
succs :: ” ’rep ⇒ addr set”

The locale makes two straightforward assumptions: that the memory footprint of an object con-
tains its base address and that the null pointer is not contained in the footprint.

obj p r h =⇒ p ∈ hdom h
obj p r h =⇒ NULL /∈ hdom h

We now define a predicate objs P A for a set of objects on the heap that is suitable for symbolic
execution. The set P contains the base addresses, A is the abstract HOL value, a map from
addresses to object values. The pure side-condition relates the parameters (fold denotes the fold
functional for finite sets; note that address sets, as sets of machine words, are implicitly finite).

objs P A ≡ fold add-obj emp (map-graph A) ∧̄ (P = dom A)
where add-obj (a,r) Q ≡ obj a r ? Q

The definition may be simplified by omitting the set P and replacing any references by dom A. We
have found, however, that verification is complicated by having to reason about the maps, rather
than sets, before accessing objects. Note also that the above definition parallels the standard
predicate list p xs q, which delineates the list by the pointers p and q. Since these are usually
stored in program variables, the value xs is determined by the endpoints. For objects, we will
store the set P in a ghost variable to achieve the same reasoning pattern.

The chosen definition then yields straightforward unfolding rules to be applied automatically
during verification. The base cases of no objects and a single object simplify as expected:

objs {} A = (emp ∧̄ (A = empty))
objs {p} A = (∃̄ r. obj p r ∧̄ (A = [p 7→ r]))

For accessing part of the objects separately, we need to split the object set by extracting a given
subset. This is accomplished by the following general rule.

Q ⊆ P

objs P A = (∃̄B C. objs Q B ? objs (P - Q) C ∧̄ (A = B ++ C))

Symbolic execution uses only the derived case (2): when the program accesses an object at p,
that object must be exposed in the symbolic heap, to be decomposed further into its fields (§2.1).

5 / 15 Volume 53 (2012)

Semi-automatic Proofs about Object Graphs in Separation Logic

The side-condition of (2) is simple enough to be solved automatically.

p ∈ P

objs P A = (∃̄r P’ A’. obj p r ? objs P’ A’ ∧̄ (A = A’(p7→r) ∧ insert p P’ = P))
(2)

It is worth noting that the pure equality on A in (2) replaces A by a form suitable for simplification
with (1) (§2.3), which makes the knowledge about the extracted object available. The premise of
(1) is proven from the implicit assertion (§2.2) p /∈P’ derived from the symbolic heap left by (2).

3.2 Reachability

Standard definitions of reachability (e.g. [MN05][McC08, Fig. 6.8]) capture the transitive clo-
sure of the successor relation between objects in memory. Since we will use reachability as a
pure side-condition, we state it in terms of the map value of object sets. If G, for “graph”, is such
a representation, then a path between p and q in G is defined in the standard way (e.g. [MN05]).

path G p [] q = (p = q)
path G p (a # ps) q = (p = a ∧ (∃ s r. G p = Some r ∧ s ∈ succs r ∧ path G s ps q)

The goal is to define a predicate for object graphs that is analogous to the standard list pred-
icate (§1). We employ our earlier idea of a boundary set [Gas10, Gas11], which replaces the
single end pointer of the list predicate. The set of objects reachable in graph G from a given set P

of pointers without touching the boundary Q is then defined using paths:
reachable G P Q ≡ {r. ∃ p ps. p∈P ∧ path G p ps r ∧ set ps ∩ Q = {} ∧ r /∈ Q }

The set of reachable objects can be split into three subsets (3) (by splitting the paths at the
set D): the objects D themselves, the objects reachable from P without touching Q or D, and those
reachable from the successors of D. Note, however, that the theorem is insufficient for the direct
use in separation logic, because the latter two sets might overlap.

D ⊆ reachable G P Q

reachable G P Q = D ∪ (reachable (G � (- D)) P (Q ∪ D) ∪ reachable (G � (- D)) (Succs (G � D)) (Q ∪ D))
(3)

3.3 The Predicate for Object Graphs

Based on these preliminaries, we can now formulate the predicate graph P R G Q. It states that the
objects R, with HOL representation G, are reachable from P without crossing Q.

graph P R G Q ≡ objs R G ∧̄ R = reachable G P Q

We now give the unfolding rules that enable automatic symbolic execution. Lemma (4) states the
general case: for any set of reachable objects, the object graph can be split at these objects, i.e.
these objects can be extracted for manipulation. The remainder of the graph can be reached from
either the old root set or the successors of the extracted objects, without touching the extracted
objects. The side-condition on the reachability of D in the original graph is necessary to prove
the reverse direction of the equality. In systems that distinguish between folding and unfolding
rules (e.g. [BCO05a]), it can be omitted, since (4) is used only for unfolding.

D ⊆ R

graph P R G Q = (∃̄G’ G”. objs D G’ ? graph (P ∪ Succs (G � D) - (Q ∪ D)) (R - D) G” (Q ∪ D)
∧̄ (G = G’ ++ G” ∧ D ⊆ reachable G P Q))

(4)

Proc. AVoCS 2012 6 / 15

ECEASST

The special case (5) is used in for symbolic execution: the program accesses some node p which
is known, from the collector’s invariants, to be in the set of reachable objects. That object is
exposed for manipulation, and the remainder of the graph is reachable from the original root set
and the object’s successors.

p ∈ R

graph P R G Q = (∃̄r G’. obj p r ? graph ((P ∪ succs r) - (Q ∪ {p})) (R - {p}) G’ (Q ∪ {p})
∧̄ (G = G’(p7→r) ∧ p ∈ reachable G P Q))

(5)

We will see in §5 that P is derived from the working queue of the collector, such that the addi-
tion of these successors corresponds precisely to adding the object p (or its copy) to the queue.
Furthermore, as in the case of (2), the pure equality on G will cause the simplification rules from
§2.3 to expose the knowledge about the manipulated object from the invariants.

The unfolding (6) is used to establish invariants initially. The input to collectors is a set of
objects (§3.1), some of which are reachable from the root set. In order to use the predicate graph

in invariants as intended, one has to extract the reachable part of the input (where closed G P Q

denotes that the successors of objects in G are in G ∪ Q, i.e. the absence of dangling pointers).

closed G P Q

objs A G = (∃̄G’ G”. graph P (reachable G P Q) G’ Q ? objs (dom G - reachable G P Q) G”
∧̄ (G’ ++ G” = G ∧ A = dom G ∧ reachable G P Q = dom G’ ∧ closed G’ P Q))

(6)

4 Verification Environment

Previous studies on separation logic (e.g. [AB07, McC09, Chl11, JSP10, Myr10, MAY06,
Web04]) have constructed completely new verification environments. The derivation of a sound
Hoare logic and the implementation of the verification condition generator (VCG) are, however,
substantial tasks and involve subtle considerations, e.g. on auxiliary (or logical) variables and re-
cursive procedures (e.g. [ON02]). In the case of classical Hoare logics, the effort can be re-used
by implementing the VCG for an intermediate language [BCD+06, CDH+09, Sch05].

We now propose an effective strategy for obtaining a verification environment for separation
logic by embedding the source language, here the C dialect [Gas10], into an intermediate lan-
guage with a classical VCG, here Simpl [Sch05]. The treatment, in particular for side-effecting
expressions and functions, closely follows [Sch05, §2.4.3,2.4.5,4.2–4.5,4.9]. The heap is rep-
resented by a global variable of type heap (§2.1); a heap-acc-cond guard [Sch05, §2.2] is added
for every heap-get and heap-put (§2.1). Ghost variables can contain any HOL values, and we allow
Isabelle term syntax on the right-hand sides of ghost assignments (marked as comments by //@).

Simpl’s VCG then generates classical verification conditions for partial correctness. How-
ever, these are not suitable for symbolic execution: heap writes modify the global variable heap,
such that (a variant of) the assignment rule {Q[e/x]} x := e {Q} is applied, which substitutes
references to heap h in Q by heap-put ty p v h′, where possibly h′ is further replaced by earlier
writes in the program. To solve this, we extend an observation employed in several studies
[AB07, McC09, LW09]: if the syntactic substitution is replaced by a let-binding, then the se-
quence of variable updates is reflected correctly in the nesting of let-expressions. Differing from
previous studies, however, we cannot introduce the let-bindings into Simpl’s rules [Sch05, §3.1],
because the VCG is carefully tuned to exactly the present formulation.

7 / 15 Volume 53 (2012)

Semi-automatic Proofs about Object Graphs in Separation Logic

We therefore introduce a two-phase algorithm to re-construct (an approximation of) the ex-
ecution sequence of heap accesses. The first bottom-up phase applies common subexpression
elimination to the verification conditions to name all heap accesses, i.e. occurrences of heap-get

and heap-put. The second top-down phase decides on appropriate insertion points for the let-
bindings. With a view to the application, this process is called scheduling the heap operations.
The tactic prep_vc combines the two phases and iterates appropriately for quantified and other
bound variables in the VCs. The result is an approximation of the original sequence of operations
only in so far as the order of different heap-gets cannot be recovered.

The scheduling process constitutes the core of the approach. Its decisions are governed by
four principles. (1) Operations are scheduled at logical junctors, i.e. immediately above or be-
low the conjunctions and implications introduced by the VCG. This associates operations with
natural branching points in the program. (2) Operations are scheduled as high in the term as
possible to avoid duplicate heap matchings (§2.2) for the same heap access substituted into dif-
ferent branches of the program. (3) An operation is not inserted by (1) and (2) if its arguments
are guarded, i.e. if these arguments transitively depend on variables occurring on the left-hand
side of an implication further below in the term structure. This avoids scheduling operations
whose side-conditions are not provable without the further hypothesis. A typical case is an if
statement testing a pointer for null before performing an access. (4) An operation heap-put can
be scheduled only after all other operations referring to its input heap. If this rule is disobeyed,
the current heap layout is modified by symbolic execution and cannot be recovered later on.

The tactic run then performs symbolic execution, using heap matching (§2.2) to retrieve
values from the symbolic heap and updating the symbolic heap (cf. e.g. [McC09, Chl11]). We
have thus constructed a verification environment for symbolic execution by re-using an existing
VCG for a classical Hoare logic. The development took about 4 weeks, such that the approach
is an effective alternative to a standalone derivation such as [Tue09].

5 Applications

This section demonstrates the effectiveness of our approach using two standard benchmark ex-
amples, the Schorr-Waite graph marking algorithm [Bor00, MN05, HM05] and Cheney’s copy-
ing collector [McC08, VB08, MSLL07, Myr10]. Since the algorithms, their specifications, and
their invariants have been presented in detail in the literature, we focus on the application of our
library (§3) in the loop invariants (§5.1) and during symbolic execution (§5.2). The structure
of the proofs is summarized in §5.3, the proofs scripts are available from [Gas12]. To simplify
comparisons, our implementations closely follow [MN05] and [McC08, Ch.6], respectively.

5.1 Loop Invariants

The litmus test for our approach are obviously the algorithms’ loop invariants, and the subsequent
proofs about them. The pre- and post-conditions [Gas12] follow [MN05, VB08]. They only use
objects sets and the definition of reachability (§3.1, §3.2). Rule (6) then establishes the invariant
from the pre-condition that the objects graph is closed.

Consider first the Schorr-Waite algorithm, which traverses an object graph by maintaining

Proc. AVoCS 2012 8 / 15

ECEASST

(a) Push in Schorr-Waite (b) Details Cheney (c)

Figure 1: Main Ideas of the Example Algorithms

the backtracking stack within the objects themselves (Fig. 1 (a)). A pointer p marks the top
of the stack; each stack object has a (boolean) color c, which specifies the field holding the
next stack object. The tip pointer t points to the currently investigated object. Since t is always
the pointer that is overwritten in object p, the original pointer structure can be restored [MN05,
§8.2]. Following [HP09], ghost variables hold sets of objects: M for the marked objects, U for the
unreachable input objects, R for the remaining unprocessed objects, and S for the stack objects.

Below, we now formulate the invariant as a symbolic heap [BCO05b]. (g is the instance of
the object graph locale (§3), s describes the stack as an instance of a similar locale for linked
lists). Lines 1–3 partition the objects into the sets postulated in §1. The graph (§3.3) captures the
unprocessed objects as those objects that are reachable from (the non-null r fields of) the back-
tracking stack without crossing the stack or marked nodes.2 The pure part of the symbolic heap
in lines 4–10 follows [MN05], but uses our specialized map notation (§2.3). Note that reacha-
bility is not specified here, but is abstracted over in the graph predicate (line 10 merely keeps the
knowledge about the original graph from the pre-condition for proving the post-condition).

1 ∃̄B C D. g.objs M B ? g.objs U D ? s.list p S NULL ?
2 g.graph (({ t } ∪ obj-r ‘ (snd ‘ set S - is-C)) - is-NULL - M - s.nodes S)
3 R C (M ∪ s.nodes S)
4 ∧̄ (t∈{NULL} ∪ s.nodes S ∪ R ∪ M ∧
5 (∀p 7→y∈C ++ map-of S. ∀q∈obj-succs y. q∈s.nodes S ∪ R ∪ M) ∧
6 (∀p 7→y∈B++C++D. ∃n. A p = Some n∧obj-r y = obj-r n∧obj-l y = o bj-l n) ∧
7 stack-reco A t S ∧
8 (∀p 7→y∈B ++ map-of S. obj-m y) ∧ (∀p 7→y∈C. ¬ obj-m y) ∧
9 N = s.nodes S ∪ R ∪ M ∪ U ∧

10 g.reachable A ({root} - is-NULL) {} = R ∪ M ∪ s.nodes S)

Cheney’s collector has a more involved invariant, whose core is illustrated in Fig. 1 (b, c).
The task is to copy objects reachable from the root set (restricted to one pointer, as in previous
studies) out of the from-space to an empty to-space. At the level of individual objects (Fig. 1 (b)),
the original objects are copied one-by-one into the free part of the to-space, their first fields are
overwritten with a forwarding pointer to handle aliasing and cycles (the original pointers are
shown dashed). The pointer scan splits the copied objects: those before scan (a′, b′) are
complete, i.e. their original successors have also been copied; those after scan (c′) form the
working queue, and their fields point to their original successors. At a more abstract level,

2 The formulation is slightly more precise than [Bor00, MN05] in also taking into account the color of the objects.

9 / 15 Volume 53 (2012)

Semi-automatic Proofs about Object Graphs in Separation Logic

Fig. 1 (c) exhibits the partitioning postulated in §1. The collection of all forwarding pointers in
the forwarded objects F constitutes an injective graph morphism ϕ, which will finally be a graph
isomorphism between the input and result [MSLL07, VB08]. In the to-space, the completed
objects B are called black. The ghost variable SCAN OFF delineates the currently investigated
objects SCANNED. The remaining objects R in the from-space are reachable from the queue Q and
a set ROOTS of additional roots, which contains the original successors of the SCANNED objects.

The collector’s invariant is, again, a symbolic heap. For brevity, we only describe its spatial
part, shown below. The first line captures the to-space with the linear lists (instance q of the list
locale) with black and queue objects, and a continuous free memory block. The from-space in
the second line contains the forwarded objects F, the unreachable objects U and the remaining
objects R. The latter are specified as an object graph, using as entry points the working queue
and auxiliary ROOTS, and never crossing a forwarded object F. The hole H allows the invariant
to be used to specify intermediate states during processing the currently scanned object [Gas12],
where it contains the remaining fields of the current object and the input root reference.

q.list to-space B scan ? q.list (scan+SCAN-OFF) Q free ?mem-block free (space-sz - (free - to-space)) ?
g.objs F A ? g.objs U C ? g.graph (((

⋃
r∈q.vals Q. obj-succs r) ∪ ROOTS) - F) R G F ? H

The pure part of the invariant mainly relates the pointers between the objects of the different
partitions according to Fig. 1 (c). The forwarding morphism ϕ = forw-morph A merely examines
the objects’ car fields. Furthermore, the to-space after free is sufficiently large for the objects R.

The similarity between the Schorr-Waite and Cheney algorithms, which reflects the fundamen-
tal structure of collectors, is now explicit: in each case, the remaining objects can be specified
concisely using the graph predicate from §3.3, and the entry points are successors of the current
working queue/stack and the boundary set are the already processed objects.

5.2 Symbolic Execution

We now demonstrate how the automatic unfoldings from §3, together with the rewrite rules
from §2.3, enable verification by symbolic execution [BCO05b], and thus reduce the need for
manual interaction (§5.3, §6) in the style of [Tue09, Chl11].

The Schorr-Waite algorithm repeatedly performs steps Push, Pop, and Swing at the top the
stack [Bor00, MN05]. We concentrate here on the Push step (Fig. 1 (a)), since its access to the
unprocessed graph of objects can break the reachability relation in R, which makes the step the
most complex for verification (e.g. [MN05, §8.3]). The code of the step below (lines 5–9) moves
object t from R to S, and adapts the pointers as suggested in Fig. 1 (a).

1 while (p != null || (t != null && !t→m)) {
2 if (t == null || t→m) {
3 . . .
4 } else {
5 //@ S = ((t,(| obj-m = True, obj-c = False, obj-l = p, obj-r = t→ r |)) # S);
6 //@ R = R - {t};
7 q = p; p = t;
8 t = t→ l;
9 p→m = true; p→ l = q; p→c = false;

10 }
11 }

During symbolic execution, the analysis of t in lines 1 and 2 automatically extracts that object
from the possible partitions (line 4 of the invariant) after a case distinction. For t ∈ R, an au-

Proc. AVoCS 2012 10 / 15

ECEASST

tomatic application of (5) exposes an object r at t, which in turn enables access to the object’s
fields (§2.1); no reasoning about reachability is necessary. When line 5 is reached, the object is
thus ready for standard manipulation [Tue09, Chl11]. Line 5 enables automatic folding (§2.1) to
incorporate t into the stack to re-establish the invariant. Symbolic execution has thus moved an
unmarked node from R to the stack S, in direct correspondence with the code.

In Cheney’s algorithm, the crucial point is found in function copy_ref [McC08], which
processes a machine word at p. The word can be either an atomic value or an object reference, as
distinguished by its least significant bit. Atomic values are left unchanged; for already forwarded
objects the reference is replaced by the forwarding pointer. None of these operations manipulates
the remaining objects. The last case concerns the copying of a newly discovered remaining
object. Setting the forwarding point in that object, again, breaks the reachability relation.

The function copy_ref here performs a case distinction, by reading the value at p and the
car field of any object reference found there. As before, the proof proceeds by a case distinction
between R and F as the possible targets of obj (Fig. 1 (c)), then symbolic execution exposes the
object automatically by either (2) or (5).

int obj = *p;
if (obj & 1 == 0 && (struct obj*)obj != null) {

int fwd = ((struct obj*)obj)→car;
. . . case distinction on fwd being a to-space pointer . . .

}

The code for actually copying an object thus finds the object exposed in the symbolic heap.
Lines 1–4 below allocate an initialize the copy, line 5 sets the forwarding pointer; line 6 updates
the input reference from the original to the copy. Line 7 transfers the object from R to F.

1 struct obj *n = (struct obj*)free;
2 free = free + 8;
3 n→car = ((struct obj*)obj)→car;
4 n→cdr = ((struct obj*)obj)→cdr;
5 ((struct obj*)obj)→car = (int)n;
6 *p = (int)n;
7 //@ F = {obj} ∪ F; R = R - {obj};

Throughout, symbolic execution thus exposes automatically the objects under consideration,
such that the manipulations can be performed directly. In particular, no reasoning about reacha-
bility is necessary, and the intuition of “moving” objects between different heap partitions (§1)
is maintained. The main difference to list and tree examples is the necessity of case-distinctions
in proofs, because pointers can reference different object sets, rather than a single data structure.

5.3 Structure of Proofs

The overall structure of the proofs [Gas12] for both examples shows that we have achieved
a semi-automatic symbolic execution [Tue09, Chl11]. The tactics run and heap from §2.2
perform the necessary manipulations on the symbolic heap, using the unfoldings from §3. The
resulting behaviour is similar to the cases of lists and trees (§1; [Tue09, Chl11, McC09]).

Manual intervention is necessary only at two points: first, we prefer the user to introduce case-
distinctions (by a tactic split_or) where pointers reference several alternative sets of objects;
second, the user has to solve the more intricate set-theoretic pure side-conditions and inequalities
on finite machine words. The rewrite rules from §2.3 otherwise contribute to the solution of pure

11 / 15 Volume 53 (2012)

Semi-automatic Proofs about Object Graphs in Separation Logic

conditions by splitting assertions about unions of sets/maps into separate conjuncts, most of
which are then already present in the pre-condition.

The proof scripts are found to be very short, compared to previous results (§6). The proof of the
Schorr-Waite algorithm has about 140 lines (all lines are non-empty, non-comment), the length
being due to the number of cases induced by the code’s boolean short-circuit operators. The
overall theory has 250 lines. The function copy_ref of Cheney’s collector takes 150 lines, of
which 60 lines concern side-conditions on word inequalities and further 30 concern set equalities.
The driver loop that repeatedly calls copy_ref requires 180 lines of proof. The overall theory
has 710 lines. The work on Cheney’s algorithm took the author roughly 5 days, building on the
library from §3 and the experience from the Schorr-Waite algorithm and [Gas11]. The library
from §3 has 630 lines and has been re-used without modification between the algorithms.

6 Related Work

Our implementation of separation logic and symbolic execution (§2.1, §2.2) follows previous
studies [Tue09, McC09, BCO05a, Chl11, Web04]. We have found the proposed strategies, espe-
cially those for heap matching, sufficient for reasoning about object graphs, based on the library
from §3. We therefore expect that our development benefits other tools as well.

To the best of the author’s knowledge, the re-use of a classical VCG for verification by sym-
bolic execution from §4 has not been proposed before.

Previous proofs of garbage collectors in separation logic [McC08, McC09, MSLL07, Myr10,
VB08] are based on a higher-order spatial quantifier ∀̄x∈A. P. McCreight [McC08, §7] uses a
layered specification with special-purpose predicates about objects. While the specification is
readable, the proofs require detailed manipulations of spatial formulae [McC08, §6.3.3; §6.4.3],
even when using specialized tactics [McC09]. Varming and Birkedal [VB08] likewise specify
different parts of the heap independently, but do not introduce further abstractions; their proof
scripts comprise 7500 lines. Myreen [Myr10] uses only the basic quantifier and states invariants
as pure assertions. He proceeds by refinement, starting with a general specification of copying
collection and ending in a low-level implementation. Despite the abstraction, the proofs have
1800 lines. In contrast, our predicates capture invariants succinctly (§5.1) and the proofs consist
mostly of automatic symbolic execution (§5.3), without direct manipulations of spatial formulae.

Hawblitzel and Petrank [HP09] verify several practical collectors based on Boogie [BCD+06].
We adapt their technique of capturing the abstract data structures conceptually manipulated by
the collector in ghost variables (§5). To enable automatic proofs, substantial manual annotations
are necessary. Symbolic execution separation logic, in contrast, computes updates to a symbolic
heap automatically, and the user only needs to prove that the final state matches the specified
post-condition. Furthermore, [HP09] omits the central aspect of reachability [HP09, §4.1.1], and
proves only that the reached objects have been handled correctly. We have shown that reachabil-
ity can be factored out into the meta-theory and need not be considered during verification.

Leino [Lei10] verifies the Schorr-Waite algorithm in a Boogie-based language Dafny. For au-
tomatic proofs, he requires a fine-grained, 31-line loop invariant and replaces reachability in the
specification by an (equivalent) closure property. The equivalence is, however, not mechanically
established. Furthermore, careful formulation is necessary to guide the SMT solver.

Proc. AVoCS 2012 12 / 15

ECEASST

7 Conclusion

We have shown that the established approach of verification by symbolic execution in separation
logic can be extended to cover garbage collection algorithms. Previously, verification of this class
of algorithms in separation logic required substantial interactive manipulations of spatial formula
[McC08, §6.3.3; §6.4.3][McC09, VB08], or the formulation of invariants in pure assertions alone
[Myr10]. We have shown that the application of symbolic execution yields straightforward and
considerably shorter proofs (§5.3, §6).

The cornerstone of our solution is a spatial predicate graph that encapsulates reasoning about
the reachability of objects (§3.3). The predicate has unfolding rules suitable for automatic sym-
bolic execution, such that proofs become as straightforward as for list or tree nodes in existing
tools (e.g. [JSP10, Tue09, Chl11, DJ08]). In particular, interactive manipulations of spatial
formulae were unnecessary.

The library for graphs is developed as an Isabelle locale to make it re-usable for different types
of objects. Apart from locales, we do not require special properties of Isabelle/HOL and it is
expected that the results can be re-proven in other higher-order systems [Tue09, Chl11, McC09].

We have verified two central case studies, the Schorr-Waite graph marking algorithm and
Cheney’s copying garbage collector. In both, the proofs consist of automatic symbolic execution,
followed by automatic heap matching (§2.2), which leaves only pure side-conditions. Due to a
specialized quantifier for maps (§2.3), most of these were solved by rewriting; the remainder was
solved by Isabelle’s built-in provers with little user assistance.

The construction of our verification environment for separation logic (§4) pioneers the re-use
of an existing VCG for classical Hoare logic, similar to the re-use of Boogie [BCD+06] as a
target for different languages (e.g. [CDH+09]).

The presented results suggest two directions for future work: first, it seems feasible to take the
proven unfolding rules from §3.3 as an axiomatization of a first-order constant graph, which could
be added to tools like [JSP10, BPS09, DJ08]. The step would require suitable representations of
sets and object collections, both of which have been studied before [HP09]. Second, following
the approach from §4, it would be worth investigating whether existing more detailed models
of C, e.g. [NIC12], can be combined with proofs by symbolic execution.

Bibliography

[AB07] A. W. Appel, S. Blazy. Separation Logic for Small-Step C minor. In Schneider and
Brandt (eds.), Theorem Proving in Higher Order Logics, 20th International Confer-
ence. LNCS 4732. Springer, 2007.

[BCD+06] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, K. R. M. Leino. Boogie: A Modu-
lar Reusable Verifier for Object-Oriented Programs. In 4th International Symposium
on Formal Methods for Components and Objects. LNCS 4111. Springer, 2005.

[BCO05a] J. Berdine, C. Calcagno, P. W. O’Hearn. Smallfoot: Modular Automatic Assertion
Checking with Separation Logic. In Boer et al. (eds.), 4th International Symposium
on Formal Methods for Components and Objects. LNCS 4111. Springer, 2005.

13 / 15 Volume 53 (2012)

Semi-automatic Proofs about Object Graphs in Separation Logic

[BCO05b] J. Berdine, C. Calcagno, P. W. O’Hearn. Symbolic Execution with Separation Logic.
In Yi (ed.), Programming Languages and Systems, Third Asian Symposium (APLAS).
LNCS 3780. Springer, 2005.

[Bor00] R. Bornat. Proving Pointer Programs in Hoare Logic. In Mathematics of Program
Construction. 2000.

[BPS09] M. Botincan, M. Parkinson, W. Schulte. Separation Logic Verification of C Programs
with an SMT Solver. In 4th International Workshop on Systems Software Verification
(SSV). Volume 254. Elsevier, 2009.

[CDH+09] E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach, M. Moskal, T. Santen,
W. Schulte, S. Tobies. VCC: A Practical System for Verifying Concurrent C. In The-
orem Proving in Higher Order Logics, 22nd International Conference (TPHOLs).
LNCS 5674. Springer, 2009.

[Chl11] A. Chlipala. Mostly-automated verification of low-level programs in computational
separation logic. In 32nd ACM SIGPLAN conference on Programming language
design and implementation (PLDI). ACM, 2011.

[Daw09] J. E. Dawson. Isabelle Theories for Machine Words. In 7th International Workshop
on Automated Verification of Critical Systems (AVOCS). ENTCS 250. Elsevier, 2009.

[DJ08] D. Distefano, M. J. P. J. jStar: towards practical verification for Java. SIGPLAN Not.
43(10):213–226, 2008.

[Gas10] H. Gast. Reasoning about memory layouts. Formal Methods in System Design 37(2-
3):141–170, 2010.

[Gas11] H. Gast. Developer-oriented Correctness Proofs: a Case Study of Cheney’s Algo-
rithm. In Qin and Qiu (eds.), Proceedings of 13th International Conference on For-
mal Engineering Methods (ICFEM 2011). LNCS 6991. Springer, 2011.

[Gas12] H. Gast. Mechanized Development of Object Graphs for Symbolic Execution. http:
//www-pu.informatik.uni-tuebingen.de/users/gast/files/sepgraph.zip, 2012.

[HM05] T. Hubert, C. Marché. A case study of C source code verification: the Schorr-Waite
algorithm. In Aichernig and Beckert (eds.), 3rd International Conference on Soft-
ware Engineering and Formal Methods (SEFM). IEEE, 2005.

[HP09] C. Hawblitzel, E. Petrank. Automated verification of practical garbage collectors.
SIGPLAN Not. 44(1):441–453, 2009.

[JSP10] B. Jacobs, J. Smans, F. Piessens. VeriFast: Imperative Programs as Proofs. In VS-
Tools workshop at VSTTE 2010. (no formal proceedings), 2010.

[KWP99] F. Kammüller, M. Wenzel, L. C. Paulson. Locales: a Sectioning Concept for Isabelle.
In Bertot et al. (eds.), Theorem Proving in Higher Order Logics, 12th International
Conference (TPHOLs). LNCS 1690. Springer, 1999.

Proc. AVoCS 2012 14 / 15

http://www-pu.informatik.uni-tuebingen.de/users/gast/files/sepgraph.zip
http://www-pu.informatik.uni-tuebingen.de/users/gast/files/sepgraph.zip

ECEASST

[Lei10] K. R. M. Leino. Dafny: An Automatic Program Verifier for Functional Correctness.
In 16th International Conference on Logic for Programming Artificial Intelligence
and Reasoning (LPAR-16). 2010.

[LW09] C. Lüth, D. Walter. Certifiable specification and verification of C programs. In Cav-
alcanti and Dams (eds.), FM 2009: Formal Methods, Second World Congress.
LNCS 5850. Springer, 2009.

[MAY06] N. Marti, R. Affeldt, A. Yonezawa. Formal Verification of the Heap Manager of an
Operating System Using Separation Logic. In Liu and He (eds.), 8th International
Conference on Formal Engineering Methods (ICFEM). LNCS 4260. Springer, 2006.

[McC08] A. McCreight. The Mechanized Verification of Garbage Collector Implementations.
PhD thesis, Department of Computer Science, Yale University, Dec. 2008.

[McC09] A. McCreight. Practical Tactics for Separation Logic. In Berghofer et al. (eds.), The-
orem Proving in Higher Order Logics, 22nd International Conference (TPHOLs).
LNCS 5674. Springer, 2009.

[MN05] F. Mehta, T. Nipkow. Proving pointer programs in higher-order logic. Inf. Comput.
199(1–2):200–227, 2005.

[MSLL07] A. McCreight, Z. Shao, C. Lin, L. Li. A general framework for certifying garbage
collectors and their mutators. SIGPLAN Not. 42(6):468–479, 2007.

[Myr10] M. O. Myreen. Reusable verification of a copying collector. In Proceedings of the
Third international conference on verified software: theories, tools, experiments
(VSTTE ’10). LNCS 6217. Springer, 2010.

[NIC12] C-Parser of L4.verified. http://www.ertos.nicta.com.au/software/c-parser, 2012.

[ON02] D. v. Oheimb, T. Nipkow. Hoare Logic for NanoJava: Auxiliary Variables, Side Ef-
fects and Virtual Methods revisited. In Eriksson and Lindsay (eds.), Formal Methods
Europe (FME’02). LNCS 2391. Springer, 2002.

[Sch05] N. Schirmer. Verification of Sequential Imperative Programs in Isabelle/HOL. PhD
thesis, Technische Universität München, 2005.

[Tue09] T. Tuerk. A Formalisation of Smallfoot in HOL. In Berghofer et al. (eds.), The-
orem Proving in Higher Order Logics, 22nd International Conference (TPHOLs).
LNCS 5674. Springer, 2009.

[VB08] C. Varming, L. Birkedal. Higher-Order Separation Logic in Isabelle/HOLCF.
ENTCS 218:371–389, October 2008.

[Web04] T. Weber. Towards Mechanized Program Verification with Separation Logic. In
Marcinkowski and Tarlecki (eds.), Computer Science Logic – 18th International
Workshop, CSL 2004. LNCS 3210, Springer, 2004.

15 / 15 Volume 53 (2012)

http://www.ertos.nicta.com.au/software/c-parser

	Introduction
	Basic Definitions
	Heaps and Heap Assertions
	Tactics for Heap Assertions
	Isabelle/HOL Maps

	A Theory of Object Graphs
	Collections of Objects
	Reachability
	The Predicate for Object Graphs

	Verification Environment
	Applications
	Loop Invariants
	Symbolic Execution
	Structure of Proofs

	Related Work
	Conclusion

